
Axiomatic Quantum Field Theory
and

Stochastic Quantization

Chunqiu Song

Advisor Prof. Massimiliano Gubinelli

Second Advisor: Dr. Francesco de Vecchi

University of Bonn



Plan 2/39

Plan for the talk:

1. Quantum Fields as Operator-Valued Distributions

2. Wightman Axioms of Relativistic Quantum Fields

3. Wightman Reconstruction Theorem

4. Osterwalder-Schrader Axioms for Schwinger Functions and Euclidean Quantum Field
Theory

5. Stochastic Quantization
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Classical Fields: scalar, vector, tensor or spinor valued function of space-time

Quantum Fields: operator-valued function of space-time?

Simple math argument: free scalar Boson field, Fock space

C�L2(R3)� (L2(R3)
L2(R3))� : : :=H0�H1�H2� � � �

Scalar product:

h�;	i=��0	0+
Z
R3
�� 1(x)	1(x) d3x+

Z
R3

Z
R3
��2(x1; x2)	2(x1; x2)d3x1d3x2+ � � �

Annihilation operator field  (x):

( (x)	)n(x1; � � �; xn)= n+1
p

	n+1(x; x1; � � �; xn)

Problem: the domain of creation operator  �(x) at the same point, as the adjoint
operator of  (x), only contains 0 vector.
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Theorem 1. (Wightman 1964) Suppose we have a quantum theory with a separable
Hilbert spaceH, and a strong continuous unitary representation of space-time translation
R1;33 a 7!U(a)2U(H) such that the spectrum of the energy momentum operator is
contained in the closed forward light cone. Suppose the quantum theory has a unique
vacuum vector 	0, which is invariant under the action of space-time translation, that is

U(a)	0=	0 for alla2R1;3

Then a map B from a bounded open set O�R1;3 to Von Neumann algebra of bounded
operators on H, with the following properties

U(a)B(x)U(¡a)=B(x+ a)

[B(x); B(y)(�)] = 0

where a is small enough and (x¡ y) is a space-like vector. Then B has constant value
equal to a constant multiple of identity.
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Physical Viewpoint:

Bohr and Rosenfeld's (1933&1950):

measurability of electromagnetic fields in QED, only the quantities formally corresponds
to the average of its classical analog over finite space-time regions are measurable

1
jO j

Z
O
F��(x) d4x

Heisenberg (1931):

used smeared fields (average over second differentiable function) to avoid the infinite
fluctuation Einstein's fluctuation formula of blackbody radiation.

showed in general to measure the field in a sharply defined region, one has to use an
infinite amount of energy, electromagnetic field are special cases.

Question: What differentiability and regularity conditions one should assume in order to
define the smeared field?
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Definition 2. (Wightman, Gårding 1965) Suppose H is a Hilbert space, an operator-
valued distribution is a complex linear map ' from complex-valued Schwartz function
space S to the set of operators (bounded or unbounded) on Hilbert space H, such that
all the operators '(f);8f 2S have a common dense domain D, and the map

S!C; f 7! h�; '(f)	i

is continuous, where �2H;	2D are fixed vectors.

Inspired by Schwartz's theory of distribution.

Weak continuous and temperedness only produce renormalizable theories (Bogoliubov
etc.).

Different choice of test function spaces for different models, Gelfand-Shilov spaces (Jaffe
1967).
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Minkowski space R1;3:

hx1; x2i= g��x1
�x2

� where g00=1; g11= g22= g33=¡1 and g��=0 if �=/ �.

Vector types x2R1;3 8<: time-like, if hx; xi> 0
space-like, if hx; xi< 0
light-like, if hx; xi=0

Forward light cone: V+ := fxj hx; xi> 0; x2R1;3g causal future of the origin

Lorentz group: h�x;� yi= hx; yi, g��������=g��

Restricted Lorentz group SO+(1; 3): connected component of the identity

Inhomogeneous Lorentz group (Spinor group): SL(2;C) double cover of SO+(1; 3)

Restricted Poincaré group P :

f(a;�)j�2SO+(1; 3); a2R1;3g (a1;�1)(a2;�2)= (a1+�1a2;�1�2):
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Born's Rule: jh	;�ij2

Symmetry U : maps normalized state 	 to state U	, such that

jhU	; U�ij2= jh	;�ij2

Theorem 3. (Wigner 1931) A symmetry U is an unitary or anti-unitary operator.

Anti-unitary:

U(a	+ b�)= a�U(	)+ b�U(�) for8a; b2C;	;�2H;

hU 	; U �i= h�;	i for8	;�2H:
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Relativity: each element �2R1;3oSO+(1; 3) induces a symmetry U(�) (unitary)

Projective representation:

U(�1)U(�2)= eif(�1;�2)U(�1�2)

Theorem 4. (Wigner 1939, Bargmann 1954) Each projective representation of
restricted Poincaré group R1;3o SO+(1; 3) to the group U(H) of unitary operators
on a Hilbert space corresponds to a unique unitary representation of R1;3 o SL(2;
C), this means one can change the phase factor continuously of projective represen-
tation of R1;3oSL(2;C)

R1;3oSL(2;C)!R1;3oSO+(1; 3)!U(H)

to get a unitary representation.
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Wigner's idea:

one particle state subspace should look the same for each observer, hence a subrepresen-
tation of Poincaré spin group.

irreducible representations corresponds to different types of the particles.

Wigner: if m> 0 (massive) one-to-one correspondence between

1. finite dimensional irreducible representation D(s;0) of SL(2;C)

2. irreducible continuous unitary representation of R1;3oSL(2;C)

Finite dimensional irreducible representation of SL(2;C) are labeled by D(s+;s¡) where
s�=0; 1

2
; 1; 3

2
; : : :

covariance in Wightman's axiom is motivated by transformation law in the construction
of irreducible representations
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1. Space of states

- States are represented as unit rays in a separable complex Hilbert space H.

- There is a strong continuous unitary representation of the group R1;3oSL(2;C).

- (uniqueness of vacuum) There is a unique unit ray f
g (interpreted as vacuum) such
that

U(a;A)
=


for any (a;A)2R1;3oSL(2;C).

- (spectrum condition) The generators of space-time translations (P 0; P 1; P 2; P 3),
interpreted as the energy-momentum operator, has spectrum in closed forward light cone
V+.
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2. Observables and covariance

- A set of operator valued distributions f'
n
(k)jk; n2Ng, where k labels the type of the

field which can be at most countable and n labels the components of the field which
can only take finite number of values, and a dense subspace D where all the operators
'
n
(k)(f) and '

n
(k)�(f)= '

n
(k)(f�)� are defined, for all n2N and f 2S(R4).

- The vacuum 
 is contained in D.

- The domain D is invariant under the action of U(A;a), '
n
(k)(f) and '

n
(k)�(f), for all

(a;A)2R1;3oSL(2;C), n2N and f 2S(R4).

- The covariant transformation of fields operator under the action of (a;A) is given by

U(a;A)'
n
(k)(�)(f)U(a;A)¡1=

X
m

Dnm
(k) (A¡1)'

m
(k)(�)((a;A)f)

where Dnm
(k) (A) are matrices of a finite dimensional irreducible representation of the

group SL(2;C) with '
n
(k) as its components, and (a; A)f = f(A¡1 (x¡ a)). If the

representation D(A) is a representation of group SO+(1;3), then the fields are called a
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tensor field, otherwise the fields are called spinor fields. This transformation law is linear
in the test function.

- The vacuum 
 is a cyclic vector, which means the linear span D0 of the set�
'i1
(k1)(�)(f1) : : : 'im

(km)(�)(fm)
jm2N; i1; � � �; im2N; f1; : : : ; fm2S(R4)
	
is dense.

3. Locality or Microcausality

- For any two test functions f ; g2R4 whose supports consists only space-like separated
points, the operators '

n
(k)(�)(f) and '

m
(k 0)(�)(g) satisfies

'
n
(k)(�)(f)'

m
(k 0)(�)(g)¡�(k; k 0)'

m
(k 0)(�)(g)'

n
(k)(�)(f)= 0

where �(k; k 0) = 1 if one of k and k 0 is representation with integer spin, and �(k;
k 0)=¡1 if both k and k 0 are representation of odd spin.
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Comments:

1. �(k; k 0): spin-statistics theorem and Klein transformation

2. Mass operator: (P 0)2¡ (P 1)2¡ (P 2)2¡ (P 3)2

A theory is said to has a mass gap, if there is no eigenvalue between 0 and �> 0.

3. Rigged Hilbert space approach:

Bohm & Roberts (1966): quantum mechanics

Bogoliubov & Logunov&Todorov (1975): modified the Wightman axiom

Prigogine & Antoniou (1993): application to irreversible quantum system

4. Gauge theory:

Ferrari, Picasso & Strocchi (1974):free Maxwell's equations are inconsistent with axioms.

Wightman & Strocchi: Indefinite Hilbert space modification

Glimm&Lee (2022): axioms for quantum gauge theory
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The correlation of Wightman fields, given by

Wm1; � � �;mn

k1
(�)
; � � �;kn

(�)
(f1; � � �; fn) :=



	0; 'm1

(k1)(�)(f1) � � � 'mn

(kn)(�)(fn)	0
�

for any f1; � � �; fn2S(R4) defines a tempered distribution on R4n by nuclear theorem.

Proposition 5. (Hermiticity)

Wm1; � � �;mn

k1
(�)
; � � �;kn

(�)
(f1; � � �; fn)=Wmn; � � �;m1

kn
¡(�)

; � � �;k1
¡(�)

(fn; � � �; f1)

where the notation ¡(�) means if we have index ki, then we take ki
¡(�)=ki�, if we have

ki
�, we then take ki

¡(�)= ki.
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Proposition 6. (Positivity) For any finite sequence of test functionsn
fm1; � � �;mi

k1
(�)
; � � �;ki

(�)������fm1; � � �;mi

k1
(�)
; � � �;ki

(�)
2S(R4i)

o
, we have

X
i;j

X
k1
0(�); � � �;kj0(�)
m1
0 ; � � �;mj

0

X
k1
(�)
; � � �;ki

(�)

m1; � � �;mi

Wmj
0 ; � � �;m1

0 ;m1; � � �;mi

kj
0¡(�); � � �;k10

¡(�)
;k1
(�)
; � � �;ki

(�)
�
f�m1

0 ; � � �;mj
0

k1
0(�); � � �;kj0(�)fm1; � � �;mi

k1
(�)
; � � �;ki

(�)
�
>0

where f�m1
0 ; � � �;mj

0
k1
0(�); � � �;kj0(�) is the function fm1

0 ; � � �;mj
0

k1
0(�); � � �;kj0(�)(xj ; xj¡1; : : : ; x1).

Proof. The norm of the vectorX
i

X
k1
(�)
; � � �;ki

(�)

m1; � � �;mi

'm1

(k1)(�)(f1) � � � 'mi

(ki)(�)(fi)	0

is non-negative. �
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Proposition 7. (Covariance) We haveX
n1; : : : ;nl

Dm1n1
(k1) (A¡1): : :Dmlnl

(kl) (A¡1)Wn1; � � �;nl
k1
(�)
; � � �;kl

(�)
((a;A)f1; � � �; (a;A)fl)

=Wm1; � � �;ml

k1
(�)
; � � �;kl

(�)
(f1; � � �; fl)

for any (a;A)2R1;3oSL(2;C).

Proposition 8. (Locality or Microcausality) If the supports of test functions fl; fl+1
consist only space like points, then

Wm1; � � �;ml;ml+1; : : : ;mn

k1
(�)
; � � �;kl

(�)
;kl+1
(�)

; : : : ;kn
(�)

(f1; � � �; fl; fl+1; : : : ; fn)

=(¡1)�(kl;kl+1)Wm1; � � �;ml+1;ml; : : : ;mn

k1
(�)
; � � �;kl+1

(�)
;kl
(�)
; : : : ;kn

(�)

(f1; � � �; fl+1; fl; : : : ; fn)

for all possible indices.
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Proposition 9. (Spectrum Property) Under the change of variables

�1=x1¡x2; : : : ; �n¡1=xn¡1¡xn; �n=xn

where x1; : : : ; xn2R4, each tempered distributionWm1; � � �;mn

k1
(�)
; � � �;kn

(�)
depends only on �1; : : : ;

�n¡1, that is

@Wm1; � � �;mn

k1
(�)
; � � �;kn

(�)

@�n
=0

then there is a tempered distribution Mm1; � � �;mn

k1
(�)
; � � �;kn

(�)
2S 0(R4(n¡1)), such that

Wm1; � � �;mn

k1
(�)
; � � �;kn

(�)
=Mm1; � � �;mn

k1
(�)
; � � �;kn

(�)

 1

where 1 is a constant function 1 on R4. Moreover, the Fourier transform M~m1; � � �;mn

k1
(�)
; � � �;kn

(�)

of the tempered distribution Mm1; � � �;mn

k1
(�)
; � � �;kn

(�)
is supported in the (n¡ 1)¡ fold product of

closed forward light cone V+� � � � �V+.
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Proposition 10. (Cluster Property) Suppose a2R1;3 is a space-like vector, then

Wm1; � � �;ml;ml+1; : : : ;mn

k1
(�)
; � � �;kl

(�)
;kl+1
(�)

; : : : ;kn
(�)

(f1; � � �; fl; (�a; I)fl+1; : : : ; (�a; I)fn)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !�!+1

Wm1; � � �;ml

k1
(�)
; � � �;kl

(�)
(f1; � � �; fl)Wml+1; � � �;mn

kl+1
(�)

; � � �;kn
(�)

(fl+1; � � �; fn)

for all possible indices and test functions.

Proof. In general one can show that

lim
�!1

h�; U(�a; I)	i= h�;	0ih	0;	i �
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Wightman distributions a collection of tempered distributions
n
Wm1; � � � ;mn

k1
(�)
; � � � ;kn

(�)
2

S 0(R4n)
������n 2N; 06mi6 2s(ki) + 1<+1; 16 i6 n

o
and W [0] without any index

is assumes to be 1, where s(ki) is understood to be the spin described by ki ¡ th
field, with following properties:

1. (Hermiticity)

2. (Positivity)

3. (Covariance)

4. (Locality or Microcausality)

5. (Cluster Property)

6. (Spectrum Property)
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Theorem 11. (Wightman Reconstruction Theorem) For a given set of Wightman
distributions satisfying axioms 1 to 6, there exists a unique Wightman quantum field
theory up to unitary equivalence.

Proof: Sketch

Vector space H : sequence f =(f0; f1; : : :) where fi2S(R4i) with only a finite number
of nonzero components.

pre vacuum vector: 	0=(1; 0; 0; : : : )

Inner product:

hf ; gi :=
X
i;j=0

1
Wi+j(f�i

� 
 gj)

It is skew symmetric by hermiticity and non-negative definite by positivity.
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Representation of Poincaré group:

U(a;�)f =(f0; (a;�)f1; (a;�)f2; : : : )

then by covariance assumption, the skew linear form is preserved, and clearly the vacuum
is an invariant vector.

Field: for h2S, the operator '(h) is

'(h)f =(0; h
 f0; h
 f1; : : : )

Define H0 := ff 2H jhf ; f i=0g

complete the space H /H0 to get the physical Hilbert space H

Verify other axioms. . .
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Transition probability:

h 'f jU (t1¡ t0)j 'i i; U (t1¡ t0)= e
¡i(t1¡t0)H~

Feynman path integral:

probability theory on states!probability theory on histories

h'f jU (t1¡ t0)j 'i i= h'f
������e¡i(t1¡t0)H~ ������'i i=Z

'(t0)='i
'(t1)='f

e
i

~S[']D[']

where S['] is the classical action functional.
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The expectation of time ordered product operators (operators in Heisenberg picture)Z
'(t0)='i

'(tn+1)='f

'(tn) � � � '(t1)e
i

~S[']D[']

=
Z
d'n: : :

Z
d'1h'f jU(tn+1¡ tn)j'ni'nh'nj� � � j'1i'1h'1jU(t1¡ t0)j'ii

= h'f jU(tn+1)�(tn) � � ��(t1)U(¡t0)j'ii
= ht=0; 'f j�(tn) � � ��(t1)j 0; 'ii

where tn+1>tn>tn¡1> � � �>t1>t0 and � is the quantum analog of ', usually given
by canonical quantization. The state j t=0; 'ii means the time zero state which evolves
to labeled by configuration 'i in time t0.
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Usually the Hamiltonian is positive H > 0: h jH j  i> 0 for all possible state j  i

Wick rotation: Replace t> 0 in e
¡itH~ by ¡i� for � > 0, then

e
¡itH~ ! e

¡�H~

is bounded, and the path integral formula turns into

h 'f jUE(�1¡ �0)j'i i= h'f
������e¡(�1¡�0)H~ ������'i i=Z

'(�0)='i
'(�1)='f

e
¡1

~SE[']D[']

where SE['] is the Euclidean action, which is positive usually. For expectations with
�n+1>�n>�n¡1> � � �>�1>�0, we have

h� =0; 'f j�(�n) � � ��(�1)j � =0; 'ii=
Z

'(�0)='i
'(�n+1)='f

'(�n) � � � '(�1)e
¡1

~SE[']D[']
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Euclideanpath integralmeasure$Boltzmanndistribution

Euclidean time �$ temperatureT � = ~
kT

According to quantum statistical mechanics, if we assume the spectrum of H is discrete
for convenience, say E0<E1< � � �<En< � � �, the ensemble average at temperature T
of an operator A should be given by

hAi=
Tr

�
e
¡ 1

kT
H
A

�
Tr

�
e
¡ 1

kT
H
� =

P
i=0
1 e

¡ 1

kT
Ei hijAj iiP

i=0
1 e

¡ 1

kT
Ei

where k is the Boltzmann constant. Zero temperature limit T! 0, we have

P
i=0
1 e

¡ 1

kT
Ei hijAj iiP

i=0
1 e

¡ 1

kT
Ei

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
T!0

h0jAj 0i
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and this limit corresponds to the limit �!+1. Thus the equation

h�(�n) � � ��(�1)i=

R
d'0

R
'(�0)='i

'(�n+1)='f
'(0)='0

'(�n) � � � '(�1)e
¡1

~SE[']D[']d'0

R
d'0

R
'(�0)='i

'(�n+1)='f
'(0)='0

e
¡1

~SE[']D[']d'0

with the limit �0!¡1; �n+1!+1, one has

h0j�(�n) � � ��(�1)j 0i=
R
'(�n) � � � '(�1)e

¡1

~SE[']D 0[']R
e
¡1

~SE[']D 0[']

where the path integral measure is over the space of all configurations with some decay
property (one can also pose the periodic condition on Euclidean time, and then study
the limit that the period goes to infinity).
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Construction of Schwinger functions: single scalar Boson field

Step 1: use spectral property

Theorem 12. There are holomorphic functionsWn(z1;:::; zn) andMn¡1(z~1;:::; z~n¡1),
where zi=(zi0; zi1; zi2; zi3) and denote z~j=xj¡ i yj, such that

Wn(z1; � � �; zn)=Mn¡1(z1¡ z2; : : : ; zn¡1¡ zn)

defined on the tube Tn¡1= f¡Im (zi¡ zi+1)2V+j i=1; � � �; n¡ 1g, and polynomially
bounded, such that the boundary valueMn¡1(z~1;:::; z~n¡1) is the distributionMn¡1, i.e

lim
yj!0

Mn¡1(x1¡ i y1; � � �; xn¡1¡ i yn¡1)=Mn¡1

in the sense of tempered distribution.
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Step 2: use covariance

Complex Lorentz group L(C): connected component of the identity of the group of
complex matrices that preserve the complex bilinear form

hz1; z2i= z10z20¡ z11z21¡ z12z22¡ z13z23

on the space C1;3. A point in the space C1;3 is called a Euclidean point if it as the
form (¡ix0; x1; x2; x3) where x0; x1; x2; x32R.

Since Wn transforms as

Wn(x1; � � �; xn)=Wn(�x1; � � �;�xn); for all�2SO+(1; 3)
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by the uniqueness of the analytic continuation we have

Wn(z1; � � �; zn)=Wn(� z1; � � �;� zn)

and

Mn¡1(z~1; � � �; z~n¡1)=Mn¡1(� z~1; � � �;� z~n¡1)

but we can see here that the Lorentz transformations preserve the tube Tn¡1, now one
can use this identity to extend the action of Lorentz group to complex Lorentz group.
Then one can define Mn¡1 on the so called extended tube

Tn¡1
e :=

[
�2L(C)

�Tn¡1

and this extension is single valued.
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Step 3: use locality

For any permutation �

Wn(x1; : : : ; xn)=Wn(x�(1); : : : ; x�(n))

Define the value of Wn(z�(1); : : : ; z�(n)) by Wn(z1; � � �; zn), and hence one can define
Mn¡1 when Wn(z�(1); : : : ; z�(n)) is define.

This analytic continuation is well-defined and also single-valued.

The intersection of Euclidean points En and Wn's holomorphic domain is

R=/
4n := f(x1; x2; � � �; xn)jxi2R4; xi=/ xj if i=/ jg�En

Schwinger function Sn: restriction of Wn on R=/
4n

note that it is polynomially bounded, hence also a tempered distribution.
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OS axioms: Schwinger distribution is a collection of tempered distributions fSn 2
S 0(R=/

4n)jn2N g and S0 := 1, with following properties:

1. (Linear Growth) There exists an integer s 2N, and a sequence f�ng of positive
numbers, such that �n6C(n!)C

0
for some constants C;C 0 independent of n, and

jSn(f)j6�nkf kn�s

for all f 2R=/
4n and n2N.

2. (Euclidean Invariance) for any (a;A)2R4oSO(4)

Sn((a;A)f1; � � �; (a;A)fn)

=Sn(f1; � � �; fn)
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3. (Reflection Positivity) For any finite sequence of test functions fiX
i;j

Si+j(�f�j
 fi)> 0:

where �f(x1; : : : ; xn)= f(�x1; : : : ;�xn) and �(x0; x1; x2; x3)= (¡x0; x1; x2; x3).

4. (Symmetry)

Sn(f1; � � �; fl; fl+1; : : : ; fn)

=Sn(f1; � � �; fl+1; fl; : : : ; fn)

5. (Cluster Property) Suppose a2R4 is a non-zero vector of the form (0; a1; a2; a3)

Sm+n(fm; (�a; I)fn)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !�!+1
Sm(fm)Sn(fn)
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Why reflection positivity?

Reflection positivity correponds to positivity of Wightman distributions

Conjugate transformation of Minkowski Hermitian scalar field

'(t; x)= eitP
0¡ix1P 1¡ix2P 2¡ix3P 3 '(0; 0)e¡itP

0+ix1P
1+ix2P

2+ix3P
3

and applyWick rotation t=¡i� we have

'(� ; x)= e�P
0¡ix1P 1¡ix2P 2¡ix3P 3 '(0; 0)e¡�P

0+ix1P
1+ix2P

2+ix3P
3

then we have

'�(� ; x)= '(¡� ; x)

for any Euclidean time � , note that conjugate transformation of a Hermitian scalar Boson
field in Euclidean theory is different from Minkowski theory.
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Theorem 13. (Osterwalder-Schrader Reconstruction) There exist a unique Wightman
quantum field theory whose Schwinger functions agree with the given set with prop-
erties listed above.

Remarks:

1. This works for general spinor or tensor fields.

2. Different similar axioms, Jaffe and Glimm (2012), Fröhlich (1974), probabilities on
distributions. They imply Wightman axioms, but not equivalent to.

Equivalence can be find in Bogolubov etc. (2012) with different condition corresponding
to the spectrum condition (a different topology on test functions).

3. OS axioms can be used to construct Euclidean fields that are operator-valued distri-
butions, which is also called the reconstruction theorem.
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Question: How to construct a qft model satisfies OS-axioms?

Stochastic Quantization: construct Eucldiean path integral measure and verify OS-axioms.

Idea: Think e¡SE['] D 0['] as the Boltzmann distribution in equilibrium statistical
mechanics and use Langevin dynamics to construct a hypothetical non-equilibrium process
converging to this equilibrium.

@t'(t; x)=¡
�
�SE[']
�'

�
j'='(t;x)+�

or equivalently

@t'(t; x)=¡
�ŜE[']
�'

+ �; ŜE['] =
Z
dtSE[']

where � is the functional derivative, t is fictitious time, and � is the space-time white
noise.

Since the white noise is delta correlated in time direction, then the solution process if
exists, should be a Markov process.
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Compute invaraint measure:

Fokker-Planck equation? equation of the probability distribution P ('; t)

Then the Fokker-Planck equation is given by

@tP ('; t)=
Z
dx

�
�'

"
� ŜE
� '

+ �
� '

#
P ('; t)

and it is clear e¡SE['] is a stationary solution.
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Remark:

1. Proposed by Parisi and Wu (1981), different from Nelson's stochastic mechanics
(1966), and De Broglie�Bohm (1952), where they used the real time. The SQ method
is based on an hypothetical process depending on a fictitious time. And one can use
different Langevin equations to describe the Euclidean path integral measure. There are
cases (Chern-Simons) where the stochastic quantization method does not work (Ferrari,
Huffel 1991).

2. The stochastic quantization equation requires us to study the solution theory for sto-
chastic partial differential equations, establish the meaning of the equation, the existence
of local solutions, and most importantly the long time existence of the solution, since we
need to take t!1 to get the equilibrium state.

3. We need to verify that the limiting measure should satisfy the Osterwalder-Schrader
axioms or its some kind of modifications, this is not easy. It has been shown by Jaffe
(2015), that reflection positivity is not satisfied in the finite time non-equilibrium state
of the solution for free scalar field.
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Thanks!


