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Quantum Fields as«Operator_—VaIued | Distributions 3/39

C|a55|cal Fields scalar vector tensor or spmor vaIued functlon of space- -time
Quantum F|e|ds operator—valued functlon of space t|me7 o

Simple math argument free scalar Boson fleld Fock space
Co L?(RS) (LQ(IR?’) ® L2(1R3>> S HEHI B Ha® -

Scalar product:”; .
(D, T) = Py Wy -I-/ Oy (z) Uy (x) d’z —I—/ / Bo(z1, 22) Ua(x1, z2)d321d30 + - - -
| R e R3.J R3

Annihilation operator field 1 (z):

((@) V(@1 0) = yAFT Uy (@, 21, -, )

Problem: the domain of creation operator t*(x) at the same point, as the adjoint
operator of ¥ (z), only contains 0 vector. ;



Quantum Fields as Operator-Valued Distributions 4/

Theorem 1. '(Wightman /1964)' Suppose we have a'quantum"theory with a separable
Hilbert space H, and a strong continuous unitary representatlon of space—t/me translation
R'“3 3 aws U(a) €U(H) such that the spectrum of the energy momentum ‘operator is
contained in the closed forward //ght cone. Suppose the quantum theory has a unique
vacuum vector \Ilo, Wh/ch IS invariant under the actlon of space—t/me translation, that is

U(a)\I’o - \Ifo for_all a€ R1’3 " -

Then a map B from a bounded open set © C RY3 to Von Neumann algebra of bounded
operators on 'H, with the following properties

U_(a)B(x)U(—-a) = B(x + a)
[B(@), By)“]=0.

where a is small enough and (z — ) is a space-like vector. Then B has constant value
equal to a constant multiple of identity. '



Quantum Fieldﬂs as Operator-Valued Distributions s/

Phy5|ca| Vlewpomt
Bohr and Rosenfeld s, (1933&1950)

measurability of eIectromagnetlc fields in QED only the quantltles formally corresponds
to the average of its claSS|ca| analog over flnlte space -time reglons are measurable

\OI/ Wi

used smeared fields (average over second differentiable function) to avoid the infinite
fluctuation Einstein’s fluctuation formula of blackbody radiation.

Heisehbejrg’ (1931):

showed in general to measure the field in a sharply defined region, one has to use an
infinite amount of energy, electromagnetic field are special cases.

Question: What dlfferentlablllty and regularlty condltlons one should assume in order to
define the smeared field?



Quantum Fields as Operator-Valued Distributions e/

Definition 2. "(Wight‘r'ri_an*,i'- Garding '1965).;,5uppOSe, H is a Hilbert space, an operator-
valued distribution is a complex linear map ¢ from complex-valued Schwartz function
space S to the set of opéra‘tOr‘si( bounded or "unbbuh:d,ed ) on Hilbert space H, such that
all the operators ¢(f),V f €S have a common dense domain D, and the map

§—C, [ (2,0(f)T)
s cdntl'nut)us, where ® EH,VeD are fixed \)_ectors.

Inspired by Schwartz's theory of distribution.

Weak continuous and temperedness only produce renormalizable theories (Bogoliubov
etc.). | £

Different choice of test funCtionSpaces for different models, Gelfand-Shilov spaces (Jaffe
1967). '



Wightman Ax'i/Qm,s:,-:.ofRe;l.a_ti'vistic Quantum Fields 73

Mmkowskl space Rl 3 |

i 1‘2) QW% -732 Where goo - 1 911 = 922 = 933 —"_—1 aﬂd g,uu = 0 lf M 7& V.

Vector types :L‘ E ]R1 30 '

- tim'e;nkv_e,} i (m,2)>0

space-like, if (x,2) <0
light-like, if (z,x)

Forward Iight cone: V. :={z[(z,z) >0,z € 31’3} causal future of the origin

Lorentz groip A, Ay = (2. 0) © gaph N 0

Restricted Lorentz group SO (1, 3): conn”e"ct‘ed component of the identity

Inhomogeneous Lorentz groupv(Spinor grbup): SL(2, C) double cover of SO™(1,3)

Restricted Poincaré group P:

{(a,A)|A € SOTE B aeBRE? (o) oo M= (a1 L A agATA,)



Wightman Axi/omS‘ofRelati'vistic QuantUmFieIds 8/39
Born s Rule 1(\11 <I>>| . | .
vSymmetry U maps normallzed state \IJ to state U\If such that
| HUfo,UcI)}}_[(\If q>>‘, -
Theorvem 3. (Wigner 1931) A symmetry U is an un/tary or ahti—unitary_bperator..:
A‘ntiy—uvhitva'ry:.
Ua¥Y+bP)=a*U(V)+b*U(P)forVa,be C,¥, P cH;

(U0, U &) = (®, U) for ¥, & € H.



Wightman Axi/Om,s_«ofRe;l.ati;vistic Quantum Fields o3
Relatlwty each element A = lRl i ><1 SO+( 3) 'ifndvuces a symmetry U(A) (unitary)
PrOJectlve representatlon | e e o

U(A{)U(Ag) S (Al’A2)U(A1A2)
Theorem 4, (ngner 1939, Bargmann 1954) Each projective representation of
restricted Poincaré group RY? % SO™ (1, 3) to the group U(H) of unitary operators

on a Hl/bert space corresponds to a unique unitary representation of R13 x S1L(2,

C), this means one can change the phase factor continuously of projective represen-
tation of RY? x SL(2,C)

RL 4 SL(2, ©) — RS x SO*+(1,3) - U(H)

to get a unitary representation.
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Wigner’ s |dea

one part|c|e state subspace should |ook the same for each observer hence a subrepresen-
tation of Pomcare spm group . e e

irreducible representatlons corresponds to dlfferent types of the part|c|es

Wigner: if m >0 :(._massive) one-to-one cbrkespondence bet\)veen‘
1. finite dime‘:ns'iienal-»'irredUcibIe representation' D) of SL(2,TC)

2. irreducible continuous unitary representation of R'? x SL(2, C)

Finite dimensional irreducible representation of SL(2, C) are labeled by D+5-) where

1 3
Sizo,g,l,g,...

covariance in Wightman's axiom is motivated by transformatlon law in the construction
of irreducible representations '



Wightman Axioms of Relativistic Quantum Fields 1/

1. S-pace Of states
- States are represented as umt rays in a separable complex Hrlbert space H.
- There is a strong contmuous unltary representatlon of the group R13 % SL(Q (B)}

- (uniqueness of vacuum) There isa umque un|t ray {Q} (mterpreted as vacuum) Silely
that |

| Ua, A)Q=0
for any (o, AYc RS < SL(2.C).

- (spectrum condition) The generators of space-time translations (PR e DY,
interpreted as the energy- momentum operator has spectrum in closed forward Ilght cone

V.
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2. Observables and covarlance '

- A set of operator valued dlstrlbutlons {go(k)\k’ = 1N} Where k Iabels e type of the

field which can be at most countable and n Iabels the components of the field which
can only take flmte number of values and a dense subspace D where all the operators

gp(k)(f) and go(k) (f) = gp(k)(f) are defmed for all nGN and fES(]R4)

- The vacuum Q is contamed in D.

- The vdomaln D is invariant under the action of U(A,a), gpf%k)(f) and gog‘“)*(f) for all
(a,A) e R* % SL(2,C), neN and f € S(RY). |

- The covariant transformation of fields operator under the action of (a, A) is given by

Ula, A)p®E)(f) ZD“ )e®O((a, A)f)

where Dgf,,),L(A) are matrices of a finite dimensional |rreducib|e representation of the
group SL(2,C) with gpy(f) as its components, and (a, A)f = f(A~! (z —a)). If the
representation D(A) is a representation of group SO™(1,3), then the fields are called a



Wightman Axi/em,s«ofRe_lati'v_istic Qu’antum Fields 13/

tensor f|e|d otherW|se the flelds are called splnor flelds This transformatlon law is linear
in the test functlon e , -

- The vacuum e rsA a‘ cychc vector, WhICh means the ||near span Dy of the set
{% (fl) %mmx*)( )leé]N 81y ZmEN, f1,..v.,fm€S(IR4)} is dense.

3 Locallty or Mlcrocausallty

- For any two test functlons f.g€ ]R4 whose supports conSIsts only space like separated
points, the ‘operators pB(f) and go(k/)(*)( ) satisfies S

9051’“>(*)(f)9057’j')(*)(9) — ok, k) pEI ) (g) oM f) =

where o(k, k') =1 if one of k and &’ visvrepresentation with integer spin, and ok,
k') =—1 if both k and k' are representation of odd spin.
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Comments: " " | |

1 o(k k ) spln statlstrcs theorem and Klern transformatlon

2. Mass operator (PO) (Pl) (Pz) (P?’) |

A theory is said to has a mass gap if there |s no elgenvalue between 0 and A>0.
3. Rigged Hllbert space approach = ' ‘
Bohm & Roberts (1966) quantum mechanlcs v
Bogolluboy & Logunov&Todorov (1975): modrfled the Wightman axiom
Prigogine & Antoniou (1993): application to irreversible quantum system |

4 Gauge theory:

Ferrari, Picasso & Strocchi (1974):free Maxwell's equations are inconsistent with axioms.
Wightman & Strocchi: Indefi'nite Hilbert space modification

Glimm&Lee (2022): axioms for quantum gauge theory
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The correlation of Wightman fieds, given by
Wmll, ,mnn (fl, 7fn) e <\IJO, SOr'(ni)( )(f ) *ﬁfnn)( ) \IJO>

forany fi, - ifaE S(RY) defines a tev'mpve‘r.e.d'- d.istr‘i”bﬁutiojn ’fo‘n R*" by nuclear theorem.

Propositiorif_"sf.' f"’v‘(ﬂHe"rmiticity)

k(*)) k() Dok ) '
Wmll, (f17 A 7fn) mn, mll (fnv"°7f1)

where the notation —(*) means if we have lndex ki, then we take k; )= =k, if we have
k;, we then take k; Kl —
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Pro}p_osi‘tioh: 6 (Posmvuty) For any f/n/te sequence of test functions

(R <*>-:;_@ |
{ o f kl - *’ ES(RM)}I we have. oo

fml, mz A mag

/5l k:’() ; /(*) k(*

' e k:’ ). L) k( ) k’<*) k) )
Z Z Z W J’. : ml,ml,,ml i : fm17 m§ fml," R 20

my,: . m-:j ,ml, --.~-,mz,

vk/<*> ! () Rty

Where f "W’LJ,? is the function f it m;;_? Ee L

Proof. The norm of the vector

ST O 0 e
7 ) el .
Pt ’»7vg,

/1IN (7]

is non-negative. | O]



Wightman Axioms of Relativistic Quantum Fields

Prd‘bdsifion' T (Covanance)We ha'vé,“f“ -
Z Dflf;m A 1> Dé’i;LxA >an, | <<a A)fl, - (a, A)fz)
_Wn]zi, :, . k‘ (f17 ,fl) f
for any (a A) EIRl 3 %4 SL(Q (B

Proposntlon 8. (Locality or Microcausality) If the supports of test functions fi, fi41
consist only space like points, then

Wiln e i
TIL T 0 % 5 LSV s 1y " s Jly JI+1y: -9 Jn

GE ) <*> '
ik Ry o oknky e :
:( 1) e H_l)Wmi, mll_:_ll,ml,.. (f17 7fl+17fl7°"7fn)

for all possible indices.



Wightman Axiom,s,aof_Re_l.ati;vistic Quantum Fields /3

Proposition 9. (Spectrum P}dperty)- :Uv'n,der'the change of"variab/es
51—5131—332,---,€n 1—96n 1 SUn, ﬁn—xn

| | LT
where 1, .. xn E 1R4 each tempered d/str/butlon Wmllj - ]1” depends on/y on 51,
& that is ' | e

anlly i mn L 0

On

then there is a tempered distribution M g = m: € S'(R*" ™)), such that
(%) ( *) (*) (%)
m117' mn _ Mmlla mn ® 1

i R o)

where 1 is a constant function 1 on R*. Moreover the Fourier transform M 1 & )
(*) : (*) : i

of the tempered distribution M T nf: is supported in the (n — 1) — fold product of

closed forward light cone Vi x - -+ x V..



Wightman Axioms of Relativistic Quantum Fields

Prdﬁdsitioh 10 (Clds"t‘_-e‘r‘ .CF;?‘ro'p'er'tyi)' Supposea = Rl?’ is a spa'éé;liké ‘vveictor, then

v Wmlla,mlfml-:l—tl : ,_Mﬁ (fl’ 7, i fla '()‘aﬂI) fl-l-la e ()‘a I) fn) —>

kl(j—)lﬁ k( )

flva | ; 7fl) ml—i—l mn(fl+17 ’fn)

_ Wk:&*) ; k( )(

for all possible indices and test functions.

Proof. In general one can show that

A— 00

lim <<1>; U(Xa, T) xp> = (D, Up) (T, ) y 0



= nghtma nReCOHStI’UCtIOn Th'eorem i 2 20/39

W|ghtman dlstr|but|ons 3 collectlon of tempered dlstrlbutlons {WTIE ,,;fn” &
S (IR4”) n E 1N O 28(k ) +. - —l—oo qa <n} and W[ | without any index

i assumes to be 1 where (kz) is understood to be the spln descrlbed by k L th
field, with followmg propert;es e : ,

1. (Hermntncnty)
(Posutnvuty)
. (Covarlance)

2
3
4. (Locality or Microcaﬁ-sality)
5. (Cluster Property)

6

. (Spectrum Property),



‘Wightman Reconstruction Theorem 2

Theorem 11 (nghtman Reconstructlon Theorem) For a g/ven set of Wightman
‘dlstrlbutlons satlsfymg axioms 1 to 6, there exrsts a un/que W/ghtman quantum field
theory up to un/tary equ1va/ence o |

Proof Sketch -

Vector space H sequence f (fO, L ..) where f; € S(RR*) with only a finite number
of nonzero ‘components. S N

pre vacuum vector: ¥y=(1,0,0,...)

Inner product:

Z I/VL-i—j fz®gj>

ng

It is skew symmetric by hermiticity and non-negative definite by positivity.



- Wightman Reconstruction Theorem 22/39

, U<A>f= (fo(A)f(A)f R

then by covariance assumptlon the skew Imear form is preserved and clearly the vacuum
IS an invariant vector. ' ' |

Field: for h'E'_if.-'S';j'tzhve‘oper'avtor gp(h) is

o) f=(0,h® fo,h® fi,...)

Define Hy:={f e H|{f, f)=0}
complete the space H / Hy to get the physical Hilbert space H

Verify other axioms. ..



Ideasof EUClldean QFT—= e | 23/39
Tra’hfsitidn probablllty -
< SOf lU (tl_ t())‘ S02> (tl o t@) ..Zk(tl tO)_ e
Feynman péth .i‘ntegral:'
probablhty th:eory on states — probability t.he:c_)ry bn histories

H
—’L(tl to)F

e

where S[¢] is the classical action functional.



Ideasof Elglidean QF ==~ = 2
Theexpectatlonoft|me Orderedproductoperators ('op»eratorsv in Heisenberg picture)

et WDl
»(to)=pi e an
@(tn-q-l)' Pro - :

= /dgon /dgm sOfIU(th—t )I¢n>son<son| | |901>901<901\U( 1 — to)| 1)

= (o7 [U{tns1)@(t) -+ D(t1)U (o) 1)
= {£=0,0¢[(tn) - 2(t1)] 0, 03) |

where tha1 >ty >ty 1>+ >t >tgand ® is the quantum analog of ¢, usually given
by canonical quantization. The state |£=0, ;) means the time zero state which evolves
to labeled by configuration (; in time fp. |



Ideas of Euclidean QFT - =

Usué“y the Ham;ltonlan ISPOSIUVGH 20 ( \H | ¢> > 0 for ’é'lvl_ possible state | 9 )

Wick rotation: Replace ¢ >0 in e Tw by —i7 for 7 >0, then

is bounded, and the path fi'ntegrAalvfcv)rmuvlé turns into

H
o Gile

| e o
o= [ emEply
w(10) =4
o(T1)=1pf

. (or !:'UE(ﬁ' —70)|ps ) = (o1

where Sg|p] is the Euclidean action, which is positive usually. For expectations with
Thil > Tn > Tn > 2o 530> T, e ha\(e ‘

(7 —0, 07 | Bl DR o :/ . o
, o(10) =i
P(Tn+1)=5



Ideas of Euclidean QFT -z

Euchdeanpath1ntegra1measure < Boltzmann distribution
- Euclidean time 7 < temperature 7" . 7 = T

According to jqua«n':'tuvm statistical meChanics,' 'ifi_we assume the spectrum of H is discrete
for convenience, say Fp < Fi<---<E,<---, the ensemble average at temperature T’
of an operator A should be given by e ‘

1 1

(e mA) s wmPy Al
<A> = L 7 e S 5y
: Tr(€ kT ) Z;}ioe i

where k is the Boltzmann constant. Zero,,témperature limit 7"— 0, we have

Lo (i A]0) 70,
lel

Z;’ioe kT

(0]A]0)



,'deaS‘Of EUCI.,idean QF‘T'-* e .

and thlS I|m|t corresponds to the |lmlt 7'—> —|—oo Thus the equatlon

fdso'f  Plom) e plm)e H A Dlglag
. = @(Tn+1) Wv e
| deO’f e e E“O Dlypldy’
@(Tn+1) OF St '
p(0)=¢'
with the limit 79 — —00, T,a.1 — 400, one has
_l Sele]
D'[4]

0|®(7,) -+ ®(11)] 0) = ng(Tn) & ._ﬁg_l)
| [eF BlY] D[]

where the path integral measure is over the space of all configurations with some decay
property (one can also pose the periodic condition on Euclidean time, and then study
the limit that the period goes to infinity).



Osterwalder-Schrader Axioms 23

Constructlon of Schwmger functlons smgle scalar Boson fleld

Step 1 use spectral property

Theorem 12 There are ho/omorphlc funct/ons W (zl, zn) and M,,_ 1(21, | 1)

where z; = (zzo, 2z z,,?, zf’) and denote zj —:1:] =iy such that

defined on the tube Tnor={-Im(z;,— z41) e Vy|i=1,.---,;n—1}, and polynomially
bounded, such that the boundary value M,, _1(Z1,...,2Zn—1) is the distribution M, _1, i.e

lim M, —1(z1— 1y, , Tno1 =4 Un—1)=Mp,_1

y;—0

in the sense of tempered distribution.



Osterwalder-Schrader Axioms 2o

Step 2 use covanance

.Complex Lorentz group L((D) connected component of the |dent|ty of the group of
complex matrlces that preserve the complex blhnear form '

e 11‘ yio 33
<21,Z2>-—2’122 —2122 E AL 2122 ,

on the space (Dl 3 A pomt in the space (Dl 3 s called a Euclldean pomt if it as the

form (—iz®, !, x2 73) where 29,2, 2%, 23 € R.

Since Wn transforms as

Wiz s ) = Wa Az, 2t Ry forall A€ SO (T, 3)



Osterwalder-Schrader Axioms s

by the' unlquenessofthe a*'haIy:f?i“c:fif,zcentinrjatie'riWe hav_e 2
and
Mo ) =My a(B R

but we can see here that the Lorentz transformatlons preserve the tube 7,,_1, now one
can use this identity to extend the action of Lorentz group to complex Lorentz group
Then one can define M,,_1 on the so called extended tube

U ATn I;

AEL

and this extension is single vaIu'ed'.



Osterwalder-Schrader Axioms =i

Step 3 use Iocahty

For any permuta’uon a

- Wh_ (fl? - Tp) = Wn(%(n, -’-_.,'-"Jf&(nv))

Define the vaIueof I"/Vn('vsz(l)7 2 “a(n)) by W (21, - - Zﬁ_)',v_and hence one can define
M;, 1 when :'Wn(z&(1)7 (Ui Za(e s define. ' i

This analytic continuation is well-defined and also single-valued.

The intersection of Euclidean points E™ and W,,’s holomorphic domain is
R := {(x1, T2, - -+, &n)| ms € RY, wy £ x;if i £ j} C E”

Schwinger function .S,,: restriction of W, on IR;T .

note that it is polynomially bounded, hence also a tempered distribution.
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0S axioms: Schwmger dlstrlbutlon is a coIIectlon of tempered d|str|but|ons {Sh €
S’ (R4”)\n E N} and S() — 1 W|th foHowmg propertles |

1. (Lmear Growth) There ex1sts an mteger sE N and a sequence {O‘n} of positive
numbers, such that On S C’(n') for some constants 5 C’ independent of n, and

B | \'Snl(f)i’<an||f;|nx .
for a|| f E ]R andn eN.
2, (Euclldean Invarlance) for any (a, A) € IR4 1 SO(4)

Sn((a: A) fla.,' 'H‘(aa A) fn)
zsn(ﬁ, o )



Osterwalder-Schrader Axioms s
3. (Reflection Positivity) For any finite sequence of test functions f;
where @f(acl, T ) f(@a:l, s @xn) and @(mo,x1,$2,x3) = (—.’L‘o,‘xi, B 13).
4. (Symmetry) | . |
Sn(flv raas fla fl—|-17 oy fn)

ZSn(fla "°7fl—lf17‘fl7"'?fn)

5. (Cluster Propert SUppOSe a € R% is a non-zero vector of the form 0,a1,as, as
Yy o o

Skt G I)ﬁ»ﬂs (Fr)Sal f)



Osterwalder-Schrader Axioms s

Why reflectlon p05|tIV|ty7 |
Reflectlon p05|t|VIty correponds to p05|tIV|ty of nghtman dlStI’lbUtIOhS ‘

Conjugate transformatlon of I\/Imkowskl Hermltlan scalar ﬁeld

@'tPO—fiaélPl zangQ—mgP?’ (0 O) '—th0+za:1P1—|-2£132P2+2333P3 :

p(t,z)=e ¥
and 'applyWif_c‘:k'r’Otét-izon t=—iT we have
’SO(T 1) = eTP =iz Pl —iza PP —izgP? () O)e—TP0+ia:1P1+ia:2P2+iac3P3
Y ))

then we have
: 90*(7'_7 37) T 90(_7_7 37)

for any Euclidean time 7, note that conjugate transformation of a Hermitian scalar Boson
field in Euclidean theory is different from Minkowski theory.



Osterwalder-Schrader Axioms 35/39

Theorem 13 (Osterwalder—Schrader Reconstructlon) There eX/st a unique Wightman
quantum field theory whose SCthnger functlons agree Wlth the given set with prop-
erties listed above &0 g | '

Remarks:
1. This works for general splnor or tensor fields.

2" Different similar axioms, Jaffe and Glimm (2012), Frohllch (1974) probabllltles on
distributions. They imply Wightman axioms, but not equivalent to.

Equivalence can be find in Bogolubov etc. (2012) with different condition corresponding
to the spectrum condition (a different topology on test functions).

3. OS axioms can be used to construct Euclidean fields that are operator-valued distri-
butions, which is also called the reconstruction theorem.



-Stoch;astic Ruantzatiomr=+=_ 36/39

Questlon How to construct a qft model satlsfles OS—axroms7
Stochastrc Quantrzatlon construct Eucldrean path rntegral measure and verlfy OS-axioms.

Idea: Thmk e’ SE{ J D’[gp] as the Boltzmann dlstrrbutlon in eqU|||br|um statistical
mechanics and use Langevin dynamrcs to construct a hypothetlcal non- eqU|||br|um process
converging to this equilibrium. e

5SE[ ]
0P

atgp(t ZIZ) ( )|g0:go(t,x)+€ ,

or equivalently

(5SE[ ]

T +¢&, Selp] = /dtSE[SO]

8t90(t7 l‘) =

where § is the functional derivative, t is fictitious time, and ¢ is the space-time white
noise. |

Since the white noise is delta correlated in time direction, then the solution process if
exists, should be a Markov process.



StOChast|c Quan,tization- et 4 37/39

Compute mvaramt measure ‘ -

, Fokker—PIanck ~equat|on7 equatlon of the probablllty dlS‘tI’IbUtlon P(go, b
Then the Fokker-PIanck equatlon is g|ven by L e :
10% 5 ,

L P(.so,t)

and it is clear e %2l%l is a stationary solution.



Stochastic Quantization

Remark

1 Proposed by Parisi and Wu (1981) dlfferent from Nelson S stochastlc mechanics
(1966), and De Broglle—Bohm (1952) where they used the real time. The SQ method
is based on an hypothetlcal process depending on a fictitious time. And one can use
different Langevin equations to describe the Euclidean path integral measure. There are
cases (Chern- Slmons) where the stochastlc quantization method does not work (Ferrari,
Huffel 1991) |

2 The stoch-astlc quantization equation requires us to study the solution theory for sto-
chastic partial differential equations, establish the meaning of the equation, the existence
of local solutions, and most importantly the Iohg time existence of the solution, since we
need to take t — oo to get the equilibrium state.

3. We need to verify that the limiting measure should satisfy the Osterwalder-Schrader
axioms or its some kind of modifications, this is not easy. It has been shown by Jaffe
(2015), that reflection positivity is not satisfied in the finite time non-equilibrium state
of the solution for free scalar field.






