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1 Introduction

The purpose of this thesis is to study the problems behind the stochastic quan-
tization of abelian Higgs model, which is the following system of stochastic partial
differential equations

@tA1 = @2
2A1¡ @1@2A2¡

ie
2
[��@1�¡�@1��]¡ e2A1��� + �1

@tA2 = @1
2A2¡ @1@2A1¡

ie
2
[��@2�¡�@2�]¡ e2A2��� + �2

@t� = @1
2�+ @2

2�¡ ie (@1A1+ @2A2)�¡ 2ie (A1@1+A2@2)�

¡e2(A1
2+A2

2)�+ �

which is studied in the paper [41]. These equations are motivated by the programs
of constructive quantum field theory [21], which try to construct probability mea-
sures on the space of distributions that satisfy the Osterwalder-Schrader axioms
of Euclidean quantum field theory, and then produce a theory in Minkowski time
through the reconstruction theorems [44] [35] [36]. The stochastic quantization
method proposed by Parisi and Wu [37] is one of such approaches to produce a
candidate of probability measure [14]. The equations given by stochastic quan-
tization method are usually SPDEs, which is in general hard to interpret and solve.
The recent theory of paracontrolled analysis developed by Gubinelli, Imkeller and
Perkowski [23], and theory of regularity structures developed by Hairer [25] which
is used in [41], are powerful tools to tackle such problems. We will introduce both
the subject of SPDEs within the framework of paracontrolled analysis, and the
axiomatic quantum field theory. The structure of this thesis is following.

Chapter 2 contains a short introduction of theory of tempered distributions,
invented by Laurent Schwartz. Distributions are needed when we try to describe
singular objects. In general, random objects are distributions and stochastic dif-
ferential equations are equations of distributions. We study how to do operations
on tempered distributions, such as transformations, Fourier transformations, con-
volutions, and differentiations, etc. Theorems about tempered distributions with
compact supports are discussed.

Chapter 3 deals with the subject of paracontrolled analysis. The central difficulty
in the study of SPDEs is to interpret the nonlinear functions of tempered distribu-
tions, in particular the product of tempered distributions. We start by introducing a
way to measure the singular behavior of tempered distributions, the so called Besov
space is discussed. Then we introduce Bony's paraproduct, from which we can define
products of tempered distributions and separate out the singular part. After that
we develop the first order paracontrolled calculus.

Chapter 4 is about the white noise and Gaussian analysis. In most stochastic
partial differential equations the random force term are usually given by white noise
due to the random nature of background. We talks about the Wick product of
Gaussian random variables and an important estimate of Gaussian variables, called
the Gaussian hypercontractivity. Then we find out the regularity exponent of a
white noise.
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Chapter 5 is an application of all the machinery we have developed so far to
a particular stochastic partial differential equation, called the parabolic Anderson
model. We first discuss heuristically how to set up the equations that one can apply
use fix point argument. Then we produce the space where we want to find the
solution and the Schauder estimates. Finally we sketch ideas in proving the existence
and uniqueness of the solution, and discuss about the renormalization.

Chapter 6 is devoted to the subject of axiomatic quantum field theory. We first
talk about what is the correct mathematical object to model a quantum field. We
argue from both mathematics and physics that one can not define quantum field by
assigning an operator to each point of space-time. Quantum field has to be averaged
by some good functions over some space-time regions. Then we come to the concept
of operator-valued distributors. Then we study the Lorentz group and their unitary
representations, which is needed in describing relativistic symmetry in quantum
theory. After that we talk about the Wightman axioms of fields, the vacuum cor-
relation functions and their properties. The distributions with these properties are
called Wightman distributions and a Wightman field theory can be reconstructed
from these correlation functions. We then move on to the analytic continuation of
there Wightman distributions to get Schwinger functions, and a system of properties
of such functions can be obtained. One can add some assumptions and assuming
these properties to get Osterwalder-Schrader axioms, then it can be shown that
Wightman axioms can be recovered from these axioms.

Chapter 7 concerns the stochastic quantization of the abelian Higgs model. We
first introduce the method of stochastic quantization. In order to find the Euclidean
path integral measure of a quantum field theory, one can go to one higher dimension
to study a non-equilibrium process described by Langevin dynamics. One hope
that the stationary measure can be obtained by solving such equations at infinite
time. Then we talk about the abelian Higgs model, including how the equations is
calculated, what we have tried to deal with it and problems.

Acknowledgment I would like to express my deepest appreciation to my
advisor Prof. Massimiliano Gubinelli for his kindness and patience to have discus-
sions, and for everything he taught me, including many great lectures in probability,
stochastic analysis and modern advanced topics. I would like to extend my sincere
thanks to Dr. Francesco de Vecchi for his numerous help and discussion. I am also
grateful to many of my friends and classmates, for their moral support and help.
Finally I would like to thank my family for their constant emotional, moral and
economical support.
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2 Distributions

This chapter is devoted to the study of tempered distributions. The motivation
originates from making a rigorous understanding of Dirac delta function, and many
singular functions appeared in the calculations of quantum field theory. The main
references for this chapter are [20], [4] and [39].

2.1 The Fourier Transform on Schwartz Space

The space S(Rn) of Schwartz functions on Rn consists of all smooth functions
whose derivatives fall off faster than any reciprocal power of polynomials. More
precisely, f 2 S(Rn) if and only if f 2C1(Rn), and for any k 2N, the following
quantities

kf kk : = sup
j�j6k;j� j6k;x2Rn

jx�@�f(x)j<1

are finite, where �=(�1; : : : ; �n)2Nn; �= (�1; : : : ; �n)2Nn are multi-indices with
length j�j=�1+ � � �+�n; j� j= �1+ � � �+ �n, and x�=x1

�1� ��� �xn�n; @�=@1�1: : :@n�n.

Clearly S(Rn) is a vector space, for each k 2N, k�kk defines a norm on S(Rn),
hence S(Rn) is a countably normed space. The topology is then defined by giving
the neighborhoods, and it is this topology we are mostly interested in. So there are
other equally good families of norms which defines the same topology, for example

kf kk0 = sup
j�j6k;x2Rn

(1+ jxjk)j@�f(x)j

gives another choice. Moreover, one can show that S(Rn) is indeed a Frechet space,
which means this countably normed space is complete.

For any f 2S(Rn), the Fourier transform F(f) of f is defined as

F(f)(�)= f̂(�) :=

Z
Rn

f(x)e¡ih�;xi dx

Theorem 2.1. The map F :S(Rn)!S(Rn) is bijective and continuous. More pre-
cisely, for any given k2N, there exists a constant C and an integer K 2N such that

kf̂ kk6Ckf kK

for all f 2S(Rn). The inverse of the map is given by

F¡1(f)(x) := 1
(2�)n

Z
Rn

f(�)eih�;xi d�

for any f 2S(Rn).
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Proof. For any multi-indices � and � such that j�j; j� j6 k, we have

j�� @� f̂(�)j = jF(@�(x� f))(�)j
6 k@�(x� f)kL1

=

Z
Rn

(1+ jxj)n+1 � j@�(x� f)(x)j � 1
(1+ jxj)n+1 d

nx

6 cnk(1+ jxj)n+1 @�(x� f)kL1
6 Ckf kk+n+1

where the last inequality follows an estimation of the expansion of the term in the
L1-norm. Thus we have

kf̂ kk6Ckf kk+n+1
by definition. �

We define the convolution f � g of two Schwartz functions f ; g2S(Rn) to be the
function

(f � g)(x) :=
Z
Rn

f(x¡ y)g(y)dy

This operation has following simple properties.

Lemma 2.2. We have
(1) f � g= g � f and f � g 2S(Rn) for all f ; g 2S(Rn);
(2) for fixed g 2 S(Rn), the map defined by f 7! g � f, for all f 2 S(Rn), is a

continuous map from S(Rn) to S(Rn);
(3) F(f � g)=F(f)F(g) and F(f g)=F(f) �F(g) for all f ; g 2S(Rn);
(4) (f � g) � h= f � (g �h) for all f ; g; h2S(Rn).

Proof.
(1) Since the function f(x ¡ y), as a function of y, is obtained by applying

translation f(y)! f(y¡x) and reflection of the function f(y¡x)! f(x¡ y), thus
the resulting function is also a Schwartz function. Then the formulaZ

Rn

f(x¡ y)g(y)dy

is the L2¡ inner product( we use the convention that the inner product is conjugate
linear in the first vector, linear in the second) of two Schwartz functions, we can
apply the Fourier transform to each function which preserves this L2¡ inner product
up to a constant, so

(f � g)(x) =

Z
Rn

f(x¡ �)(�)g(�)c (�)d�

=
1

(2�)n

Z
Rn

�Z
Rn

f(x¡ y)e¡ih�;yi dy
Z
Rn

g(h)e¡ih�;hi dh

�
d�

=
1

(2�)n

Z
Rn

�Z
Rn

f(x¡ y)e¡ih�;x¡yi dy
Z
Rn

g(h)e¡ih�;hi dh

�
eih�;xid�

=
1

(2�)n

Z
Rn

f(�)c (�)g(�)c (�)eih�;xid�
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which clearly shows that f � g 2S(Rn). The equation f � g= g � f is an easy conse-
quence of changing the variable of the integration.

(2) According to our computation above, we have

g � f = 1
(2�)n

Z
Rn

g(�)c (�)f(�)c (�)eih�;�id�=F¡1(F(g)F(f))

which is clearly continuous about f , since the Fourier transform and its inverse are
continuous by theorem 2.1.

(3) This is clear from previous computation.
(4) We have

(f � g) �h = F¡1(F(f � g)F(h))
= F¡1(F(f)F(g)F(h))
= F¡1(F(f)F(g � h))
= f � (g �h)

which concludes the proof. �

2.2 Tempered Distributions

A tempered distribution F onRn is a continuous linear functional on the Schwartz
space S(Rn). The continuity of the linear map u: S(Rn)!R can be character-
ized by existence of constant C and an integer k such that the inequality ju(f)j6
Ckf kk holds for all f 2S(Rn). We also use the notation u(f)= hu; f i

The set of all tempered distributions is denoted by S 0(Rn). Clearly it is a vector
space, and the natural topology on S 0(Rn) is the weak topology. Equivalently the
topology is given by giving the notion of limit, a sequence of distributions fungn2N is
said to converge to the limit u2S 0(Rn) iff for any f 2S(Rn), we have limn!1un(f)=
u(f).

Example 2.3. The map f 7! f(x) for some fixed x2Rn defines a tempered distri-
bution on S(Rn). More generally, the map f 7!@�f(x) for fixed x2Rn and �2Nn

defines a tempered distribution on S(Rn).

Example 2.4. The space Lp(Rn) for all p 2 [1;+1] is contained in the space of
tempered distribution S 0(Rn), each u2Lp(Rn) is identified with the map

f 7!
Z
Rn

u(x)f(x)dx

A tempered distribution u2S 0(Rn) vanishes on an open set U �Rn if hu; f i=0
for any f 2S(Rn) with supp(f)�U . The support of a tempered distribution u2
S 0(Rn) is complement of the union of those open sets where u vanishes, thus the
support is always a closed set.
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A continuous linear map A: S(Rn)!S(Rn) is a linear map such that for all
k2N, there exists a constant C and an integerK such that the inequality kA(f)kk6
Ckf kK holds for all f 2S(Rn). To define operators on the space of tempered dis-
tributions out of some given continuous linear map on the Schwartz space, we use
duality.

Theorem 2.5. Suppose A: S(Rn)!S(Rn) is a continuous linear map, then the
map AT :S 0(Rn)!S 0(Rn) defined by

hAT(u); f i := hu;A(f)i

for all f 2 S(Rn), is linear and continuous. Here the continuity means for any
sequence fungn2N�S 0(Rn) with limit u 2 S 0(Rn), the sequence fAT(un)gn2N has
limit AT(u).

Proof. We first show that AT(u) is a tempered distribution, which means AT(u) is
a continuous linear functional on S(Rn). Linearity is clear from the definition. We
proof the continuity.

Since u2S 0(Rn), there exists a constant C and an integer k, such that

ju(g)j6Ckgkk
for all g 2S(Rn).

Since A:S(Rn)!S(Rn) is a continuous linear map, then there exists a constant
C 0 and an integer K such that the inequality

kA(f)kk6C 0kf kK
holds for all f 2S(Rn).

Combine there two inequalities, we have

ju(A(f))j6CkA(f)kk6C �C 0kf kK

holds for all f 2S(Rn).
Hence AT(u) is indeed a tempered distribution. The second statement follows

directly from the definition of the convergence of a sequence of tempered distribu-
tion. �

Example 2.6.
1. The differential operator (¡@)�with � 2Nn, acting on a Schwartz function

by taking derivatives, is clearly a continuous linear map from S(Rn) to itself, this
defines the differential operator @� on tempered distributions.

2. Given a smooth function h2C1(Rn) whose partial derivatives of any order
is at most polynomial growth, that is for each � 2Nn there is a constant C and
a polynomial function P�(x) such that j@�h(x)j6C �P�(x) for all x2Rn. Clearly
multiplying Schwartz function by h is a continuous linear map from S(Rn) to itself,
this defines the multiplication operator h on tempered distributions.

3. Suppose L2GL(Rn), then the map

S(Rn)3 f(�) 7! 1
det(L)

f(L¡1(�))
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is a continuous linear map from S(Rn) to itself, this defines coordinate change L(�)
of tempered distributions. More generally, one can define coordinate change with
respect to other elements in the diffeomorphism group of Rn. This operator also
makes it possible to talk about invariant distribution, for example rotation invariant
or Lorentz invariant.

4. Given a fixed function f 2S(Rn) and denote f¡(x)= f(¡x), then the map

S(Rn)3 g 7! f¡ � g

is clearly a continuous linear map from S(Rn) to itself by lemma 2.2. This gives how
to convolute a tempered distribution with a Schwartz function f .

5. We know from Theorem 2.1 that Fourier transform is a continuous linear
map from S(Rn) to itself, then this defines the Fourier transform F on the space of
tempered distribution. In the same way, we can define the inverse Fourier transform
F¡1 on the space of tempered distribution, and we will prove later they are indeed
inverse of each other.

Just like the case of Fourier transform on the Schwartz space, we have following
formulas.

Lemma 2.7. For any u2S 0(Rn) and f 2S(Rn), we have

(i@)�F(u) = F(x�u)
(i�)�F(u) = F(@�u)
F(f � u) = F(f)F(u)
F(f u) = F(f) �F(u)

Proof. These identities are easy to check. �

Fourier transform is a continuous linear isomorphism on the space of tempered
distribution.

Theorem 2.8. The Fourier transform F from S 0(Rn) to itself is linear, bijective
and continuous with continuous linear inverse F¡1.

Proof. It is an easy consequence of theorem 2.1. �

It can be shown that any tempered distribution is a derivative of some continuous
function, the precise statement is given bellow.

Theorem 2.9. Suppose u2S 0(Rn), then there is a polynomially bounded continuous
function f, that is

jf(x)j6C(1+ kxk2)m

for some constant C 2R+ m2N, such that

u= @�f

for some multi index �, where we think of f as a tempered distribution and then take
the partial derivatives.

Distributions 9



The proof can be found in [39], we omit it here.

2.3 Convolution of Distributions

Taking the convolution of a Schwartz function and a tempered distribution is an
important operation, it gives a way to regularize a tempered distribution, which is
not regular enough in general.

Theorem 2.10.
(1) For a fixed function f 2 S(Rn), the map defined by u 7! f � u for any u 2

S 0(Rn), is a continuous map.
(2) We have following identities:

@�(f �u)= (@�f) �u= f � (@�u)

(f � g) �u= f � (g �u)

F(f �u)=F(f)F(u)

F(f u)=F(f) �F(u)

for any f ; g 2S(Rn) and u2S 0(Rn).
(3) For any f 2S(Rn) and u2S 0(Rn), the convolution f �u is a smooth function

such that for any multi index �, we have

j@�(f � u)(x)j6C(1+ kxk2)m

for some constant C 2R;m2N.

Proof.
(1) For any sequence fung�S 0(Rn) with limit u2S 0(Rn), and any h2S(Rn),

we have

hf �un; hi= hun; f¡ �hi!hu; f¡ �hi= hf �u; hi

which concludes that the convolution map with fixed Schwartz function f is a con-
tinuous map from S 0(Rn) to S 0(Rn).

(2) These identities are easy to check.
(3) By theorem 2.9 we know that here is some continuous function h such that

u= @�h for some multi index �, and

jh(x)j6C(1+ kxk2)m

for some constant C 2R+ m2N. Then we have

f �u= f � @�h=(@�f) �h

which is a convolution of two functions, and

(@�f) � h(x) =

Z
Rn

@�f(x¡ y) �h(y)dy

=

Z
Rn

[(1+ kyk2)m@�f(x¡ y)] � h(y)
(1+ kyk2)mdy

10 Section 2



which shows f � u is a smooth function since the first term is again a Schwartz
function and the second term is a bounded continuous function. Moreover

jf �u(x)j =
��������Z

Rn

[(1+ kyk2)m@�f(x¡ y)] � h(y)
(1+ kyk2)mdy

��������
6
Z
Rn

j(1+ kyk2)m@�f(x¡ y)j � jh(y)j
(1+ kyk2)mdy

6 C

Z
Rn

j(1+ kyk2)m@�f(x¡ y)jdy

= C

Z
Rn

(1+ kx¡ yk2)mj@�f(y)jdy

which is clearly polynomially bounded since @�f is a Schwartz function. �

Sometimes we need to approximate a tempered distribution, we introduce here
the concept of approximate identity.

Definition 2.11. Suppose we have a positive smooth function ', whose support is
contained in the centered unit ball B�Rn, andZ

Rn

'(x)dx=1

Then the sequence of functions
�
'" :="¡n'

¡ x
"

�	
parametrized by positive real number

", is called an approximate identity.

Clearly this sequence tends to Dirac delta function as "! 0. We have following
result.

Theorem 2.12. Suppose '" is an approximate identity and u 2 S 0(Rn), then we
have '" � u! u in the space S 0(Rn) as "! 0.

Proof. We need to show that for any Schwartz function f , we have

h'" � u; f i!hu; f i
as "! 0. Since

h'" �u; f i = hu; '"¡ � f i

then we only need to show '"
¡ � f! f in the space S(Rn). Since Fourier transform

is a continuous isomorphism from S(Rn) to S(Rn), we only need to show the limit
F('"¡)F(f)!F(f) in the space S(Rn). Since

F('"¡)(�) =

Z
Rn

"¡n'
�¡x
"

�
e¡ih�;xi dx

=

Z
Rn

'(x)eih"�;xi dx

=

Z
B

'(x)eih"�;xi dx

Distributions 11



then

F('"¡)F(f)¡F(f) =

Z
B

'(x)(eih"�;xi¡ 1) dxF(f)

and

kF('"¡)F(f)¡F(f)kk = sup
j�j6k;j� j6k;�2Rn

����������@��Z
B

'(x)(eih"�;xi¡ 1) dxF(f)(�)
���������

To show the right hand side tends to 0, it suffice to notice that when we use Leibniz
rule to compute the term

@�
�Z

B

'(x)(eih"�;xi¡ 1) dxF(f)(�)
�

one case is there is some partial derivatives act on the first term, for example

sup
j�j6k;j� j6k;�2Rn

����������Z
B

'(x)[@�1(eih"�;xi¡ 1)] dx (@�¡�1F(f))(�)
��������

= sup
j�j6k;j� j6k;�2Rn

����������Z
B

'(x)��1x�1("i)j�1jeih"�;xi dx (@�¡�1F(f))(�)
��������

= sup
j�j6k;j� j6k;�2Rn

"j�1j
��������Z

B

'(x)x�1eih"�;xidx����1(@�¡�1F(f))(�)
��������

6 sup
j�j6k;j� j6k;�2Rn

"j�1j
Z
B

'(x)jx�1jdx j����1(@�¡�1F(f))(�)j

which clearly tends to 0 as "! 0, since ����1@�¡�1F(f) is a Schwartz function,
another case is the following

sup
j�j6k;j� j6k;�2Rn

��������Z
B

'(x)(eih"�;xi¡ 1) dx��(@�F(f))(�)
��������

6 sup
j�j6k;j� j6k;�2Rn

Z
B

'(x)jeih"�;xi¡ 1jdx j��(@�F(f))(�)j

= sup
j�j6k;j� j6k;�2Rn

Z
B

'(x)

��������Z
0

h"�;xi
ei� d�

��������dx j��(@�F(f))(�)j
6 sup

j�j6k;j� j6k;�2Rn

Z
B

'(x)

��������Z
0

h"�;xi
jei�j d�

��������dx j��(@�F(f))(�)j
= " sup

j�j6k;j� j6k;�2Rn

Z
B

'(x)jh�; xijdx j��(@�F(f))(�)j

6 " sup
j�j6k;j� j6k;�2Rn

Z
B

'(x)kxkdx k�kj��(@�F(f))(�)j

= "

Z
B

'(x)kxkdx sup
j�j6k;j� j6k;�2Rn

k�kj��(@�F(f))(�)j

which clearly tends to 0 as "! 0. And this concludes the proof of the theorem. �

2.4 Compact Supported Tempered Distribution
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A tempered distribution whose Fourier transform is compactly supported behaves
good, see book [15].

Theorem 2.13. Suppose u 2 S 0(Rn) and F(u) has compact support, then there
exists a smooth function u~ and constants C�2R, m2N, which depend on the multi
index �, with

j@�u~(x)j6C�(1+ kxk2)m

for all x2Rn, such that

hu; f i=
Z
Rn

u~(x)f(x)dx

Proof. Since F(u) has compact support, then we can find a compact supported
smooth function �, whose value equals 1 on the set supp(F(u)), and clearly we have
F(u)= �F(u). Thus

u=F¡1(�) �u

and notice that � is also a Schwartz function, so is F¡1(�), we can use theorem 2.10
to conclude that u is given by a smooth function whose derivatives are polynomially
bounded. �
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3 Besov Spaces and Paracontrolled Calculus

The first difficulty confronted in the study of stochastic partial differential equa-
tions, is to find a precise way to understand functions of, or product of the irregular
terms appearing in a stochastic partial differential equation. The motivation also
arise in quantum field theory, where most people believe that the infinities arise in
many calculations are due to multiplying distributions incorrectly. In this chapter
we introduce the Besov spaces, which offers a way to measure the regularity of a
tempered distribution, and the paracontrolled calculus, which offers a method to
manipulate the calculus of these irregular objects.

3.1 Littlewood-Paley Theory

To define the concept of Besov spaces, we need the smooth dyadic partition of
unity.

Definition 3.1. A smooth dyadic partition of unity consists two smooth radial
functions �¡1; �02Cc1 that take values in the interval [0; 1], where �¡1 is supported
in the ball B = fx2Rn: jxj6Rg and �0 is supported in the annulus A= fx 2Rn:
0<r16 jxj6 r2;with r1<r2g for some suitably chosen constants r1; r2; R > 0, such
that:

1. for each j 2N, define functions �j by �j(x):=�0
¡ x

2j

�
, we have

X
j=¡1

1

�j(x)=1

for all x2Rn;
2. supp(�i)\ supp(�j)=?, for all ji¡ j j> 1.

The existence of dyadic partition of unity can be found in the book [4]. For a
given dyadic partition of unity, we have the definition of Littlewood-Paley decom-
position of tempered distribution as follows.

Definition 3.2. For any tempered distribution u2S 0(Rn) and integer j>¡1, the
j-th Littlewood-Paley block of u is defined by

�ju=F¡1(�j û)

thus �j:S 0(Rn)!S 0(Rn) is a continuous operator and we have the Littlewood-Paley
decomposition

Id=
X
j=¡1

1

�j

14 Section 3



For convenience, we assume �j=0 for j6¡2. Since F¡1(�j û)=F¡1(�j)�u, we
denote Kj=F¡1(�j).

Lemma 3.3. For j> 0, kKjkL1= kK0kL1.

Proof. We have for j> 0

Kj(x) = F¡1(�j)(x)

=
1

(2�)n

Z
Rn

�0

�
�

2j

�
eih�;xi d�

========================================================= =
�=2jy 2jn

(2�)n

Z
Rn

�0(y)e
ihy;2jxi dy

= 2jnK0(2
jx)

So Z
Rn

jKj(x)jdx =

Z
Rn

2jnjK0(2jx)jdx

=

Z
Rn

jK0(2jx)jd2jx

=

Z
Rn

jK0(x)jdx

which is exactly kKjkL1= kK0kL1 for j> 0. �

Lemma 3.4. Suppose u2Lp�S 0 with p2 [1;1], then

k�jukLp6 kK0kL1kukLp:

Proof. We use Young's inequality for convolution

k�jukLp = kKj � ukLp
6 kKjkL1kukLp
= kK0kL1kukLp

�

Any tempered distribution can be approximated by a sequence of tempered
distributions whose Fourier transforms are compactly supported, hence a sequence
of compactly supported smooth functions.

Proposition 3.5. Suppose u2S 0(Rn), denote �<j=
P

i6j¡1�i, then

u= lim
j!+1

�<ju

Besov Spaces and Paracontrolled Calculus 15



in the space S 0(Rn).

Proof. For any Schwartz function f 2S(Rn), we need to show

hu; f i= lim
j!+1

h�<ju; f i= lim
j!+1

hu;�<jf i

which amounts to prove

lim
j!+1

�<jf = lim
j!+1

F¡1
 X

i=¡1

j¡1

�if̂

!
= f

convergence in S(Rn). Since the Fourier transform F is a continuous isomorphism
from S(Rn) to itself with a continuous inverse F¡1, we only need to show

lim
j!+1

X
i=¡1

j¡1

�if̂ = f̂

convergence in S(Rn), which is equivalent to show that for all k 2N

lim
j!+1

X
i=j

1

�if̂


k

=0

If k=0, this is clear. For k > 0, since �j(x): =�0
¡ x

2j

�
, any mixed partial derivative

of �j for all j > 0 are uniformly bounded, hence

sup
j�j;j� j6k;x2Rn

����������x�@�
 X

i=j

1

�if̂

!
(x)

����������6C sup
j�j;j� j6k;x2supp(Pi=j

1 �i)

jx�@�f̂(x)j

for some constant C. The right hand side clearly tends to 0 when j!+1. Thus
the result follows. �

3.2 Besov Spaces

Now we introduce a way to characterize the regularity of tempered distribution.
Since the smoothness of a function is connected to the decay property of its Fourier
transform, we need to control the growth of the Fourier transform of a tempered
distribution in each Littlewood-Paley Block to measure its regularity. The main
references are [23], [24] and [38], the book [4] contains more details.

For any u 2S 0(Rn), since the Fourier transform of each tempered distribution
�ju is compactly supported, then it can be identified with a smooth function of at
most polynomial growth, so we can consider its Lp-norm.
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Definition 3.6. Suppose � 2R and 16 p; q 61, the Besov space Bp;q
� (Rn) is a

subset of S 0(Rn) which contains all tempered distribution u such that

kukBp;q� :=

 X
j>¡1

1

(2j�k�jukLp)q
!1

q

is finite.

Clearly k�kBp;q� is a norm for any � 2R and 16 p; q 61, we will show the
completeness later, hence the Besov space is a Banach space. Note that in this
definition, Lp¡ norm is used to measure the amount of frequencies in each blocks
and parameter � controls the decay speed of the amount of frequencies in each blocks
in the sense that the lq¡norm is finite, hence controls the decay of high frequency
terms, so � measures the regularity. The norm k�kBp;q� depends on the choice of
dyadic partition of unity, but the space Bp;q

� (Rn) doesn't, we will show this later.
In the application to stochastic partial differential equations, we will be more

interested in the special case B1;1
� (Rn), so we denote it by C�(Rn) or C� for short,

and the norm k�kB1;1
� by k�k� for simplicity.

Lemma 3.7.
1. If �6 �, we have kuk�. kuk� for all u2C�, hence C��C�;
2. If �> 0, then kukL1. kuk� for all u2C�;
3. If �6 0, then kukL1& kuk� for all u2L1;
4. If �< 0, then k�6jukL1. 2¡j�kuk� for all u2C�;
5. If �> 0, then k�>jukL1. 2¡j�kuk� for all u2C�.

Proof. 1. Since u2C�, we know the norm

kuk�= sup
j>¡1

2j�k�jukL1

is finite. Since �>�, we have

sup
j>¡1

2j�k�jukL1 = 2¡(�¡�) sup
j>¡1

2(j+1)(�¡�)2j�k�jukL1

> 2¡(�¡�) sup
j>¡1

2j�k�jukL1

= 2¡(�¡�)kuk�

2. Since u2C�, we know the norm

kuk�= sup
j>¡1

2j�k�jukL1

is finite, thus each block �ju is in L1. Consider a sequence of smooth functions, for
integer N > 1

uN =
X
i>¡1

N

�iu

Besov Spaces and Paracontrolled Calculus 17



we claim it is a Cauchy sequence in L1. For integers 16N6M we have the estimate

kuM ¡uNkL1 =

X
i>N

M

�iu


L1

=

X
i>N

M

2¡i�2i��iu


L1

6
X
i>N

M

2¡i�(2i�k�iukL1)

6
X
i>N

M

2¡i�kuk�

. 2¡N�kuk�!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !N!+1
0

Since L1 is a Banach space, the sequence uN converges to some function u~2L1.
We show that u= u~ almost everywhere. Since we know that

lim
N!+1

uN = lim
N!+1

X
i>¡1

N

�iu=u

in the space of tempered distribution S 0. Thus we have for any Schwartz function
f 2S

lim
N!+1

Z
Rn

uN � fdx=
Z
Rn

u � fdx
however ��������Z

Rn

(uN ¡u~) � fdx
�������� =

����������
Z
Rn

 X
i>¡1

N

�iu¡u~

!
� fdx

����������
6
Z
Rn

����������
 X

i>¡1

N

�iu¡u~

!���������� � jf j dx
6
Z
Rn

jf j dx

X
i>¡1

N

�iu¡u~


L1

after taking N!+1, we get��������Z
Rn

(u¡u~) � fdx
��������6 0)Z

Rn

(u¡u~) � fdx=0

which concludes u=u~ almost everywhere( this also shows u is a continuous function
since u~ is L1 limit of a sequence of continuous functions). So we have

kukL1 = ku~kL1

=

X
i>¡1

1

�iu


L1

=

X
i>¡1

1

2¡i�2i��iu


L1
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6
X
i>¡1

1

2¡i�(2i�k�iukL1)

6
X
i>¡1

1

2¡i�kuk�'kuk�

3. Since u2L1, and �6 0, we have

sup
j>¡1

2j�k�jukL1 = 2¡� sup
j>¡1

2(j+1)�k�jukL1

6 2¡� sup
j>¡1

k�jukL1

6 2¡�(kK0kL1+ kK¡1kL1)kukL1

4. Since �< 0 and u2C�, we have

k�6jukL1 =

X
i=¡1

j

�iu


L1

=

X
i=¡1

j

2¡i�2i��iu


L1

6
X
i=¡1

j

2¡i�(2i�k�iukL1)

6 kuk�
X
i=¡1

j

2¡i�

=
2¡j�¡ 22�
1¡ 2� kuk�

. 2¡j�kuk�

5. Since �> 0 and u2C�, we have

k�>jukL1 =

 X
i=j+1

+1

�iu


L1

=

 X
i=j+1

+1

2¡i�2i��iu


L1

6
X
i=j+1

+1

2¡i�(2i�k�iukL1)

6 kuk�
X
i=j+1

+1

2¡i�

=
2¡j�

2�¡ 1kuk�

. 2¡j�kuk�
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�

Now we show that the Besov norm is left continuous with respect to the regu-
larity exponent.

Lemma 3.8. Suppose u2C�, then

lim
�0!�¡

kuk�0= kuk�

Proof. We know from lemma 3.7 that u2C�0, and kuk�0 is an increasing function
of �0. So it is clear that the limit exists and

lim
�0!�¡

kuk� 06 kuk�

We only need to show the inequality in the other direction. By definition

kuk�= sup
j>¡1

2j�k�jukL1

Case 1. There is some j 0>¡1 such that kuk�=2j
0�k�j 0ukL1, then

kuk� = 2j
0�k�j 0ukL1

6 2j
0(�¡� 0)kuk� 0

so

kuk� 6 lim
�0!�¡

2j
0(�¡� 0)kuk�0

= lim
�0!�¡

kuk� 0

Case 2. There is an increasing sequence jn!1, such that 2jn�k�jnukL1 is increasing
with limit kuk�. Then for any ">0, there is some integer N such that for n>N we
have kuk�6 2jn�k�jnukL1+ ". Then we have

kuk� 6 2jn�k�jnukL1+ "
6 2jn(�¡�

0)kuk�0+ "

so

kuk� 6 lim
�0!�¡

2jn(�¡�
0)kuk� 0+ "

= lim
�0!�¡

kuk� 0+ "
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Since " is arbitrary, we get the desired inequality. �

The following lemma is useful when we need to approximate a distribution in a
Besov space with slightly smaller regularity exponent.

Lemma 3.9. Suppose �> � and u 2 C�, the the sequence �6nu converges in C�.
Hence C� is contained in the closure of Schwartz functions in C�.

Proof. Since we have �j(�6nu¡ u)=0 for j <n, then

k�6nu¡uk�
= sup

j>¡1
2j�k�j(�6nu¡u)kL1

= sup
j>n

2j(�¡�) � 2j�
�j

X
maxfn;j¡1g6k6j+1

�ku


L1

. sup
j>n

2j(�¡�) � 2j�k�jukL1

6 2n(�¡�)kuk�!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !n!+1
0

The second statement is true since each �6nu is contained in S, hence in C�. �

A set B is called a ball if it has the form fx2Rn: jxj6Rg with R> 0, a set A
is called an annulus if it has the form fx2Rn: 0<r16 jxj6 r2g with 0<r1<r2.

Lemma 3.10. (Bernstein Type Inequalities) Suppose B is a ball and A is an
annulus. For any constants k 2N; 16 p6 q61 and �> 0, then

1. there exists a constant C which depends on k;B; p; q, such that for any func-
tion f 2Lp with supp(F(f))��B, we have:

max
j�j=k

k@�f kLq6C�
k+n

�
1

p
¡1

q

�
kf kLp

2. there exists a constant C which depends on k;A; p, such that for any function
f 2Lp with supp(F(f))��A, we have:

�kkf kLp6C �max
j�j=k

k@�f kLp

Proof. 1. Denote r to be the constant satisfies 1

p
+

1

r
=1+

1

q
. Let '2Cc1, with '(x)=

1 when x 2B, and denote '�(x) = '
¡ x
�

�
. By Young's inequality for convolutions

(see B.3), we have

k@�f kLq = k@�F¡1('� �f̂)kLq
= k@�(F¡1('�)) �f kLq
6 k@�(F¡1('�))kLr � kf kLp
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Case 1. If r <1, we estimate the term k@�F¡1('�)kLr

k@�(F¡1('�))kLr =

�Z
Rn

j@�(F¡1('�))(x)jrdx
�1

r

=

�Z
Rn

j@�(�n(F¡1')(�x))jrdx
�1

r

=

�
�nr+j�jr

Z
Rn

j(@�(F¡1'))(�x)jrdx
�1

r

=

�
�nr+j�jr¡n

Z
Rn

j(@�(F¡1'))(x)jrdx
�1

r

= �
j�j+n

�
1¡1

r

�
k@�(F¡1')kLr

so we have

k@�f kLq 6 �
j�j+n

�
1¡1

r

�
k@�(F¡1')kLr � kf kLp

6 C�
k+n

�
1

p
¡1

q

�
kf kLp

with C = k@�(F¡1')kLr.
Case 2. If r=1, then p=1; q=1, we estimate the term k@�F¡1('�)kL1

k@�(F¡1('�))kL1 = sup
x2Rn

j@�(F¡1('�))(x)j

= sup
x2Rn

j@�(�n(F¡1')(�x))j

= �n+j�j sup
x2Rn

j(@�(F¡1'))(�x)j

= �n+j�j sup
x2Rn

j(@�(F¡1'))(x)j

= �n+j�jk(@�(F¡1'))(x)kL1

so we have

k@�f kL1 6 �n+j�jk(@�(F¡1'))(x)kL1 � kf kLp

6 C�
k+n

�
1

p
¡ 1

q

�
kf kLp

Then the result follows.

2. Let ' 2 Cc1, supp(') is a neighborhood of A which does not intersect a
neighborhood of 0 , with '(x)=1 when x2A, and denote '�(x)= '

¡ x
�

�
. Since we

can find a set of integers (N�)�2N indexed by the multi-index �, such that

jxj2k=(x1
2+ � � �+ xn2)k=

X
j�j=k

N�(ix)�(¡ix)�
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and we have supp(F(f))��A, then we have the decomposition

f = F¡1(Ff)
= F¡1('�Ff)

= F¡1
 
'� �

P
j�j=kN�(i�)�(¡i�)�

j� j2k � Ff

!

=
X
j�j=k

N�F¡1
�
'�
(¡i�)�
j� j2k � (i�)�Ff

�

=
X
j�j=k

N�F¡1
�
'�
(¡i�)�
j� j2k � F(@�f)

�
=

X
j�j=k

N�F¡1
�
'�
(¡i�)�
j� j2k

�
� @�f

By Young's inequality for convolutions, we have

�kkf kLp = �k

X
j�j=k

N�F¡1
�
'�
(¡i�)�
j� j2k

�
� @�f


Lp

6 �k
X
j�j=k

N�

F¡1�'�(¡i�)�j� j2k

�
� @�f


Lp

6 �k
X
j�j=k

N�

F¡1�'�(¡i�)�j� j2k

�
L1
� k@�f kLp

= �k
X
j�j=k

N�

Z
Rn

�������� 1
(2�)n

Z
Rn

'

�
�
�

�
(¡i�)�
j� j2k eih�;xi d�

��������dx � k@�f kLp
=

X
j�j=k

N�

Z
Rn

�������� 1
(2�)n

Z
Rn

'

�
�
�

�
(¡i�/�)�
j�/�j2k eih�/�;�xi d�/�

��������d�x � k@�f kLp
=

X
j�j=k

N�

Z
Rn

�������� 1
(2�)n

Z
Rn

'(�)
(¡i�)�
j� j2k eih�;xi d�

��������dx � k@�f kLp
=

X
j�j=k

N�

F¡1�' � (¡i�)�j� j2k

�
L1
� k@�f kLp

6
 X
j�j=k

N�

F¡1�' � (¡i�)�j� j2k

�
L1

!
�max
j�j=k

k@�f kLp

which concludes the proof. �

Bernstein type inequalities are useful when we need to estimate functions with
compact Fourier transformations.

Corollary 3.11. Given u2C� where �2R and a multi-index �2Nn, we have

k@�uk�¡j�j. kuk�:
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Proof. By Bernstein type inequality for balls with �=2j ; j 2N, we have

k�j(@
�u)kL1 = kKj � (@�u)kL1

= k@�(Kj �u)kL1
= k@�(�ju)kL1
. 2j j�jk�jukL1
= 2j(j�j¡�)2j�k�jukL1
6 2j(j�j¡�)kuk�

For j=¡1, use Bernstein type inequality for balls with �=1, we have

k�¡1(@�u)kL1 = k@�(�¡1u)kL1
. k�jukL1
6 2�kuk�

In summary we get k@�uk�¡j�j. kuk�: �

Now we use Bernstein type inequalities to show the equivalence of Besov spaces
B1;1
� and Hölder spaces C0;� when �2 (0; 1).

Corollary 3.12. For �2 (0; 1), we have C�=C0;�.

Proof.
1. C��C0;�: Suppose u2 C�, since �> 0, we have kukL1. kuk�. As shown in

the proof 3.7 part 2, we have that

u= lim
n!1

X
j=¡1

n

�ju

in L1 and hence u is continuous and the limit converges at each point inRn. Suppose
x; y 2Rn, since each block �ju is a smooth function, then there is some point z on
the line segment xy such that

�ju(x)¡�ju(y)=r(�ju)(z) � (x¡ y)

hence by Bernstein inequality we have

j�ju(x)¡�ju(y)j = jr(�ju)(z) � (x¡ y)j
6 max

i2f1;2; : : : ;ng
k@i�jukL1 � kx¡ yk

. 2jk�jukL1 � kx¡ yk
6 2j(1¡�)kuk� � kx¡ yk

We also have

j�ju(x)¡�ju(y)j . k�jukL1
6 2¡j�kuk�

If kx¡ yk> 1, we have

ju(x)¡u(y)j
kx¡ yk� 6 ju(x)¡u(y)j

. kukL1. kuk�
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If kx¡ yk< 1, then there is some j02N such that 2¡j0'kx¡ yk and we have

ju(x)¡u(y)j 6
X
j=¡1

1

j�ju(x)¡�ju(y)j

=
X
j=¡1

j0

j�ju(x)¡�ju(y)j+
X

j=j0+1

1

j�ju(x)¡�ju(y)j

6
X
j=¡1

j0

2j(1¡�)kuk� � kx¡ yk+
X

j=j0+1

1

2¡j�kuk�

' kuk�(2j0(1¡�)kx¡ yk+2¡j0�)

' kuk� � kx¡ yk�

In summary we have

kukC0;�= kukL1+ sup
x=/ y

ju(x)¡u(y)j
kx¡ yk� . kuk�

hence C��C0;�.
2. C��C0;�: Suppose f 2C0;�, then f 2L1 and we have

k�¡1f kL1. kf kL1

For j> 0, since �j(0)=0, thenZ
Rn

F¡1(�j)(x)dx =

Z
Rn

F¡1(�j)(x)e¡i hx;0idx

= F(F¡1(�j))(0)
= �j(0)

= 0

Since f 2C0;�, we have jf(y)¡ f(x)j6 kf kC0;� � kx¡ yk�, then

j�jf(x)j = jF¡1(�j) � f(x)j

=

��������Z
Rn

F¡1(�j)(x¡ y)f(y)dy
��������

=

��������Z
Rn

F¡1(�j)(x¡ y)(f(y)¡ f(x))dy
��������

6 kf kC0;�
Z
Rn

jF¡1(�j)(x¡ y)j � ky¡xk�dy

= kf kC0;� � 2jn
Z
Rn

jF¡1(�0)(2j(x¡ y))j � ky¡xk�dy

= kf kC0;� � 2¡j�
Z
Rn

jF¡1(�0)(2j(x¡ y))j � k2j(y¡ x)k�d (2jy)

= kf kC0;� � 2¡j�
Z
Rn

jF¡1(�0)(x¡ y)j � ky¡xk�dy
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which concludes the inequality kf k�. kf kC0;�. �

In general, it can be shown that if �2 (0;+1)nN, the Besov space C�(Rn) and
the Hölder space Cb�c;�¡b�c(Rn) are the same, the Besov norm and Hölder norm are
equivalent (see [4], and [1] for a proof), hence the space C�(Rn) and Cb�c;�¡b�c(Rn)
are the same. However if � 2N, the Besov space C�(Rn) is strictly larger than
C�(Rn).

Theorem 3.13. (Besov embedding) Let 16 p16 p261, 16 q16 q261, and
�2R. Then for any u2Bp1;q1

� (Rn), we have

kuk
Bp2;q2

�¡n
�
1

p1
¡ 1

p2

�. kukBp1;q1�

hence we have a continuous embedding of Bp1;q1
� (Rn) into Bp2;q2

�¡n
�
1

p1
¡ 1

p2

�
(Rn).

Proof. We have

kukBp1;q1� =

 X
j>¡1

1

(2j�k�jukLp1)q1
!1

q1

&
 X

j>¡1

1 �
2j�2

¡jn
�
1

p1
¡ 1

p2

�
k�jukLp2

�q1!1

q1

=

 X
j>¡1

1 �
2
j
�
�¡n

�
1

p1
¡ 1

p2

��
k�jukLp2

�q1!1

q1

>
 X

j>¡1

1 �
2
j
�
�¡n

�
1

p1
¡ 1

p2

��
k�jukLp2

�q2!1

q2

= kuk
Bp2;q2

�¡n
�
1

p1
¡ 1

p2

�

where we used k�klq26 k�klq1.
�

Next, we want to show the Besov space Bp;q
� (Rn) is complete, and is independent

of the dyadic partition of unity used in the definition.

Lemma 3.14. Let A�Rn be an annulus and fujgj>¡1 be a sequence of smooth
functions such that F(uj) is supported in 2jA, and kujkL1. 2¡j� for all j. Then
the limit

lim
N!1

X
j=¡1

N

uj

26 Section 3



converges in the space S 0.

Proof. For any f 2S, we need to show*X
j=¡1

N

uj ; f

+
=
X
j=¡1

N

huj ; f i

converges as N!1. So we try to estimate a typical term huj ; f i. As we did in the
proof of Bernstein type inequalities, let ' 2Cc1, supp(') is a neighborhood of A
which does not intersect a neighborhood of 0 , with '(x)=1 when x2A, and denote
'�(x)= '

¡ x
�

�
. We have

f(x) =
X
j� j=k

N�F¡1
�
'�
(¡i�)�
j� j2k

�
� @�f(x)

=
X
j� j=k

N�

(2�)n

Z
Rn

Z
Rn

'

�
�
�

�
(¡i�)�
j� j2k eih�;x¡yi @�f(y)d�dy

=
X
j� j=k

�n¡kN�

(2�)n

Z
Rn

Z
Rn

'

�
�
�

�¡¡i �
�

�
����� �

�

����2k e
i
D
�

�
;�(x¡y)

E
@�f(y)d

�
�
dy

=
X
j� j=k

�n¡kN�

(2�)n

Z
Rn

Z
Rn

'(�)
(¡i�)�
j� j2k eih�;�(x¡y)i@�f(y)d�dy

Since the function Z
Rn

'(�)
(¡i�)�
j� j2k eih�;�yid�

has compact supported Fourier transform, then it is a Schwartz function. Then by
using Hölder inequality and Young's inequality for convolution, we have

jhuj ; f ij

=

������������
X
j� j=k

�n¡kN�

(2�)n

ZZZ
R3n

'(�)
(¡i�)�
j� j2k eih�;�(x¡y)i @�f(y)uj(x)d�dydx

������������
6

X
j� j=k

�n¡kN�

(2�)n

Z
Rn

��������ZZ
R2n

'(�)
(¡i�)�
j� j2k eih�;�(x¡y)i @�f(y)d�dy

��������juj(x)jdx
6

X
j� j=k

�n¡kN�

(2�)n
kujkL1

ZZ
R2n

'(�)
(¡i�)�
j� j2k eih�;�(x¡y)i@�f(y)d�dy


L1

6
X
j� j=k

�n¡kN�

(2�)n
kujkL1k@�f kL1

Z
Rn

'(�)
(¡i�)�
j� j2k eih�;��id�


L1

=
X
j� j=k

�¡kN�

(2�)n
kujkL1k@�f kL1

Z
Rn

��������Z
Rn

'(�)
(¡i�)�
j� j2k eih�;�xid�

��������d�x
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=
X
j� j=k

�¡kN�

(2�)n
kujkL1k@�f kL1

Z
Rn

��������Z
Rn

'(�)
(¡i�)�
j� j2k eih�;xid�

��������dx
=

X
j� j=k

�¡kN�

(2�)n
kujkL1k@�f kL1

Z
Rn

'(�)
(¡i�)�
j� j2k eih�;�id�


L1

. 2¡j�
X
j� j=k

�¡kN�

(2�)n
k@�f kL1

Z
Rn

'(�)
(¡i�)�
j� j2k eih�;�id�


L1

We then choose �=2j and k to be some integer such that k+�> 0. Then

jhuj ; f ij. 2¡j(�+k)
X
j� j=k

N�

(2�)n
k@�f kL1

Z
Rn

'(�)
(¡i�)�
j� j2k eih�;�id�


L1

hence the series X
j=¡1

1

huj ; f i

converges absolutely. �

Lemma 3.15.

1. Let A�Rn be an annulus, � 2R, and fujgj>¡1 be a sequence of smooth
functions such that F(uj) is supported in 2jA, and kujkL1. 2¡j� for all j. Then
the limit

lim
N!1

X
j=¡1

N

uj

converges in the space S 0, denote the limit by u, then u2C�, and

kuk�.� sup
j>¡1

f2j�kujkL1g:

2. Let B�Rn be a ball, �> 0, and fujgj>¡1 be a sequence of smooth functions
such that F(uj) is supported in 2jB, and kujkL1. 2¡j� for all j. Then the limit

lim
N!1

X
j=¡1

N

uj

converges in the space S 0, denote the limit by u, then u2C�, and

kuk�.� sup
j>¡1

f2j�kujkL1g:

Proof.
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1. We have shown in previous lemma that the infinite sum converges in the space
S 0. Denote the limit by u, we show u2C�. Since F(uj) is supported in in 2jA, then
�iuj=/ 0 only for i� j. So

k�iukL1 =

�i

X
j=¡1

1

uj


L1

6
X
j�i

k�iujkL1

.
X
j�i

2j�kujkL12¡j�

6 sup
j>¡1

f2j�kujkL1g
X
j�i

2¡j�

' sup
j>¡1

f2j�kujkL1g2¡i�

thus

kuk�= sup
i>¡1

2i�k�iukL1. sup
j>¡1

f2j�kujkL1g

which concludes the proof.
2. For any f 2S, we need to show*X

j=¡1

N

uj ; f

+
=
X
j=¡1

N

huj ; f i

converges as N!1. For a typical term huj ; f i, since �> 0 and

jhuj ; f ij =
��������Z

Rn

uj(x)f(x)dx

��������
6
Z
Rn

juj(x)f(x)jdx

6 kujkL1
Z
Rn

jf(x)jdx

= kujkL1kf kL1
. 2¡j�kf kL1

we then have the limit converges in the space of tempered distributions. Denote the
limit by u, we show u2C�. Since F(uj) is supported in in 2jB, then �iuj=/ 0 only
for i. j. So

k�iukL1 =

�i

X
j=¡1

1

uj


L1

6
X
j&i

k�iujkL1

.
X
j&i

2j�kujkL12¡j�
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6 sup
j>¡1

f2j�kujkL1g
X
j&i

2¡j�

' sup
j>¡1

f2j�kujkL1g2¡i�

where we used �> 0. We then conclude that

kuk�= sup
i>¡1

2i�k�iukL1. sup
j>¡1

f2j�kujkL1g: �

One can prove a general version of this lemma for Besov spaces Bp;q
� , which can

be found in the book [4]. We can get the following corollary easily from this lemma.

Corollary 3.16. If (�~j)j>¡1 is another dyadic partition of unity, and denote �~ j
to be the corresponding operators in Littlewood-Paley theory, B~p;q

� to be the corre-
sponding Besov spaces. Then B~p;q

� =Bp;q
� as a set, two norms k�kB~p;q� and k�kBp;q� are

equivalent.

Corollary 3.17. The Besov space Bp;q
� (Rn) is complete, for all � 2R and 16 p;

q61.

Proof. Suppose fukgk>0 is a Cauchy sequence in Bp;q
� (Rn), hence for any " > 0,

there is some positive integer M , such that for all n;m>M , we have

kum¡unkBp;q� =

 X
j>¡1

1

(2j�k�jum¡�junkLp)q
!1

q

<"

thus for all j

k�jum¡�junkLp< 2¡j�"

we then get for each j, the sequence of smooth functions f�jungn>0 is a Cauchy
sequence in Lp space, thus has a limit, denote it by vj. Let n!1 in previous
inequalities we get

k�jum¡ vjkLp< 2¡j�"

for all m>M , and  X
j=¡1

K

(2j�k�jum¡ vjkLp)q
!1

q

<"

for all K 2N, then let K!1 to get X
j=¡1

1

(2j�k�jum¡ vjkLp)q
!1

q

<"
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Then we have an inequality X
j>¡1

1

(2j�kvjkLp)q
!1

q

6
 X

j>¡1

1

(2j�k�jum¡ vjkLp)q
!1

q

+

 X
j>¡1

1

(2j�k�jumkLp)q
!1

q

6 "+C

for some constant C since the Cauchy is bounded. Since "> 0 is arbitrary, we get X
j>¡1

1

(2j�kvjkLp)q
!1

q

<C

and hence kvjkLp <C2¡j�. By Bernstein inequality, since F(�jum) is supported
in some ball 2jB~ where B~ is related to the domain used in the Littlewood-Paley
decomposition, then

k�jumkL16C 0 � 2
jn

p k�jumkLp

also

k�jum¡�jukkL16C 0 � 2
jn

p k�jum¡�jukkLp

thus the sequence f�jungn>0 is a Cauchy sequence in L1 space, hence has a limit
denoted by vj

0 which is clearly continuous. Then vj = vj
0 almost everywhere, this

follows from for any compactly supported test function g, by using Hölder inequality��������Z
Rn

(vj¡ vj0)(x)g(x)dx
��������

6
Z
Rn

j(vj¡�juk)(x)g(x)jdx+
Z
Rn

j(vj0¡�juk)(x)g(x)jdx

6 kvj¡�jukkLp � kgk
L

p

p¡1
+ kvj0¡�jukkL1 � kgkL1 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !k!1

0

Thus taking limit as m!1 in our inequality we get

kvjkL16C 0 � 2
jn

p kvjkLp<CC 0 � 2
¡j
�
�¡ n

p

�

For j>0, we know that the Fourier transform of vj is supported in the domain 2jA,
where A is the annulus used in the Littlewood-Paley decomposition, since we know
F(�jum) is supported in the domain 2jA, then for any compactly supported test
function g supported outside 2jA, we have

0=

Z
Rn

F(�jum)(x) � g (x)dx=
Z
Rn

�jum(x) � F¡1(g)(x)dx
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hence ��������Z
Rn

vj(x) � F¡1(g) (x)dx
��������

=

��������Z
Rn

(vj(x)¡�jum(x)) � F¡1(g)(x)dx
��������

6
Z
Rn

jvj(x)¡�jum(x)j � jF¡1(g)(x)jdx

6 kvj¡�jumkL1 � kF¡1(g) kL1!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !m!1
0

so

0=

Z
Rn

vj(x) � F¡1(g) (x)dx= hvj ;F¡1(g)i= hF(vj); gi

this shows if we think of vj as a tempered distribution, then it is supported in 2jA,
which also shows vj is smooth. Now we can use the lemma 3.14 to get the infinite
sum X

j>¡1
vj

converges to some limit u2S 0. We need to show that u2Bp;q
� and uk!u in Bp;q

� .
We first show that u2Bp;q

� . Since supp(vj)� 2jA, we know that �ivj=/ 0 if and
only if ji¡ j j< 2. Moreover, we have the estimate

k�ivjkLp6 kK0kL1 � kvjkLp
for all j, thus

kukBp;q� =

 X
i=¡1

1

(2i�k�iukLp)q
!1

q

=

0@X
i=¡1

1  
2i�
 X
jj¡ij<2

�ivj


Lp

!q1A1

q

6

0@X
i=¡1

1  
2i�

X
jj¡ij<2

kK0kL1 � kvjkLp
!q1A1

q

6 kK0kL1
X

k=¡1;0;1

 X
i=¡1

1

(2i�kvj+kkLp)q
!1

q

< +1

where we assume v¡2= v¡3=0 in the sum. This shows u2Bp;q
� .

Next we show that uk! u in Bp;q
� . For any "> 0, take integer M > 0 such that

when k >M , we have k�juk¡ vjkLp< 2¡j�" and X
j>¡1

1

(2j�k�jum¡ vjkLp)q
!1

q

<"
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for all j. Then

kuk¡ukBp;q�

=

 X
i=¡1

1

(2i�k�i(uk¡u)kLp)q
!1

q

=

0@X
i=¡1

1  
2i�
�iuk¡

X
jj¡ij<2

�ivj


Lp

!q1A1

q

=

0@X
i=¡1

1  
2i�
(�iuk¡ vi)¡

 X
jj¡ij<2

�ivj¡ vi
!

Lp

!q1A1

q

=

0@X
i=¡1

1  
2i�
(�iuk¡ vi)¡

X
jj¡ij<2

((�ivj¡�i�juk)¡ (�jvi¡�j�iuk))


Lp

!q1A1

q

6
 X

i=¡1

1

(2i�k(�iuk¡ vi)kLp)q
!1

q

+
X

l=¡1;0;1

 X
i=¡1

1

(2i�k�i(vi+l¡�i+luk)kLp)q
!1

q

+
X

l=¡1;0;1

 X
i=¡1

1

(2i�k�i+l(vi¡�iuk)kLp)q
!1

q

. "+

 X
i=¡1

1

(2i�kvi¡�iukkLp)q
!1

q

+

 X
i=¡1

1

(2i�kvi¡�iukkLp)q
!1

q

. "

which gives the result. �

3.3 First Order Paracontrolled Calculus

Now we know how to measure the regularity of distributions. We next consider
the problem of defining the multiplication of tempered distributions. Let us begin
with some heuristic discussion, we want to define the multiplication uv of u; v2S 0.
When u; v are smooth functions, we want it to be agree with the usual product of
functions. So we do the following formal computation

uv=
X
i>¡1

�iu
X
j>¡1

�jv

we can see the problem by following lemma.

Lemma 3.18. There exists an annulus A~ such that for any j> 1 and all i < j¡ 1,
we have

supp(F(�iu�jv))� 2jA~
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for all u; v 2 S 0. And There exists a ball B~ such that for any i; j >¡1 and all
ji¡ j j6 1, we have

supp(F(�iu�jv))� 2jB~

for all u; v 2S 0.

Proof. Consider j> 1 and i < j ¡ 1, if i> 0, we have

supp(F(�iu�jv)) = supp(F(�iu) �F(�jv))

� supp(F(�iu))+ supp(F(�jv))

� 2iA+2jA

= 2j(2i¡jA+A)

by the construction of dyadic partition of unity we know that 2i¡jA\A=?, then
there is an annulus A~ that 2i¡jA+A�A~. For the case of i=0, since

supp(F(�iu�jv)) � supp(F(�iu))+ supp(F(�jv))

� 2iB+2jA

= 2j(2i¡jB+A)

by the construction of dyadic partition of unity we know that 2i¡jB \A=?, then
we may enlarge annulus A~ so that 2i¡jB+A�A~.

Consider i> j>¡1 and ji¡ j j6 1, then

supp(F(�iu�jv)) � supp(F(�iu))+ supp(F(�jv))

� 2iB+2jB or 2iA+2jB or 2iA+2jA

= 2j(2i¡jB+B) or 2j(2i¡jA+B) or 2j(2i¡jA+A)

in each case, 2i¡jB \B=/ ? or 2i¡jA\B=/ ? or 2i¡jA\A=/ ?. Which means we
can only find a ball B~ such that

supp(F(�iu�jv))� 2jB~

which concludes the proof. �

From this lemma we can see that if we decompose the sum as

uv=
X
i>¡1

�iu
X
j>¡1

�jv=
X
i>1

X
i¡j>1

�iu�jv+
X
j>1

X
j¡i>1

�iu�jv+
X
j>¡1

X
i:ji¡j j61

�iu�jv

the third term has a problem since we may add too much amplitudes to the fre-
quencies around 0, so we have to control the decay of product of blocks in order to
have a well-defined product distribution. For the first two terms there are no such
problems, sinceX

i>1

X
i¡j>1

�iu�jv=
X
i>1

�iu�<i¡1v
X
j>1

X
j¡i>1

�iu�jv=
X
j>1

�<j¡1u�jv
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there is no infinite sum involved in any annulus 2jA~ of Fourier spaces. We use the
following notations to denote the three terms appeared in the formal decomposition

u� v= v�u=
X
j>1

�<j¡1u�jv u � v=
X
j>¡1

X
i:ji¡j j61

�iu�jv

and we call u� v and v�u paraproducts, and u � v the resonant product.

Theorem 3.19. (Paraproduct estimate)
1. ku� vk�.� kukL1kvk� for all � 2R, u2L1 and v 2C�;
2. ku� vk�+�.�;� kuk�kvk� for all � 2R, �< 0, u2C� and v 2C�;
3. ku � vk�+� .�;� kuk�kvk� for all �; � 2R such that �+ � > 0, u 2 C� and

v 2C�.

Proof. 1. We know that there is an annulus A~ such that supp(F(�<j¡1u�jv))�
2jA~, we need to estimate k�<j¡1u�jvkL1. Since for all x2Rn we have

1 = �¡1(x)+
X
i=0

+1

�i(x)

= �¡1(x)+
X
i=0

+1

�0
�
x
2i

�
)

1 = �¡1
�

x

2j¡1

�
+
X
i=0

+1

�0
�

x

2i+j¡1

�
= �¡1

�
x

2j¡1

�
+
X
i=j¡1

+1

�0

�
x
2i

�
)

�¡1

� x

2j¡1

�
= �¡1(x)+

X
i=0

j¡2

�0

� x
2i

�
= �¡1(x)+

X
i=0

j¡2

�i(x)

)

�<j¡1u = F¡1((�¡1+ �0+ � � �+ �j¡2)Fu)

= F¡1
�
�¡1

�
1

2j¡1
�
�
Fu
�

= 2(j¡1)nF¡1(�¡1)(2j¡1 � ) � u

)

k�<j¡1ukL1 = k2(j¡1)nF¡1(�¡1)(2j¡1 � ) � ukL1

=

Z
Rn

2(j¡1)nF¡1(�¡1)(2j¡1y)u(x¡ y)dy

L1

6 kukL1kF¡1(�¡1)kL1
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)

k�<j¡1u�jvkL1 6 k�<j¡1ukL1k�jvkL1
6 kukL1kF¡1(�¡1)kL12¡j�kvk�

Then by lemma 3.15 we have

u� v=
X
j>1

�<j¡1u�jv 2C�

and moreover

ku� vk�.� sup
j>¡1

f2j�k�<j¡1u�jvkL1g.� kukL1kvk�

which concludes the proof.
2. Again we know that there is an annulus A~ such that supp(F(�<j¡1u�jv))�

2jA~, we need to estimate k�<j¡1u�jvkL1. Since �< 0, we have

k�<j¡1u�jvkL1 6
X
i<j¡1

k�iukL1k�jvkL1

6 kuk�kvk�
X
i<j¡1

2¡i�¡j�

.� 2¡j(�+�)kuk�kvk�

) u� v 2C�+� and ku� vk�+�.�+�;� kuk�kvk� which is exactly the inequality

ku� vk�+�.�;� kuk�kvk�

.
3. We know that there is a ball B~ such that

supp
 
F
 X

i:ji¡j j61
�iu�jv

!!
� 2jB~ ;

and  X
i:ji¡j j61

�iu�jv


L1

6
X

i:ji¡j j61
k�iukL1k�jvkL1

6
X

i:ji¡j j61
2¡i�¡j�kuk�kvk�

'� 2¡j(�+�)kuk�kvk�

By lemma 3.15 and �+ � > 0 we have u � v 2C�+� and ku � vk�+�.�;� kuk�kvk�.
�

From this theorem, we can then define the product of two distributions when
certain regularity conditions are satisfied.
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Corollary 3.20. Suppose �+ � > 0, the the map from C��C�!C�^� defined by
(u; v) 7! u� v+ u� v+ u � v for any u2C�; v 2C� is a bounded bilinear map. The
terms u�v;u�v;u�v depend on the specific dyadic partition of unity, the sum does
not.

Proof.
Case 1. �>�> 0. Then

ku� vk�6 ku� vk�+�.�;� kuk�kvk�

ku� vk�6 ku� vk�.� kukL1kvk�. kuk�kvk�
ku� vk�.� kuk�kvkL1. kuk�kvk�

which shows the sum u� v+u� v+ u� v is well-defined in C�.
Case 2. � > 0>�. Then

ku� vk�6 ku� vk�+�.�;� kuk�kvk�

ku� vk�6 ku� vk�+�.�;� kuk�kvk�

ku� vk�.� kuk�kvkL1. kuk�kvk�
which shows the sum u� v+u� v+ u� v is well-defined in C�.

Case 3. � >�=0. Then

ku� vk�6 ku� vk�+�.�;� kuk�kvk�

ku� vk�6 ku� vk�¡�

2

.� kuk¡�

2

kvk�6 kuk�kvk�

ku� vk�.� kuk�kvkL1. kuk�kvk�
which shows the sum u� v+u� v+ u� v is well-defined in C�.

Now we show that the sum is independent of the specific dyadic partition of
unity, we denote the corresponding paraproduct and resonant product by u�~ v;
u�~ v and u�~ v. Clearly when u and v are smooth, we have

u� v+ u� v+ u� v=uv= u�~ v+ u�~ v+u �~ v

and for general u 2 C� and v 2 C�, we take slight smaller �0<�; � 0< � such that
�0+ � 0> 0, and we know that u2C� 0 and v 2C� 0. Then the maps

(u; v) 7! u� v+ u� v+u � v

(u; v) 7! u�~ v+ u�~ v+u �~ v

are both continuous bilinear maps from C�0�C� 0 to C� 0^� 0, which agree with each
other on smooth elements. So the continuous extension of these two maps have
same value on the closure of (C1\C�0)� (C1\ C� 0), which contains C��C� as a
subspace, hence two maps agree on space C��C� and the uniqueness is proved. �

In mathematical analysis, we approximate a differentiable function by a linear
function, with a remainder of higher order infinitesimal. Now we show some similar
result, which constitutes the so called first order paracontrolled calculus. The main
reference for the theorems is [23].
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Lemma 3.21. Suppose 0<�<1 and � 2R, then for any u2C�; g2C�and j>¡1,
we have

k�j(u� v)¡u�jvkL1. 2¡j(�+�)kuk�kvk�

Proof. According to lemma 3.18, we know that there is an annulus A~, such that
the Fourier transform F(�<i¡1u�iv) is supported on 2iA~. Then

�j(u� v)¡u�jv

= �j

 X
i>1

�<i¡1u�iv

!
¡u�j

 X
i>¡1

�iv

!
=
X
i:i�j

[�j(�<i¡1u�iv)¡u�j�iv]

=
X
i:i�j

[�j(�<i¡1u�iv)¡�<i¡1u�j�iv]¡
X
i:i�j

�>i¡1u�j�iv

For the second term, since �> 0, we haveXi:i�j �>i¡1u�j�iv


L1

.
X
i:i�j

k�>i¡1ukL1k�j�ivkL1

.
X
i:i�j

2¡i�kuk�2¡i�kvk�

' 2¡j(�+�)kuk�kvk�

For the first term, we have

j(�j(�<i¡1u�iv)¡�<i¡1u�j�iv)(x)j

=

��������Z
Rn

Kj(x¡ y)(�<i¡1u(y)¡�<i¡1u(x))�iv(y)dy

��������
6
Z
Rn

jKj(x¡ y)j � j�<i¡1u(y)¡�<i¡1u(x)j � j�iv(y)jdy

.
Z
Rn

jKj(x¡ y)j �max
j�j=1

k@��<i¡1ukL1 � jx¡ y j � k�ivkL1dy

6 2¡i�kvk� �max
j�j=1

kF¡1[(i�)��<i¡1F(u)]kL1
Z
Rn

jKj(x¡ y) � (x¡ y)jdy

= 2¡i�kvk� �max
j�j=1

kF¡1[�<i¡1F(@�u)]kL1
Z
Rn

jKj(x¡ y) � (x¡ y)jdy

= 2¡i�kvk� �max
j�j=1

k�<i¡1@
�ukL1

Z
Rn

jKj(x¡ y) � (x¡ y)jdy

. 2¡i�kvk� �max
j�j=1

2¡i(�¡1)k@�uk�¡1
Z
Rn

jKj(y) � y jdy

. 2i(1¡�¡�)kuk�kvk�
Z
Rn

jKj(y) � y jdy
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If j=¡1, we have  Xi:i�¡1 [�¡1(�<i¡1u�iv)¡�<i¡1u�¡1�iv]


L1

.
X
i:i�¡1

2i(1¡�¡�)kuk�kvk�
Z
Rn

jK¡1(y) � y jdy

' 2¡(¡1)(�+�)kuk�kvk�

If j> 0, we have Z
Rn

jKj(y) � y jdy

=

Z
Rn

j2jnK0(2jy) � y jdy

= 2¡j
Z
Rn

jK0(y) � y jdy

thus Xi:i�j [�j(�<i¡1u�iv)¡�<i¡1u�j�iv]


L1

.
X
i:i�j

2i(1¡�¡�)kuk�kvk�2¡j
Z
Rn

jK0(y) � y jdy

=
X
i:i�j

2(i¡j)2¡i(�+�)kuk�kvk�
Z
Rn

jK0(y) � y jdy

' 2¡j(�+�)kuk�kvk�

which concludes the proof. �

Lemma 3.22. Suppose �2(0;1) and �; 2R, such that �+�+ >0 and �+ <0.
Then there exists a bounded trilinear operator C:C��C��C!C�+�+ such that

C(u; v; w)= ((u� v) �w)¡u(v �w)

whenever u; v; w2S.

Proof. Suppose u; v;w2S, then

C(u; v; w)

= ((u� v) �w)¡u(v �w)
=

X
j>¡1

X
i:ji¡j j61

(�i(u� v)¡u�iv)�jw

=
X
j>¡1

X
i:ji¡j j61

X
k>¡1

(�i(�ku� v)¡�ku�iv)�jw
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By definition, we have

�ku� v =
X
l>1

�<l¡1�ku�lv

=
X

l>maxfk+1;1g

�<l¡1�ku�lv

then according to lemma 3.18 there exists a ball B~ such that the support of Fourier
transform F(�ku� v) is contained in the Rnn2kB~, then

�i(�ku� v)=/ 0, k. i

Hence the commutator can be written as

C(u; v; w)

=
X
j>¡1

X
i:ji¡j j61

(�i(�.iu� v)¡�.iu�iv)�jw¡
X
j>¡1

X
i:ji¡j j61

�&iu�iv�jw

First, let us look at the second termX
j>¡1

X
i:ji¡j j61

�&iu�iv�jw

=
X
j>¡1

X
i:ji¡j j61

X
k&i

�ku�iv�jw

=
X
j>¡1

X
k>¡1

X
i:ji¡j j61;i.k

�ku�iv�jw

=
X
k>¡1

X
j>¡1

X
i:ji¡j j61;i.k

�ku�iv�jw

The commutativity of all the summation symbols follow from the absolute conver-
gence of the sum, which is from the estimationX

j>¡1

X
i:ji¡j j61

X
k&i

k�ku�iv�jwkL1

6
X
j>¡1

X
i:ji¡j j61

X
k&i

k�kukL1k�ivkL1k�jwkL1

6
X
j>¡1

X
i:ji¡j j61

X
k&i

2¡k�kuk�2¡i�kvk�2¡jkwk

'
X
j>¡1

X
i:ji¡j j61

2¡i(�+�)kuk�kvk�2¡jkwk

'
X
j>¡1

2¡j(�+�+)kuk�kvk�kwk

where we used �> 0; �+ �+  > 0.
For any k >¡1, by lemma 3.18 there exists a ball B~ 0 such that the Fourier

transform of the sumX
j>¡1

X
i:ji¡j j61;i.k

�ku�iv�jw=
X

j>¡1;j.k

X
i:ji¡j j61

�ku�iv�jw
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is supported in 2kB~ 0. Moreover, we haveXj>¡1
X

i:ji¡j j61;i.k
�ku�iv�jw


L1

6
X
j>¡1

X
i:ji¡j j61;i.k

k�kukL1k�ivkL1k�jwkL1

6 kuk�kvk�kwk
X
j>¡1

X
i:ji¡j j61;i.k

2¡k�2¡i�2¡j

= kuk�kvk�kwk
X

j>¡1;j.k

X
i:ji¡j j61

2¡k�2¡i�2¡j

' kuk�kvk�kwk
X

j>¡1;j.k
2¡k�2¡j(�+)

' 2¡k(�+�+)kuk�kvk�kwk
where we used �+  < 0 in the last line. Since �+ �+  >0, we use the lemma 3.15
to get X

j>¡1

X
i:ji¡j j61

�&iu�iv�jw2C�+�+

and Xj>¡1
X

i:ji¡j j61
�&iu�iv�jw


�+�+

. sup
l>¡1

(
2l(�+�+)

Xj>¡1
X

i:ji¡j j61;i.l
�lu�iv�jw


L1

)
. sup

l>¡1
f2l(�+�+)2¡l(�+�+)kuk�kvk�kwkg

= kuk�kvk�kwk

Next, let us look at the first term. Clearly, for any j>¡1, the Fourier transform
of the term X

i:ji¡j j61
(�i(�.iu� v)¡�.iu�iv)�jw

is supported in some ball 2jB~ 00. By using out previous lemma, we have the estimation X
i:ji¡j j61

(�i(�.iu� v)¡�.iu�iv)�jw


L1

6
X

i:ji¡j j61
k�i(�.iu� v)¡�.iu�ivkL1k�jwkL1

.
X

i:ji¡j j61
2¡i(�+�)k�.iuk�kvk�2¡jkwk

.
X

i:ji¡j j61
2¡i(�+�)kuk�kvk�2¡jkwk

' 2¡j(�+�+)kuk�kvk�kwk
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where we used

k�.iuk� = sup
l>¡1

2l�k�l�.iukL1

= sup
l>¡1

2l�
 X
k.i;k�l

�l�ku


L1

6 sup
l>¡1

2l�
X

k.i;k�l
k�k�lukL1

. sup
l>¡1

2l�
X

k.i;k�l
k�lukL1

' kuk�

Again, since �+ �+  > 0, we use the lemma 3.15 to getX
j>¡1

X
i:ji¡j j61

(�i(�.iu� v)¡�.iu�iv)�jw2C�+�+

and Xj>¡1
X

i:ji¡j j61
(�i(�.iu� v)¡�.iu�iv)�jw


�+�+

. sup
l>¡1

(
2l(�+�+)

 X
i:ji¡j j61

(�i(�.iu� v)¡�.iu�iv)�lw


L1

)
. sup

l>¡1
f2l(�+�+)2¡l(�+�+)kuk�kvk�kwkg

= kuk�kvk�kwk

So in summary, we have for any u; v; w2S, the following commutator estimate

kC(u; v; w)k�+�+. kuk�kvk�kwk
is true.

Now we need to extend this bounded map to the whole space by continuity. To
do this, we first choose slightly smaller regularity exponents �02 (0; 1); � 0;  0 2R
such that �0< �; � 0< �;  0<  and �0+ � 0+  0> 0; � 0+  0< 0. Since we know
from lemma 3.9 the space C��C��C is contained in the closure of the Schwartz
functions in space C�0�C� 0�C 0, and the space C�+�+ is contained in the closure
of the Schwartz functions in space C�0+� 0+ 0. So we first obtain the estimate for
Schwartz functions in C� 0�C� 0�C 0 and then extend the commutator continuously
to get a definition of the commutator for any three elements in C��C� �C, the
extension is independent of �0; � 0;  0 since C��C� �C is continuously embedded
in the space C� 0�C� 0�C 0. And the desired boundedness follows from

kC(u; v;w)k�+�+ = lim
�0!�¡;� 0!�¡; 0!¡

kC(u; v; w)k�0+� 0+ 0

. lim
�0!�¡;� 0!�¡; 0!¡

kuk� 0kvk� 0kwk 0

= kuk�kvk�kwk
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where the second inequality may have a constant that depends on �0; � 0;  0 but the
limit exists and is finite, which can be seen easily from previous lemmas. �

Now we prove the paralinearization theorem, which is useful when dealing with
nonlinearity.

Theorem 3.23. (Paralinearization) Suppose � 2 (0; 1); � 2 (0; �], and let F 2
C1;�/�. The map RF : C�!C�+� defined by the equation

F (u)=F 0(u)�u+RF(u)

for any u2C�, is locally bounded. that is

kRF(u)k�+�. kF kC1;�/�(1+ kuk�
1+�/�)

If F 2C2;�/�, then RF is locally Lipschitz continuous, that is

kRF(u)¡RF(v)k�+�. kF kC2;�/�(1+ kuk�+ kvk�)1+�/�ku¡ vk�
for all u; v 2C�.

Proof. By definition, we have

RF(u) = F (u)¡F 0(u)�u
=
X
i>¡1

(�iF (u)¡�<i¡1F 0(u)�iu)

Note that there is a ball B~, such that for any i>¡1, the Fourier transform of
�iF (u)¡�<i¡1F 0(u)�iu is supported in ball 2iB~. Also notice thatZ

Rn

K¡1(x)dx=

Z
Rn

F¡1(�¡1)(x)e¡ih0;xidx= �¡1(0)=1

and for i> 0, we haveZ
Rn

Ki(x)dx=

Z
Rn

F¡1(�i)(x)e¡ih0;xidx= �i(0)=0

We use the fact that C�=�C0;� to identify u as a �¡Hölder continuous function.
If i < 1, we have

k�iF (u)¡�<i¡1F 0(u)�iukL1
= k�iF (u)kL1

=

Z
Rn

Ki(x¡ y)F (u(y))dy

L1

=

Z
Rn

Ki(x¡ y)(F (u(x))¡F (u(y)))dy¡F (u(x))
Z
Rn

Ki(x¡ y)dy

L1

6 kF kL1+
Z
Rn

jKi(x¡ y)j � kF kC1kuk�jx¡ y j�dy

. kF kC1(1+ kuk�)
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If i> 1, we have

�iF (u)(x)¡�<i¡1F
0(u)�iu(x)

=

Z
Rn

Ki(x¡ y)F (u(y))dy¡
Z
Rn

Ki(x¡ y)u(y)dy
Z
Rn

K<i¡1(x¡ z)F 0(u(z))dz

=

Z
Rn

Z
Rn

Ki(x¡ y)K<i¡1(x¡ z)(F (u(y))¡F 0(u(z))u(y))dydz

=

Z
Rn

Z
Rn

Ki(x¡ y)K<i¡1(x¡z)(F (u(y))¡F (u(z))¡F 0(u(z))(u(y)¡u(z)))dydz

By mean value theorem, there exists � 2 (0; 1), such that

jF (u(y))¡F (u(z))¡F 0(u(z))(u(y)¡u(z))j
= j(F 0(�u(y)+ (1¡ �)u(z))¡F 0(u(z)))(u(y)¡u(z))j
6 kF kC1;�/�j�u(y)+ (1¡ �)u(z)¡u(z)j�/�ju(y)¡u(z)j
= kF kC1;�/�j� j�/�ju(y)¡u(z)j1+�/�

6 kF kC1;�/�kuk�
1+�/�jy¡ z j�(1+�/�)

Thus

j�iF (u)(x)¡�<i¡1F 0(u)�iu(x)j

6 kF kC1;�/�kuk�
1+�/�

Z
Rn

Z
Rn

jKi(x¡ y)K<i¡1(x¡ z)j � jy¡ z j�+�dydz

= kF kC1;�/�kuk�
1+�/�

Z
Rn

Z
Rn

jKi(y)K<i¡1(z)j � jy¡ z j�+�dydz

Now we try to estimate the last integralZ
Rn

Z
Rn

jKi(y)K<i¡1(z)j � jy¡ z j�+�dydz

=

Z
Rn

Z
Rn

j2inK0(2iy) � 2(i¡1)nK¡1(2i¡1z)j � jy¡ z j�+�dydz

= 2¡n2¡i(�+�)
Z
Rn

Z
Rn

jK0(y)K¡1(2¡1z)j � jy¡ z j�+�dydz

' 2¡i(�+�)

In summary, we get

j�iF (u)(x)¡�<i¡1F 0(u)�iu(x)j. 2¡i(�+�)kF kC1;�/�kuk�
1+�/�

By lemma 3.15, we know that RF(u)2C�+� and

kRF(u)k�+� . sup
j>¡1

f2j(�+�)k�iF (u)¡�<i¡1F 0(u)�iukL1g

. kF kC1;�/�(1+ kuk�
1+�/�)

which concludes the proof of the first statement.
The second statement can be proved in a similar way. By definition, we have

RF(u)¡RF(v) = (F (u)¡F (v))¡ (F 0(u)�u¡F 0(v)� v)
=
X
i>¡1

(�i(F (u)¡F (v))¡ (�<i¡1F 0(u)�iu¡�<i¡1F 0(v)�iv))
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Note that there is a ball B 0~ , such that for any i>¡1, the Fourier transform of
�i(F (u)¡F (v))¡ (�<i¡1F 0(u)�iu¡�<i¡1F 0(v)�iv) is supported in ball 2iB 0~ .

If i < 1, we have

k�i(F (u)¡F (v))¡ (�<i¡1F
0(u)�iu¡�<i¡1F

0(v)�iv)kL1
= k�i(F (u)¡F (v))kL1

=

Z
Rn

Ki(x¡ y)[F (u(y))¡F (v(y))]dy

L1

=

Z
Rn

Ki(x¡ y)[F 0(�u(y)+(1¡ �)v(y))(u(x)¡v(x))¡(F (u(y))¡F (v(y)))]dy¡

(u(x)¡ v(x))
Z
Rn

Ki(x¡ y)F 0(�u(y)+ (1¡ �)v(y))dy

L1

. kF kC1ku¡ vk�+
Z
Rn

jKi(x¡ y)j � kF kC1ku¡ vk�jx¡ y j�dy

' kF kC1ku¡ vk�

where � depends on y such that

F 0(�u(y)+ (1¡ �)v(y))(u(y)¡ v(y))=F (u(y))¡F (v(y))

whose existence is given by the mean value theorem.
If i> 1, we have

�i(F (u)¡F (v))(x)¡ (�<i¡1F 0(u)�iu¡�<i¡1F 0(v)�iv)(x)

=

Z
Rn

Z
Rn

Ki(x¡ y)K<i¡1(x¡ z)[(F (u(y))¡F (v(y)))¡

(F 0(u(z))u(y)¡F 0(v(z))v(y))] dydz

=

Z
Rn

Z
Rn

Ki(x¡ y)K<i¡1(x¡ z)[(F (u(y))¡F (v(y)))¡ (F (u(z))¡F (v(z)))

¡(F 0(u(z))(u(y)¡u(z))¡F 0(v(z))(v(y)¡ v(z)))] dydz

�

Corollary 3.24. Suppose �2 (0;1); � 2 (0; �]and  <0 which satisfies �+ �+  >0

and �+  <0, let F 2C1;�/�. Then there exists a locally bounded map �F :C��C!
C�+�+ such that

F (u) � v=F 0(u)(u � v)+�F(u; v)

for any u2C� and smooth v2C. Here the locally boundedness means the following
inequality

k�F(u; v)k�+�+. kF kC1;�/�(1+ kuk�
1+�/�)kvk

If F 2C2;�/�, then is �F locally Lipschitz continuous

k�F(u1; v1)¡�F(u2; v2)k�+�+
. kF kC2;�/�(1+ (ku1k�+ ku2k�)1+�/�+ kv2k)(ku1¡u2k�+ kv1¡ v2k)

for any u1; u22C� and v1; v22C.
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Proof. For any u2C� and smooth v 2C, we have

�F(u; v) = F (u) � v¡F 0(u)(u� v)
= (F 0(u)�u) � v¡F 0(u)(u � v)+RF(u) � v
= C(F 0(u); u; v)+RF(u) � v

then we use paralinearization and commutator estimate to get

k�F(u; v)k�+�+ = kC(F 0(u); u; v)+RF(u) � vk�+�+
6 kC(F 0(u); u; v)k�+�++ kRF(u) � vk�+�+
. kF 0(u)k�kuk�kvk+ kRF(u)k�+�kvk
. kF 0k�/�kuk�

1+�/�kvk+ kF kC1;�/�(1+ kuk�
1+�/�)kvk

. kF kC1;�/�(1+ kuk�
1+�/�)kvk

The last inequality follows from a similar estimate. �

Converse to the paralinearization theorem, the collection of distributions that
look like some reference distribution in the sense of regularity, or intuitively a func-
tion of the reference distribution, should be important, we have following concept.

Definition 3.25. (Paracontrolled distribution) Suppose � 2 (0; 1); � 2 (0; �]
and Z 2C�. A distribution u2C� is called paracontrolled by Z, if there exists u02C�
such that

u# :=u¡u0�Z 2C�+�

the collection of distributions paracontrolled by Z is denoted by D�(Z), and to empha-
sise this structure, we write (u; u0; u#)2D�(Z). The norm

k(u; u0; u#)kD�(Z) := kuk�+ ku0k�+ ku#k�+�

is then well-defined.

It can be shown that D�(Z) is a Banach space.

3.4 Higher Order Paracontrolled Calculus

In the paper [5], they developed a higher order paracontrolled calculus, which
generalizes the paralinearization theorem.

Theorem 3.26. Suppose �2 (0; 1); k 2N+, and let F 2Ck+1 whose 4-th derivative
is bounded. There is a remainder map RF : C�!C(k+1)� such that

F (u)=
X
n=1

k
1
n!

X
j=0

n¡1

(¡1)j
�
n
j

�
(ujF (n)(u))� (un¡j)+RF(u)

for any u2C�.

For more informations on the estimate of remainder map, and various commu-
tator estimates, see [5].
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4 Gaussian Analysis

In this chapter we will introduce the subject of Gaussian analysis, which is about
the theory of white noise.

4.1 White Noise

We begin by a heuristic discussion of what is white noise. Before introduce the
white noise, we introduce the concept of generalized random processes, see [31] and
the references there in.

A generalized function or a tempered distribution u2S 0(Rn) is used to model
a physical field, for example the temperature field, charge density field, electro-
magnetic field, etc. A measurement by a physical instrument is modeled by a test
function f 2S(Rn), since usually we can only measure certain average of the field
instead of measure its accurate value at a point in the space. The result of the
measurement is given by the value hu; f i.

If the field is random, then we expect the result of the measurement by f 2S(Rn)
gives a random variable instead of just one deterministic number, that is we have a
probability measure on the space of tempered distribution which models the random
field and the measurement hu; f i is then a random variable. Moreover we expect that
the resulting random measurement result look similar if we use similar instrument,
this requires some kind of continuity.

Definition 4.1. A generalized random process or a random field on Rn is a map
� from the space of Schwartz functions S(Rn) to the space of random variables on
a fixed probability space (
;F ;P), such that:

(1) Linearity: �(c1f1+ c2f2) = c1�(f1) + c2�(f2) almost surely, for any c1; c22
R and f1; f22S(Rn);

(2) Continuity: If we have m sequences of test functions ffn
(j)g16j6m;n2N and

j¡th sequence converges to f (j) in S(Rn) for each 16 j6m, then the random vector
(�(fn

(1)); : : : ;�(fn
(m))) converges in distribution to the random vector (�(f (1)); : : : ;

�(f (m))) as n!1.

The central limit theorem tells us the combined effect of an infinite number of
weakly correlated random variables is given by a Gaussian random variable. So it is
reasonable to expect that any measurement of a white noise �, which is the combined
result due to an infinite number of random background signal, is given by a Gaussian
random variable, that is all the random variables �(f) are Gaussian and the image of
this random field is a Gaussian linear space (linear subspace of all random variables
such that any finite elements are distributed as centered joint Gaussian). It is also
natural to assume that the white noise at different spacial regions are independent
from each other and the noise is the same under translation or rotations, that is we
can consider the Dirac normalization condition

E[�(�(�¡x))�(�(�¡y))] = �(x¡ y)

Gaussian Analysis 47



Formally, for any f1; f22S(Rn), we have

E[�(f1)�(f2)] = E

�
�

�Z
f1(x)�(x¡ �)dx

�
�

�Z
f2(y)�(y¡ �)dy

��
=

Z
f1(x)f2(y)E[�(�(x¡ �))�(�(y¡ �))]dxdy

=

ZZ
f1(x)f2(y)�(x¡ y)dxdy

=

Z
f1(x)f2(x)dx

which is the L2¡ inner product on the space of Schwartz functions. One can complete
the space of Schwartz functions to L2(Rn), since the Schwartz functions form a dense
subspace of L2(Rn). And convergence in distribution is equivalent to convergence
in L2(
;F ;P) for a Gaussian Hilbert space, then we can complete this generalized
random process to have the following formal definition.

Definition 4.2. A white noise � on Rn is an isometry from L2(Rn) to a Gaussian
Hilbert space (a closed subspace of L2(
;F ;P) which consists only centered Gaussian
random variables), that is

E[�(f1)�(f2)]= hf1; f2iL2(Rn)

for any f1; f22L2(Rn).

Details about the Gaussian Hilbert spaces can be founded in the book [30].

4.2 Wick product

Now we study the Wick product of random variables. Let's first consider the
case of a single random variable.

Definition 4.3. Fix a probability space (
;F ;P) and a random variable X, such
that E[jX jn]<1 for any n2N. Define a sequence of random variables f:Xn:gn2N,
which are polynomial functions of X, recursively by

(1) :X0: =1;

(2) @

@X
:Xn: =n:Xn¡1: for n=1; 2; 3; : : : ;

(3) E[:Xn: ] = 0 for n=1; 2; 3; : : :

in the second equation, we use the formal derivative of formal power series, and
the equality is in the sense of the corresponding coefficients of formal power series
are the same. We call :Xn: the n-th Wick power of X.

Note that this definition depends on the probability space and the given random
variable on it. The motivation for the third equation comes from quantum field
theory, where one need to get rid of the infinities coming from the vacuum expec-
tation. The first few Wick powers are given in the following example.
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Example 4.4. With the same assumptions in the definition, we have

:X1: = X ¡E[X]

:X2: = X2¡ 2E[X]X ¡E[X2] + 2E[X]2

:X3: = X3¡ 3E[X]X2¡ 3E[X2]X +6E[X ]2X ¡E[X]3+6E[X]E[X2]¡ 6E[X3]

We study the Wick powers f:Xn: gn2N when X is a Gaussian random variable
with mean 0. The Hermite polynomials are defined by the power series of the fol-
lowing analytical function

e
xt¡ 1

2
t2
=
X
n=0

1

Hn(x)
tn

n!
:

First few Hermite polynomials are

H0(x) = 1

H1(x) = x

H2(x) = x2¡ 1
H3(x) = x3¡ 3x

Lemma 4.5. The Hermite polynomials has following properties:

(1) Hn(x) is a polynomial of degree n with coefficient of xn equal to 1;

(2) Hn
0(x)=nHn¡1(x) for n> 1;

(3) Hn(x)= (¡1)ne
x2

2
dn

dxn
e
¡x2

2 .

Proof. Property (1) is clear from multiplying the power series of ext and e¡
1

2
t2. The

property (2) follows from the equation

@xe
xt¡ 1

2
t2
= te

xt¡ 1

2
t2

by comparing the coefficients of power series on both sides. For the property (3),
we observe that

dn

dxn
e
¡x2

2 =(¡1)n d
n

dtn
e
¡1

2
(x¡t)2jt=0

and

e
xt¡ 1

2
t2

= e
xt¡1

2
t2¡ 1

2
x2
e
x2

2

= e
x2

2 e
¡1

2
(x¡t)2

= e
x2

2

X
n=0

1
dn

dtn
e
¡1

2
(x¡t)2jt=0

tn

n!

thus the result follows by comparing the coefficients of power series on both sides. �
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Lemma 4.6. Suppose X�N (0; �2) where � > 0, then

:Xn: =�nHn

�
X
�

�
:

Proof. We check that the formula on the right hand side satisfy the definition of
Wick power. Clearly �0H0

¡X
�

�
=1. For the second condition, we have

@
@X

�n+1Hn+1

�
X
�

�
= �n

@

@
X

�

Hn+1

�
X
�

�
= (n+1)�nHn

�
X
�

�
:

For the third condition, since X�N (0; �2), then X

�
�N (0; 1), so we have

1 = E
h
e
it
X

�
+
1

2
t2
i

= E

"X
n=0

1

Hn

�
X
�

�
(it)n

n!

#

=
X
n=0

1

E

�
Hn

�
X
�

��
(it)n

n!

and then compare the coefficients on both sides. �

Remark 4.7. Notice that this lemma also works when � = 0, that is X = 0 also
surely. Since Hn(x) is a polynomial of degree n, the right hand side of the equation
is a polynomial function of two variables X and �, thus �= 0 does not make any
trouble.

Then under the assumption X�N (0; �2) for � > 0, we have the identity

e
X

�
t¡1

2
t2
=
X
n=0

1 � t
�

�n :Xn:
n!

and if we replace t

�
by t, equivalently we get

e
Xt¡1

2
�2t2

=
X
n=0

1

tn
:Xn:
n!

:

Note that this formula also works when �=0. A simple consequence of this formula
is following lemma.

Lemma 4.8. Suppose (X;Y )�N (0;�) is a Gaussian vector with covariance matrix
�, then we have

E[:Xn::Y m: ] = �nmn!E[XY ]n

50 Section 4



for any n;m2N.

Proof. Since we know that

e
Xt¡ 1

2
E[X2]t2

=
X
n=0

1

tn
:Xn:
n!

; e
Yr¡ 1

2
E[Y 2]r2

=
X
m=0

1

rm
:Y m:
m!

and since Xt+Yr is again a centered Gaussian random variable, we have

e
Xt¡ 1

2
E[X2]t2

e
Yr¡ 1

2
E[Y 2]r2

= e
(Xt+Yr)¡ 1

2
E[(Xt+Yr)2]

eE[XY ]tr

then

E
�
e
Xt¡ 1

2
E[X2]t2

e
Yr¡ 1

2
E[Y 2]r2

�
=E

�
e
(Xt+Yr)¡ 1

2
E[(Xt+Yr)2]

eE[XY ]tr
�
= eE[XY ]tr

thus

E
�
e
Xt¡1

2
E[X2]t2

e
Yr¡ 1

2
E[Y 2]r2

�
= E

"X
n=0

1 X
m=0

1

tn
:Xn:
n!

rm
:Y m:
m!

#

=
X
n=0

1 X
m=0

1
tnrm

n!m!
E[:Xn::Y m: ]

=
X
n=0

1
(tr)n

n!
E[XY ]n

hence the result follows by comparing the coefficients on both sides of the equa-
tion. �

Taking a special case of this lemma, if X =Y �N (0; 1), we have

E[:Xn::Xm: ] = �nmn!

for any n;m2N. In other words, we have

E[Hn(X)Hm(X)]= �nmn!

which is equivalent to say that the Hermite polynomials are orthogonal with respect
to the weighted Lebesgue measureZ

R

Hn(x)Hm(x)e
¡1

2
x2
dx= �nmn!:

Wick product can be generalized to several random variables, and many similar
properties can be proved. We only give a definition here without go into the prop-
erties, since we will not need that much.

Definition 4.9. Fix a probability space (
;F ;P) and random variables X1; : : :Xm,
such that E[jXljn]<1 for any n2N and 16 l6m. Define a sequence of random
variables f:X1

n1: : :Xm
nm: gn1; : : : ;nm2N, which are polynomial functions of X1; : : : Xm,

recursively by
(1) :X1

0: : :Xm
0 : =1;
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(2) @

@Xl
:X1

n1: : :Xl
nl: : :Xm

nm:=nl:X1
n1: : :Xl

nl¡1: : :Xm
nm: for all 16 l6m and nl> 0;

(3) E[:X1
n1: : :Xm

nm: ] = 0 for n1+ � � �++nm> 0

in the second equation, we use the formal derivative of formal power series, and
the equality is in the sense of the corresponding coefficients of formal power series
are the same.

4.3 Gaussian Hypercontractivity and Regularity of White
Noise

For Gaussian random variables, we have following estimates.

Theorem 4.10. (Gaussian Hypercontractivity) Assume X is a Gaussian
random variable on a probability space (
; F ; P), and E[X] = 0. Then for any
p> 2, there is a consant c(p), such that

E[jX jp]6 c(p)E[X2]p/2

Proof. We have

E[jX jp] = 1

(2��2)1/2

Z
R

jxjp e¡
x2

2�2dx

=2
1

(2��2)1/2

Z
0

1
j� 2y
p

jp e¡
(� 2y
p

)2

2�2 d� 2y
p

=
2
p+1

2 �p

(2�)1/2

Z
0

1
y
p+1

2
¡1
e¡ydy

=
2
p+1

2 �p

(2�)1/2
¡

�
p+1
2

�

=
2
p+1

2

(2�)1/2
¡

�
p+1
2

�
E[X2]p/2

where ¡ is the Gamma function. Thus the result follows. �

There are generalizations to Wick product of Gaussian variables in a Gaussian
Hilbert spaces, see theorem 3.50 in [30]. As an application, we compute the regularity
of white noise.

Corollary 4.11. Suppose � is a white noise on d dimensional torus Td, that is for
any x; y 2Rd, we have E [�(x)�(y)] = �(x¡ y), then � 2C¡

d

2
¡" for any "> 0.

Proof. Denote �=¡d

2
, for any p> 2, by Besov embedding we have

k�k
B1;1
�¡d

p

.k�kBp;p�
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thus

E

�
k�k

C
�¡d

p

p
�

. E[k�kBp;p�
p ]

= E

" X
j>¡1

1

2j�pj�j � jLpp
#

=
X
j>¡1

1

2j�p
Z
Td

E[j�j � jp]dx

.
X
j>¡1

1

2j�p
Z
Td

E[(�j �)2]
p/2dx

=
X
j>¡1

1

2j�p
Z
Td

E

�Z
Kj(x¡ y1)�(y1)dy1

Z
Kj(x¡ y2)�(y2)dy2

�
p/2

dx

=
X
j>¡1

1

2j�p
Z
Td

�Z
Kj(x¡ y1)Kj(x¡ y2)E[�(y1)�(y2)]dy1dy2

�
p/2

dx

=
X
j>¡1

1

2j�p
Z
Td

�Z
Kj(x¡ y1)Kj(x¡ y2)�(y1¡ y2)dy1dy2

�
p/2

dx

=
X
j>¡1

1

2j�pkKjkL2
p

Z
Td

dx

=
X
j>¡1

1

2j�p � 2¡jdp/2kK0kL2
p

Z
Td

dx

< +1

where we used the Gaussian hypercontractivity for Gaussian variables �j �. �

The case of white noise on Rd can be shown with a similar method, the only
difference is we need some kind of modified Besov space.
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5 Parabolic Anderson Model

In this chapter we will present a complete solution of parabolic Anderson model
as an application of the tools we have developed so far. The main references are
[23], [24] and [38].

5.1 The Model and Paracontrolled Distributions

The parabolic Anderson model is a stochastic partial differential equation on
[0; T )�T2

@tu=�u+ �u

where � is spatial white noise, that is E [�(x)�(x0)] = �(x ¡ x0). This equation
described the diffusion in a random potential.

The first thing to do is to find the regularity of each term. We know the regularity
of the spatial white noise �2C¡1¡, which can be seen by noting that it can be written
as tensor product of two one dimensional white noise, and one dimensional white
noise can be think of derivative of Brownian motion which has regularity exponent
1

2
¡ . In general the white noise in d dimension has regularity ¡d

2
¡ .

Then we can only expect the solution u to be in C1¡, since the heat operator
may improve the regularity of last term by 2. Observe that (1¡ )+ (¡1¡ )< 0, so
the term �u is not well defined. Thus we identified where the problem is, next we
discuss heuristically how to deal with the equation, in order to build up a solution
theory by fixed point argument.

Suppose we have a solution u2C�, where �2 (2/3;1) (2/3 comes from the need
for commutator estimate, we will see it later). Then the regularity of � is �¡ 2.
Define Z to be the solution of @tZ =�Z + �, which is given by

Z(t)=

Z
0

t

Pt¡s �ds

where Pt is the heat kernel. Then Z has regularity � according to Schauder estimate.
We use the paraproduct decomposition to get

(@t¡�)u= �� u+ � � u+ ��u

if we denote L= @t¡�, we have

u=L¡1(��u+ � �u+ ��u)=u�Z + [L¡1; u� ]�+L¡1(� �u+ ��u)

according to the paraproduct estimate, we know that (� � u)2 C2�¡2, suppose we
can show that (� � u)2C2�¡2, then the third term is in C2� by Schauder estimate,
one can also show that the form of the second term is also in C2� (see lemma 18 of
[24]). Thus we postulate the paracontrolled ansatz

u= u�Z + u#
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with u#2C2�, which means we also consider the solution with some extra structure
of being paracontrolled by Z. Having this at hand, we would like to ask what is the
equation for u#? Since

Lu=L(u�Z +u#)= u�LZ + [L; u� ]Z +Lu#

So

Lu# = �u¡u�LZ ¡ [L; u� ]Z
= ��u+ � �u+ ��u¡u� �¡ [L; u� ]Z
= � � (u�Z + u#)+ ��u¡ [L; u� ]Z
= u(Z � �)+C(u; Z; �)+ u# � �+ ��u¡ [L; u� ]Z

and

u#=

Z
0

t

Pt¡s (u(Z � �)+ ��u¡ [L; u� ]Z +C(u;Z; �)+u# � �)ds

Everything is well-defined (since �> 2

3
), except the term Z � �, but this term does

not involve unknowns, so that we can assume it is given at first hand. Construction
of this term uses probability theory.

Then we have an equivalent system of equations

u = u�Z + u#

u# =

Z
0

t

Pt¡s (u(Z � �)+ ��u¡ [L; u� ]Z +C(u;Z; �)+u# � �)ds

with input (u(0); �; Z ; Z � �)2 C�� C�¡2� C��C2�¡2, and we know that u 2 C�;
u#2 C2�. Now we can apply Picard iteration and Banach fixed point theorem to
this system of equation, on the space of paracontrolled disrtribution D� for some
suitable time interval [0; T ], to get a unique solution that continuously depends on
the initial data (u(0); �; Z ; Z � �). We will do this in the following sections.

5.2 Schauder Estimates

Before the discussion we introduce the space needed for the discussion. We
denote CT C� by the continuous functions from [0; T ) to C�, and CT

�0 C� be the C�

valued �0-Hölder continuous functions. We define LT
�=CTC�\CT

�/2L1 for �2 (0;
2), and we equip LT

� with the norm

k�kLT
�=max fk �kCTC �;k�k

CT
�/2

L1
g

We refine the definition of paracontrolled distribution for our convenience.

Definition 5.1. (Paracontrolled distribution) Suppose �2 (0; 1) and Z 2LT
�.

A distribution u2LT
� is called paracontrolled by Z, if there exists u02LT

� such that

u# := u¡u0�Z 2LT
2�
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the collection of distributions paracontrolled by Z is denoted by DT
�(Z), and to empha-

size this structure, we write (u; u0; u#)2DT
�(Z). The norm

k(u; u0; u#)kDT�(Z) := kukLT
�+ ku0kLT

�+ ku#kLT
2�

is well-defined. DT
�(Z) is a Banach space.

Before talking about the Schauder estimate for the paracontrolled distributions,
we first introduce the standard Schauder estimate.

Theorem 5.2. (Schauder Estimate) Let �2 (0; 2), let (Pt)t�0 be the semigroup
generated by the periodic Laplacian on Td. For f 2CTC�¡2, then the solution of

Lu= f ; u(0)=0;

is given by

u(t)=L¡1f(t)=

Z
0

t

Pt¡sf(s) d s

for any T > 0, moreover, we have the following estimates

kL¡1f kLT
�. (1+T )kf kCT C�¡2

and for any u2C�, we have

kt 7!PtukLT
�. kukC �

We will not prove this theorem, see lemma 11 of [24] and references therein.

Theorem 5.3. (Schauder Estimate for the Paracontrolled Distribution)
Let �2 (0; 1), � 2CTC�¡2 and LZ= � with Z(0)=0. Let u2LT

�; f ]2CTC2�¡2,
and u02C2�. Then (g; u; g¡u�Z)2DT

�(Z), where g solves

Lg= u� �+ f ]; g(0)=u0;

and we have

kgkDT�(Z). ku0k2�+(1+T ) (kukLT
� (1+ k�kCT C�¡2)+ kf ]kCT C2�¡2)

for all T > 0.
If furthermore �~; Z~ ; u~; f ]~ ; u~0; g~ satisfy the same assumptions as �; Z ; u; f ]; u0; g

respectively, and if M =max fkukLT
�; k�~kCT C�¡2; 1g, then

dDT�(Z)(g; g~). ku0¡ u~0k2�+

(1+T )M (ku¡u~kLT
�+ k�¡ �~kCT C�¡2+ kf ]¡ f~]kCT C2�¡2):

We will not prove this theorem, see theorem 7 of [24] and references therein.

5.3 Existence of Solutions and Renormalization
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We want to solve the system of equations

u = u�Z + u#

u# =

Z
0

t

Pt¡s (u(Z � �)+ ��u¡ [L; u� ]Z +C(u;Z; �)+u# � �)ds

with input (u(0); � ;Z ;Z � �)2C��C�¡2�C��C2�¡2, and we expect solutions satisfy
u2C�; u#2C2�.

We define the map �T :DT
�(Z)!DT

�(Z) by

�T

 
u

u#

!
=

0BB@ u�Z +u#Z
0

t

Pt¡s (u(Z � �)+ ��u¡ [L; u� ]Z +C(u; Z; �)+ u# � �)ds

1CCA
where we only write down the derivative part and remainder part of the paracon-

trolled distribution, then we need to solve the fixed point problem �T

 
u

u#

!
= 

u

u#

!
. Start from any element (u; u#)2DT

�(Z), we have

L�T(u)=L(u�Z)+u(Z � �)+ ��u¡ [L; u� ]Z+C(u;Z; �)+u# � �=u� �+ f#

where

f#= u(Z � �)+ ��u+C(u;Z; �)+ u# � � 2CTC2�¡2

together with �T(u)(0) = u0, then the Schauder estimate for the paracontrolled
distributions tells us that �T(u) is an element of DT

�(Z) with derivative u, and

k�T(u)kDT�(Z). ku0k2�+(1+T ) (kukLT
� (1+ k�kCT C�¡2)+ kf ]kCT C2�¡2)

Observe that since � is a spacial white noise, then k�kCT C�¡2=k�kC�¡2 is a constant.
The estimate of the term kf ]kCT C2�¡2 is too technical to produce here, see the
discussion below lemma 5.3 of [23], section 5.4 and theorem 8 of [24] and references
therein. The crucial fact is that one can take time T small enough, such that the
following inequality holds

k�T(u)kDT�(Z)6CkukDT�(Z)
for some constant C<1 which depends only on the data set (u(0); � ;Z ;Z � �), hence
one can run the Banach fixed point theorem to get the solution of the system of
equations. Moreover, one can prove that this solution depends on the data set (u(0);
� ;Z ;Z � �) in a locally Lipschitz continuous way, and this implies the uniqueness of
the solution.

Theorem 5.4. Suppose � 2 (2/3; 1), then for any given set of data (u0; � ; Z ;
Z � �) 2 C�� C�¡2� C�� C2�¡2, there is a finite time T > 0, such that a unique
solution (u�Z + u#; u; u#)2DT

�(Z) of the system of equations

u = u�Z + u#

u# =

Z
0

t

Pt¡s (u(Z � �)+ ��u¡ [L; u� ]Z +C(u;Z; �)+u# � �)ds
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with initial condition u(0) = u#(0) = u0 exists. Moreover, the solution depends on
(u0; �; Z ; Z � �)2C��C�¡2�C��C2�¡2 in a locally Lipschitz continuous way.

Finally we say a few words on renormalization. We should notice that here Z � �
is just a notation, not a legal computation, and we thought it as an independent
element from Z and �. To construct this term, one may consider a sequence of
smooth approximations �" and Z" (convolution with some approximation of iden-
tity). Instead of the convergence of Z" � �", one find there is a sequence of numbers
c"(t) which tends to infinity as "! 0, such that

Z"(t) � �"¡ c"(t)

converges in a suitable norm (expectation of some Besov norm). For each " we can
solve previous system of equation, then take limit "!0 and use the continuity with
respect to the input data. So we actually solved the renormalized PAM

@tu=�u+ �u¡1u

note that for each sample point in the probability space, the time interval for the
solution may be different, so the renormalized PAM exists within a random time
interval.
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6 Axiomatic Quantum Field Theory

In this chapter, we introduce the subject called axiomatic quantum field theory,
which try to extract basic properties that a relativistic quantum field theory should
satisfy. This is given by the Wightman axioms, and we show that one can use
correlation functions to reconstruct Wightman quantum fields. Then we introduce
how this is linked to the Schwinger functions in Euclidean quantum field theory,
and the axioms given by Osterwalder-Schrader.

6.1 Quantum Fields as Operator-Valued Distributions

In classical physics, a field is a function of space-time, which means an assignment
of quantities of particular type (for example scalar, vector, tensor or spinor, etc.) to
each point of space time. Such a concept allow us to know the observational value
of fields at each point with an infinite accuracy.

In quantum theory, an observable is a self-adjoint operator on some separable
Hilbert space, here we adopt von Neumann's separable Hilbert space formulation
of quantum mechanics. It seems natural to think of a quantum field as a operator-
valued function of space-time, that is to each point of space-time, we assign a self-
adjoint operator on some fixed separable Hilbert space, which represents an observ-
able of some field components of a particular type. But this is not correct.

To see this from a mathematical viewpoint, let us see the case of free scalar Boson
field, the corresponding Hilbert space is the Fock space, namely

C�L2(R3)� (L2(R3)
L2(R3))� : : :=H0�H1�H2� � � �

where Hn=
nL2(R3) and a typical vector has form (	0;	1;	2; � � �) with 	02C;
	12L2(R3);	22L2(R3)
L2(R3); : : :represents vacuum wave function, one particle
wave function, two particle wave function,etc. The scalar product is given by

h�;	i=�� 0	0+

Z
R3

��1(x)	1(x) d3x+

Z
R3

Z
R3

�� 2(x1; x2)	2(x1; x2)d3x1d3x2+ � � �

if we define annihilation operator  (x) at each point of space by

( (x)	)n(x1; � � �; xn)= n+1
p

	n+1(x; x1; � � �; xn)

then define and compute the creation operator  �(x) at the same point as the adjoint
operator of annihilation operator, we will find that the domain of the adjoint only
contains 0 vector, that is the field is too singular such that the operator at any point
can not act on any nonzero vector in the Hilbert space (see the arguments in [48],
or chapter 12 of the book [9]). Moreover, Wightman showed that in general, one can
not define the quantum fields at any space time point [47].

Axiomatic Quantum Field Theory 59



Theorem 6.1. Suppose we have a quantum theory with a separable Hilbert space H,
and a strong continuous unitary representation of space-time translation R1;33a 7!
U(a)2U(H) such that the spectrum of the energy momentum operator is contained
in the closed forward light cone. Suppose the quantum theory has a unique vacuum
vector 	0, which is invariant under the action of space-time translation, that is

U(a)	0=	0 for all a2R1;3

Then a map B from a bounded open set O�R1;3 to Von Neumann algebra of bounded
operators on H, with the following properties

U(a)B(x)U(¡a)=B(x+ a)

[B(x); B(y)(�)] = 0

where a is small enough and (x¡ y) is a space-like vector. Then B has constant
value equal to a constant multiple of identity.

See theorem 3.1 in [47], where the possibility of generalizing to unbounded oper-
ators is also discussed.

From physical viewpoint, this is a consequence of uncertainty principle for fields
as given by Bohr and Rosenfeld [11]. From Bohr and Rosenfeld's analysis on measur-
ability of electromagnetic fields in the theory of quantum electrodynamics (see [11]
and [12], the English translation can be found in [46]), only the quantities formally
corresponds to the average of its classical analog over finite space-time regions are
measurable, and hence are observables, namely things like

1
jO j

Z
O

F��(x) d4x

where O is an open set in R1;3, jO j represents its volume, and F�� is the electromag-
netic tensor.

It was Heisenberg who first used smeared fields as fundamental object, since
by using smeared fields, he could avoid the infinite fluctuation in the computation
of Einstein's fluctuation formula of blackbody radiation (see [26] and discussions
in [48]). He also argued that in general, to measure the field in a sharply defined
region, which is a mathematical idealization, one has to use an infinite amount of
energy, thus one can only measure the smeared field. The case of electromagnetic
field is special in the analysis of Bohr and Rosenfeld [11]. But there is still a question
that what differentiability and regularity conditions one should assume in order to
define the smeared field. Heisenberg used second differentiable function to define
the smeared field, but the free electromagnetic field need not be smeared due to the
analysis of Bohr and Rosenfeld.

Inspired by the Laurent Schwartz's theory of distribution, Wightman and Gårding
[49] first try to use the Schwartz function space as the test function to define the
smeared field, which is the following definition. In this chapter, we use the com-
plex-valued Schwartz function space, namely the real and imaginary parts are both
Schwartz function, this space is also denoted by S.
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Definition 6.2. (Operator-valued distribution) SupposeH is a Hilbert space, an
operator-valued distribution is a complex linear map ' from complex-valued Schwartz
function space S to the set of operators (bounded or unbounded) on Hilbert space
H, such that all the operators '(f); 8f 2S have a common dense domain D, and
the map

S!C; f 7! h�; '(f)	i

is continuous, where �2H;	2D are fixed vectors.

We should remark that there are different choice of test function space, not all
quantum field theories can be described by just using Schwartz function space as
the test function (see the discussion on page 804 [43], and [29]), more restrictive test
functions are needed for more singular behavior of vacuum expectations, and there
is no single choice for all the quantum field theory models. We also remark that
the requirement of the map ' to be weak continuous and together with choosing
Schwartz function as test functions in the Wightman axioms will lead to only renor-
malizable models in quantum field theory, see chapter 15 of [9].

6.2 Wightman Axioms of Relativistic Quantum Fields

Since we need to discuss the quantum theory of fields in Minkowski space-time,
we first set up the notations and tools in special relativity. For convenience, we
assume the speed of light c is 1. Denote R1;d the 1 + d¡ dimensional Minkowski
space, with the scalar product of two typical vectors xi=(xi

�)=(xi
0; xi

1;:::; xi
d)2R1;d;

i=1; 2 and �=0; 1; : : : ; d, given by

hx1; x2i= x10x20¡x11x21¡ � � � ¡ x1dx2d= g��x1
�x2

�

where g00=1; g11= : : := gdd=¡1 and g��=0 if �=/ �. A vector x2R1;d is called8<: time-like, if hx; xi> 0
space-like, if hx; xi< 0
light-like, if hx; xi=0

The set of all time-like vectors whose first component is positive is an open set,
which is called the forward light cone, denoted by V+, this is the causal future of the
origin. Clearly the closure V+ is the set of all time-like and light-like vectors whose
first component is non-negative.

Consider d= 3, which is the case of our physical world. The set of all linear
transformations � which preserves the Minkowski metric

h� x;� yi= hx; yi, g������� �=g��
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forms a Lie group, called the extended Lorentz group, denoted by O(1; 3). Two
identities

det(�)2=1; (�0 0)2¡ (�1 0)2¡ (�2 0)2¡ (�3 0)2=1

can be obtained directly from the definition. Thus, the Lorentz group has four
connected components, classified by four different range of conditions det(�)=�1
and j�0 0j> 1 (see page 10 of [44]). The connected component of the identity is a
subgroup, called the restricted Lorentz group, denoted by SO+(1;3), which preserves
the orientation of the whole Minkowski space (det(�) = 1) and direction of time
(�0 0>1). The other three components can be obtained by multiplying

T =

266664
¡1

1
1
1

377775; P =

266664
1
¡1

¡1
¡1

377775; PT =
266664
¡1

¡1
¡1

¡1

377775
which are time reversal operator, space inversion operator and their product.

The restricted Lorentz group is a six dimensional group, six independent sym-
metries are given by the rotation fRx

�; Ry
� ; Rz

�g about three spacial axis266664
1
1

cos � ¡sin �
sin � cos �

377775;
266664
1

cos � sin �
1

¡sin � cos �

377775;
266664
1

cos � ¡sin �
sin � cos �

1

377775
and the boosts fMx

�;My
�;Mz

�g about three axis266664
cosh� ¡sinh�
¡sinh� cosh�

1
1

377775;
266664

cosh� ¡sinh�
1

¡sinh� cosh�
1

377775;
266664

cosh� ¡sinh�
1
1

¡sinh� cosh�

377775:
Together with the translation symmetry given by vectors in R1;3, we can define

the Poincaré group P to be the set

f(a;�)j�2O(1; 3); a2R1;3g

with group law

(a1;�1)(a2;�2)= (a1+�1a2;�1�2):

Clearly an element (a;�) of Poincaré group P should act on any x2R1;3 by

(a;�)v=�x+ a:

The Poincaré group also has four connected components, we call the connected
component of the identity is called the restricted Poincaré group, denoted by R1;3o
SO+(1; 3) according to its construction.
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The Lie algebra of the Poincaré group is called the Poincaré algebra, which is
generated by generators of translations in four space-time directions fp0; p1; p2; p3g
and generators of the rotation fL1; L2; L3g about three spacial axis266664

0 0 0 0
0 0 0 0
0 0 0 ¡1
0 0 1 0

377775;
266664
0 0 0 0
0 0 0 1
0 0 0 0
0 ¡1 0 0

377775;
266664
0 0 0 0
0 0 ¡1 0
0 1 0 0
0 0 0 0

377775
and the boosts fM1;M2;M3g about three axis266664

0 ¡1 0 0
¡1 0 0 0
0 0 0 0
0 0 0 0

377775;
266664

0 0 ¡1 0
0 0 0 0
¡1 0 0 0
0 0 0 0

377775;
266664

0 0 0 ¡1
0 0 0 0
0 0 0 0
¡1 0 0 0

377775:

The restricted Lorentz group SO+(1; 3) has fundamental group Z2, its covering
group is SL(2;C), which is called the inhomogeneous Lorentz group. This is given
by following construction, there is an isomorphism of vector space between R1;3 and
the set of 2-by-2 Hermitian matrix, given by

(x0; x1; x2; x3)$

"
x0+ x3 x1¡ ix2
x1+ ix2 x0¡x3

#

then clearly for any A2SL(2;C), the matrix

A

"
x0+x3 x1¡ ix2
x1+ ix2 x0¡x3

#
A�

is still a Hermitian matrix, which induce a linear representation of SL(2;C) on R1;3.
Moreover, we see that

det
�
A

�
t+ x y¡ iz
x+ iy t¡x

�
A�
�
=det

�
t+x y¡ iz
y+ iz t¡x

�
=t2¡x2¡ y2¡ z2

which means A acts as a Lorentz transformation. Since the group SL(2;C) is simply
connected, this induce a group homomorphism from SL(2;C) to SO+(1; 3) (for
surjectivity, see page 134 of [9]). Two elements A;B 2SL(2;C) has the same image
if and only if B=¡A.

The double cover of the restricted Poincaré group P is then given by the

f(a;A)jA2SL(2;C); a2R1;3g
with group law

(a1; A1)(a2; A2)= (a1+A1a2; A1A2)
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where the action on the Minkowski space vector is given by the representation
described above, this group is denoted by R1;3oSL(2;C) according to its construc-
tion.

In the following discussion of quantum mechanics, we use the language of Hilbert
space in the spirit of von Neumann, where states are represented by unit rays f	g in
a Hilbert space H, that is 	 and c	 represent the same state, for all cc�=1. It turns
out that we can not always construct the superposition of two states in the quantum
theory, for example the charge is conserved in nature, we don't see a state of a system
which has nonzero probabilities to be observed with different charge number. Such
a property of non-existence of certain superpositions is called a superselection rule,
the maximal subspace of Hilbert space where superposition principle holds is called
a superselection sector. See chapter 1 of [44] for more discussion on this issue. In
the following discussion, we restrict ourself in a superselection sector.

A symmetry is a transformation of viewpoint which does not produce any obser-
vational physical effect, such transformations are divided into two classes, ones which
change the mathematical labelings and descriptions are called passive, and ones
which do change the status of the experimental apparatus are called active. Lorentz
transformations are both active and passive, gauge symmetries are only passive, not
active. In quantum mechanics, the only observational quantity is the probability of
a prepared normalized state 	 observed in given normalized state �, which is given
by Born's rule jh	;�ij2. Thus a symmetry U any normalized state 	 into a new
state U	 in the same Hilbert space, such that

jhU	; U�ij2= jh	;�ij2

clearly this condition is independent of the representatives chosen in each unit ray.
Wigner showed such symmetries are either unitary or anti-unitary operators,

see [51] and [8]. A transformation U is called anti-unitary if the following condition
holds:

U(a	+ b�)= a�U(	)+ b�U(�) for8a; b2C;	;�2H;

hU 	; U �i= h�;	i for8	;�2H:

Clearly the product of two anti-unitary operators is a unitary operator.
In special relativity, we require the physical laws are invariant under Poincaré

transformations. It turns out that in particle physics, nature is not invariant under
time reversal, parity and their product, only restricted Lorentz transformations are
symmetries of nature. Thus each element �2R1;3oSO+(1; 3) induces a symmetry
U(�). Since every element in the vicinity of identity of Lie group R1;3oSO+(1;3) is
a square of some other element, and any element in R1;3oSO+(1;3) is a product of
finite number of elements in the vicinity of identity, the symmetry U(�) is actually
a unitary operator. Clearly

U(�1)U(�2)=U(�1�2)

on the space of unit rays, which is equivalent to say

U(�1)U(�2)= e
if(�1;�2)U(�1�2) (6.1)
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where f : (R1;3o SO+(1; 3))� (R1;3o SO+(1; 3))!R is a function. A map from
R1;3o SO+(1; 3) to the group U(H) of unitary operators on a Hilbert space is a
called a projective representation if the identity element is mapped to the identity
operator with a phase factor and 6.1 holds. The name comes from the fact that if
we consider the quotient group U(H)/fcI jc2C; jcj= 1g, then the composition of
the projective representation and the quotient map

R1;3oSO+(1; 3)!U(H)!U(H)/fcI jc2C; jcj=1g

is then a representation of the Poincaré group. Cleary if we multiply a projective rep-
resentation by a phase factor which depends on the elements in the Poincaré group
is again a projective representation, and they correspond to same representation into
U(H)/fcI jc2C; jcj= 1g. Moreover there is a one-to-one correspondence between
projective representations into U(H) up to a phase function and representations
into U(H)/fcI jc2C; jcj=1g. We have the following theorem by Bargmann [7] and
Wigner [50].

Theorem 6.3. (Wigner 1939, Bargmann 1954) Any projective representation
of restricted Poincaré group R1;3oSO+(1;3) to the group U(H) of unitary operators
on a Hilbert space is induced by a unitary representation of R1;3oSL(2;C), this is
given by sending a pre-image of an element in R1;3oSO+(1; 3) under double cover,
to the equivalence class of the unitary operator of representation of this element.

Thus one has to study the infinite dimensional strong continuous unitary repre-
sentation of the group R1;3oSL(2;C). This was done by Wigner, see [50] and [6].
The original motivation of Wigner's classification was to under stand the one-particle
state in quantum theory. Wigner though that for any quantum field theory, with or
without interaction, there must exist a subspace which describe the state where there
is only one single particle, and this subspace should look the same for each observer,
that is invariant under the action of Poincaré group. Wigner's idea was that the
irreducible representations of Poincaré group can be used to classify the types of the
particles. The representation of R1;3oSL(2;C) induces a representation of Poincaré
algebra, denote the image of each generator, one get the energy-momentum operator
fP �g and the generator of rotation and boosts fJ��=¡J ��g such that e¡ia�P

�

;

ei���J
��

are corresponding unitary operators. It can be shown that the following two
operators commute with all elements in the image of representation of Poincaré
algebra

P�P �=(P 0)2¡ (P 1)2¡ (P 2)2¡ (P 3)2

W�W �

where W�=
1

2
�����M�� P � called the Pauli-Lubanski operator, ����� is the Levi-

Civita symbol. Since the representation is irreducible, then we know that they are
constant multiple of identity operator. Moreover, these constants can be used to
classify the representation

P�P �=m2Id;W�W �=m2s(s+1)
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wherem is interpreted to be the mass, and whenm is positive, s takes values in non-
negative half integers, is interpreted as the spin of the particle. We only consider
the case of m>0. In this case, Wigner showed there is a one-to-one correspondence
between finite dimensional irreducible representationsD(s;0) of SL(2;C) and massive
(m=/ 0) irreducible continuous unitary representation of R1;3o SL(2;C). We first
briefly talk about the finite dimensional irreducible representation of SL(2;C)（in
complex vector space), more details can be found in [13].

The study of the finite dimensional irreducible representation of the spin group
can be reduced to the study of its Lie algebra, for convenience we can study the
complexification of this Lie algebra. We redefine the generators in the previous
discussion fL1; L2; L3; M1; M2; M3g by fLk= iLk; Mk= iMk; k = 1; 2; 3g, then the
commutator relations of these generators are given by

[Li; Lj] = i �ijkLk; [Li;Mj] = i �ijkMk; [Mi;Mj] =¡i �ijkLk

where �ijk is the Levi-Civita symbol. Define J�
(�)=

1

2
(L�� iM�), then one can show

that

[Ji
(+); Jj

(+)] = i �ijkJk
(+); [Ji

(¡); Jj
(¡)] = i �ijkJk

(¡); [Ji
(+); Jj

(¡)] = 0

thus the Lie algebra can be decomposed into a direct sum of two copies of rotation
Lie algebra. One can show that the complete list of inequivalent irreducible repre-
sentation of Lorentz group can be labeled by two half integers D(s+;s¡) where s�=0;
1

2
; 1;

3

2
; : : : with property [D(s+;s¡)]� and D(s¡;s+) are equivalent representations.

As proved by Wigner, for m>0 and a half integer s, the unique irreducible con-
tinuous unitary representation ofR1;3oSL(2;C) can be constructed in the following
way. Consider in momentum 4-space the mass shell ¡m

+ :=fp2R1;3j p2=m2; x0> 0g
and the Lorentz invariant measure d
m(p) =

dp1dp2dp3

m2+ p1
2+ p2

2+ p3
2

q on it. Consider the

space
L2s+1

L2(¡m
+) of functions the form 	(p; �) where p2¡m+ and �=¡s; : : : ; s,

with inner product

(�;	)=
X
�=¡s

s Z
¡m
+
�(p; �)	(p; �)d
m(p)

and the action of (a;A)2R1;3oSL(2;C) given by

((a;A)	)(p; �)= e¡ia�p
X
� 0

D�� 0
(s) (R(p;A))	(A¡1p; � 0)

where R(p;A)=W (A¡1p;A)=L(p)¡1AL(A¡1p)2SU(2), which is the little group of
vector (m; 0; 0; 0), L(p) is the Lorentz transformation satisfies p=L(p)(m; 0; 0; 0),
and D(s) is an irreducible representation of SU(2), see chapter 2 of [45]. Under
the Mackey's theory of induced representation, see [42], this representation can be
extended to the representation

((a;A)	)(p; �)=
X
� 0

e¡ia�pD�� 0
(s) (A)	(A¡1 p; � 0)
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where D� 0�
(s) is the irreducible representation equivalent to D(s;0), as an extension of

irreducible representation of SU(2). The covariance in the Wightman's axiom is
motivated by this transformation law.

Now we are in the position to introduce the Wightman axioms for the relativistic
quantum fields.

1. Space of states
- States are represented as unit rays in a separable complex Hilbert space H.
- There is a strong continuous unitary representation of the group R1;3oSL(2;

C).
- (uniqueness of vacuum) There is a unique unit ray f
g (interpreted as

vacuum) such that

U(a;A)
=


for any (a;A)2R1;3oSL(2;C).
- (spectrum condition) The generators of space-time translations (P 0; P 1; P 2;

P 3), interpreted as the energy-momentum operator, has spectrum in closed forward
light cone V+.

2. Observables and covariance
- A set of operator valued distributions f'

n
(k)jk; n2Ng, where k labels the type

of the field which can be at most countable and n labels the components of the field
which can only take finite number of values, and a dense subspace D where all the
operators '

n
(k)(f) and '

n
(k)�(f)= '

n
(k)(f�)� are defined, for all n2N and f 2S(R4).

- The vacuum 
 is contained in D.
- The domain D is invariant under the action of U(A; a), '

n
(k)(f) and '

n
(k)�(f),

for all (a;A)2R1;3oSL(2;C), n2N and f 2S(R4).
- The covariant transformation of fields operator under the action of (a; A) is

given by

U(a;A)'
n
(k)(�)(f)U(a;A)¡1=

X
Dnm
(k)(A¡1)'

m
(k)(�)((a;A)f)

where Dnm
(k) (A) are matrices of a finite dimensional irreducible representation of the

group SL(2;C) with '
n
(k) as its components, and (a; A)f = f(A¡1 (x¡ a)). If the

representation D(A) is a representation of group SO+(1;3), then the fields are called
a tensor field, otherwise the fields are called spinor fields. This transformation law
is linear in the test function.

- The vacuum 
 is a cyclic vector, which means the linear span D0 of the set
f'i1

(k1)(�)(f1) : : : 'im
(km)(�)(fm) 
jm2N; i1; � � �; im2N; f1; : : : ; fm2S(R4)g is dense.

3. Locality or Microcausality
- For any two test functions f ; g 2R4 whose supports consists only space-like

separated points, the operators '
n
(k)(�)(f) and '

m
(k 0)(�)(g) satisfies

'
n
(k)(�)(f)'

m
(k 0)(�)(g)¡�(k; k 0)'

m
(k 0)(�)(g)'

n
(k)(�)(f)= 0

where �(k; k 0) = 1 if one of k and k 0 is representation with integer spin, and �(k;
k 0)=¡1 if both k and k 0 are representation of odd spin.
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We say that a field theory is a Hermitian scalar boson field, if real test functions
are mapped to the symmetric operators, the representation of the Lorentz group is
taken to be the trivial representation, and the sign in the microcausality is taken to
be 1. We make a few comments on these axioms.

Remark 6.4.

1. The original formulation of locality in [44], the number �(k;k 0) is not assumed
to be a constant depends only on the type of the fields, but afterwards, they proved
the famous spin-statistics theorem which says one has to choose the sign for compo-
nents of fields in a irreducible representation in the way we assumed, and for different
types of fields, one can do the Klein transformation to make the sign agree with our
choice, so there is no loss of generality. See page 328 of [10] for more discussion on
this issue.

2. The dense domain D in the assumption of observables, is a technical assump-
tion. But for the symmetric operators defined on a dense domain, it is a well-known
fact that there may not be a unique self-adjoint extension. Thus this axiom may
produce difficulties when constructing examples of Wightman fields.

3. It is clear that we can formulate the axioms for any space dimension d,
then one has to study the representation theory of the group SO+(1; d), in order
to formulate the correct transformation laws and commutator relations. For most
literature on the subject of axiomatic field theories, people usually treat the case of
single hermitian scalar field, which avoids these difficulties.

4. For the gauge theory, this set of axioms has to be modified. For the free
electro-magnetic field, there is a negative result by Ferrari, Picasso and Strocchi [18],
which says the covariant theory for the four-vector potential as operator-valued dis-
tributions, whose curl is also covariant, interpreted as the electromagnetic field, and
and satisfies the classical free Maxwell equations, does not exists. One can not just
consider the electromagnetic tensor as covariant observables as in classical electro-
dynamics, where the four potential is regarded as a mathematical trick. In quantum
theory, the four potential has physical effect, for example the famous Aharonov-
Bohm effect [2], where exp (ie

H
C
A(x)dx) is an observable, but this includes less

information of the gauge field A(x). For an analogue in the case of non-abelian
gauge theory, see Yang and Wu [52]. These effects has been observed in experiments.
Glimm and Lee proposed a possible system of axioms for the quantum gauge theory,
see [22].

5. There is another approach called rigged Hilbert space approach to quantum
theory different from the Hilbert space theory by von Neumann. The motivation of
this approach is to make the Dirac's formalism rigorous, and the crucial feature is
one can have non-normalizable eigenstate. For this approach to quantum mechanics,
see [40]. Bogoliubov and his collaborators modified the Wightman axiom into a
system using this rigged Hilbert space approach in [9], but they did not use it in
[10]. Prigogine and Antoniou argued that this is the suitable frame work to describe
the irreversible system in quantum theory [3].

68 Section 6



6. We assumed that the Hilbert space of states are separable, but the construc-
tions in physics usually result in a non-separable Hilbert space, for example if you
take tensor product an infinite number of Hilbert space, then you will get a non-
separable Hilbert space, but it can be shown that only a separable subspace is
meaningful to represents the physical states and define the operators.

The square of the energy-momentum operator

(P 0)2¡ (P 1)2¡ (P 2)2¡ (P 3)2

is called the mass operator. A quantum field theory is said to has a mass gap, if
there is a positive number �, such that there is no eigenvalue between 0 and � in
the spectrum of this operator.

The correlation of Wightman fields, given by

Wm1; � � �;mn

k1
(�)
; � � �;kn

(�)
(f1; � � �; fn) := h	0; 'm1

(k1)(�)(f1) � � � 'mn

(kn)(�)(fn)	0i

for any f1; � � �; fn2 S(R4) is clearly a continuous multilinear functional, and thus
by nuclear theorem, this defines a tempered distribution on R4n. The collectionn
Wm1; � � �;mn

k1
(�)
; � � �;kn

(�)o
are called the Wightman distributions.

Proposition 6.5. (Hermiticity) We have for all test functions

Wm1; � � �;mn

k1
(�)
; � � �;kn

(�)
(f1; � � �; fn)=Wmn; � � �;m1

kn
¡(�)

; � � �;k1
¡(�)

(fn; � � �; f1)

where the notation ¡(�) means if we have index ki, then we take ki
¡(�)= ki

�, if we
have ki�, we then take ki

¡(�)= ki.

Proof. Clearly we have

Wm1; � � �;mn

k1
(�)
; � � �;kn

(�)
(f1; � � �; fn)

= h	0; 'm1

(k1)(�)(f1)� � � 'mn

(kn)(�)(fn)	0i
= h'mn

(kn)(¡�)(fn)� � �'m1

(k1)(¡�)(f1)	0;	0i

= h	0; 'm1

(k1)(¡�)(f1)� � �'mn

(kn)(¡�)(fn)	0i

= Wmn; � � �;m1

kn
¡(�)

; � � �;k1
¡(�)

(fn; � � �; fa)

which gives the result. �

Proposition 6.6. (Positivity) For any finite sequence of test functionsn
fm1; � � �;mi

k1
(�)
; � � �;ki

(�)������fm1; � � �;mi

k1
(�)
; � � �;ki

(�)
2S(R4i)

o
, we have

X
i;j

X
k1
0(�); � � �;kj0(�)
m1
0 ; � � �;mj

0

X
k1
(�)
; � � �;ki

(�)

m1; � � �;mi

Wmj
0 ; � � �;m1

0 ;m1; � � �;mi

kj
0¡(�); � � �;k10

¡(�);k1
(�)
; � � �;ki

(�)�
f�m1

0 ; � � �;mj
0

k1
0(�); � � �;kj0(�)fm1; � � �;mi

k1
(�)
; � � �;ki

(�)�
> 0
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where f�m1
0 ; � � �;mj

0
k1
0(�); � � �;kj0(�) is the function fm1

0 ; � � �;mj
0

k1
0(�); � � �;kj0(�)(xj ; xj¡1; : : : ; x1).

Proof. If all test function fm1; � � �;mi

k1
(�)
; � � �;ki

(�)
as the form fm1

k1
(�)
� � �fmi

ki
(�)
.This is just from the

fact that the norm of the vectorX
i

X
k1
(�)
; � � �;ki

(�)

m1; � � �;mi

'm1

(k1)(�)(f1) � � � 'mi

(ki)(�)(fi)	0

is non-negative. And note that any test function fm1; � � �;mi

k1
(�)
; � � �;ki

(�)
can be approximated

by a sequence of the form X
l

fm1;l
k1
(�)
� � �fmi;l

ki
(�)

where the convergence is in the space if Schwartz function. The statement is clearly
true for such elements in the approximating sequence. �

Proposition 6.7. (Covariance) We haveX
n1; : : : ;nl

Dm1n1
(k1) (A¡1): : :Dmlnl

(kl) (A¡1)Wn1; � � �;nl
k1
(�)
; � � �;kl

(�)
((a;A)f1; � � �; (a;A)fl)

=Wm1; � � �;ml

k1
(�)
; � � �;kl

(�)
(f1; � � �; fl)

for any (a;A)2R1;3oSL(2;C), l; k1; : : : ; kl2N and 06mi6 2s(ki)+1; 16 i6 l.

Proof. We use covariance property in the axioms of Wightman fields

Wm1; � � �;ml

k1
(�)
; � � �;kl

(�)
(f1; � � �; fl)

= h	0; 'm1

(k1)(�)(f1)� � � 'ml

(kl)(�)(fl)	0i
= hU(a;A)¡1	0; 'm1

(k1)(�)(f1)� � � 'ml

(kl)(�)(fl)U(a;A)
¡1	0i

= h	0; U(a;A)'m1

(k1)(�)(f1)U(a;A)
¡1U(a;A)� � �U(a;A) 'ml

(kl)(�)(fl)U(a;A)
¡1	0i

=

*
	0;
X
n1

Dm1n1
(k1) (A¡1)'n1

(k1)(�)((a;A)f1)� � �
X
nl

Dmlnl
(kl) (A¡1)'ml

(kl)(�)((a;A)fl)	0

+
=

X
n1; : : : ;nl

Dm1n1
(k1) (A¡1): : :Dmlnl

(kl) (A¡1)h	0; 'n1
(k1)(�)((a;A)f1)� � �'ml

(kl)(�)((a;A)fl)	0i

=
X

n1; : : : ;nl

Dm1n1
(k1) (A¡1): : :Dmlnl

(kl) (A¡1)Wn1; � � �;nl
k1
(�)
; � � �;kl

(�)
((a;A)f1; � � �; (a;A)fl)

which gives the result. �

70 Section 6



Proposition 6.8. (Locality or Microcausality) If the supports of test functions
fl; fl+1 consist only space like points, then

Wm1; � � �;ml;ml+1; : : : ;mn

k1
(�)
; � � �;kl

(�)
;kl+1
(�)

; : : : ;kn
(�)

(f1; � � �; fl; fl+1; : : : ; fn)

=(¡1)�(kl;kl+1)Wm1; � � �;ml+1;ml; : : : ;mn

k1
(�)
; � � �;kl+1

(�)
;kl
(�)
; : : : ;kn

(�)

(f1; � � �; fl+1; fl; : : : ; fn)

for all possible indices.

Proof. Using locality in the axioms of Wightman fields

Wm1; � � �;ml;ml+1; : : : ;mn

k1
(�)
; � � �;kl

(�)
;kl+1
(�)

; : : : ;kn
(�)

(f1; � � �; fl; fl+1; : : : ; fn)

= h	0; 'm1

(k1)(�)(f1)� � �'ml

(kl)(�)(fl)'ml+1

(kl+1)(�)(fl+1) � � �'ml

(kl)(�)(fl)	0i
= �(k; k 0)h	0; 'm1

(k1)(�)(f1)� � �'ml+1

(kl+1)(�)(fl+1)'ml

(kl)(�)(fl) � � �'ml

(kl)(�)(fl)	0i

= (¡1)�(kl;kl+1)Wm1; � � �;ml+1;ml; : : : ;mn

k1
(�)
; � � �;kl+1

(�)
;kl
(�)
; : : : ;kn

(�)

(f1; � � �; fl+1; fl; : : : ; fn)

which gives the result. �

Proposition 6.9. (Spectrum Property) Under the change of variables

�1=x1¡ x2; : : : ; �n¡1=xn¡1¡xn; �n= xn

where x1; : : : ; xn2R4, each tempered distribution Wm1; � � �;mn

k1
(�)
; � � �;kn

(�)
depends only on �1; : : : ;

�n¡1, that is

@Wm1; � � �;mn

k1
(�)
; � � �;kn

(�)

@�n
=0

then there is a tempered distribution Mm1; � � �;mn

k1
(�)
; � � �;kn

(�)
2S 0(R4(n¡1)), such that

Wm1; � � �;mn

k1
(�)
; � � �;kn

(�)
=Mm1; � � �;mn

k1
(�)
; � � �;kn

(�)

 1

where 1 is a constant function 1 on R4. Moreover, the Fourier transformM~m1; � � �;mn

k1
(�)
; � � �;kn

(�)

of the tempered distribution Mm1; � � �;mn

k1
(�)
; � � �;kn

(�)
is supported in the (n¡1)¡ fold product of

closed forward light cone V+� � � � �V+.

Proof. Since the Wightman distributions are translation invariant, due to the trans-
lation invariance property of the Wightman fields, the first statement is clear. For
the second statement about the support, we first show that for all 	;�2H, we haveZ

R4

eip�a dah	; U(a; 1)�i=0

for p2/ V+. To show this, first we observe that this identity is continuous about two
vectors 	;� 2H, then we only need to show this in the dense domain where the
unitary translation can be written as

U(a; 1)= e¡ia�P
�
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for where fP �g is the energy-momentum operator. Then due to spectrum theoremZ
R4

eip�a dah	; U(a; 1)�i

=

Z
R4

eip�a dah	; e¡ia�P �

�i

=

Z
R4

eip�a dah	;
Z
V+

e¡ia�p~
�

dE(p~)�i

=

Z
V+

Z
R4

eia�(p
�¡p~�)dadh	; E(p~)�i

= 0

since we have assumed the spectrum of energy-momentum operator is in V+ and
p2/ V+.

To showM~m1; � � �;mn

k1
(�)
; � � �;kn

(�)
has support inside V+�����V+, first observe that for p2/ V+,

we have

0=

Z
R4

eip�a dah	0; 'm1

(k1)(�)(f1) � � �'ml

(kl)(�)(fl)U(¡a; 1)'ml+1
(kl+1)(�)(fl+1)� � � 'mn

(kn)(�)(fn)	0i

since

h	0; 'm1

(k1)(�)(f1) � � �'ml

(kl)(�)(fl)U(¡a; 1)'ml+1
(kl+1)(�)(fl+1)� � � 'mn

(kn)(�)(fn)	0i
= h	0; 'm1

(k1)(�)(f1) � � �'ml

(kl)(�)(fl)'ml+1
(kl+1)(�)((¡a; 1)fl+1)� � � 'mn

(kn)(�)((¡a; 1)fn)	0i

we have

0 =

Z
R4

eip�a daWm1; � � �;ml;ml+1; : : : ;mn

k1
(�)
; � � �;kl

(�)
;kl+1
(�)

; : : : ;kn
(�)

(f1; � � �; fl; (¡a; 1)fl+1; : : : ; (¡a; 1)fn)

this implies

0=

Z
R4

eip�a daMm1; � � �;mn

k1
(�)
; � � �;kn

(�)
(�1; : : : ; �l+ a; : : : ; �n¡1)

which means if pl2/ V+, then

M~m1; � � �;mn

k1
(�)
; � � �;kn

(�)
(p1; : : : ; pn¡1)

=

Z
R4

: : :

Z
R4

d�1 : : :d�l: : :d�n¡1e
i
P
pj��jMm1; � � �;mn

k1
(�)
; � � �;kn

(�)
(�1; : : : ; �l; : : : ; �n¡1)

=

Z
R4

: : :

Z
R4

d�1 : : :d�n¡1e
i
P
j=/ l

pj��j
Z
R4

eipl��ld�lMm1; � � �;mn

k1
(�)
; � � �;kn

(�)
(�1; : : : ; �l; : : : ; �n¡1)

= 0

and this concludes the result. �

Note that we have used a different sign convention in Fourier transform, this
convention is usually taken in physics.
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Proposition 6.10. (Cluster Property) Suppose a2R1;3 is a space-like vector,
then

Wm1; � � �;ml;ml+1; : : : ;mn

k1
(�)
; � � �;kl

(�)
;kl+1
(�)

; : : : ;kn
(�)

(f1; � � �; fl; (�a; I)fl+1; : : : ; (�a; I)fn)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !�!+1

Wm1; � � �;ml

k1
(�)
; � � �;kl

(�)
(f1; � � �; fl)Wml+1; � � �;mn

kl+1
(�)

; � � �;kn
(�)

(fl+1; � � �; fn)

for all possible indices and test functions.

Proof. By definition and covariance, clearly

Wm1; � � �;ml;ml+1; : : : ;mn

k1
(�)
; � � �;kl

(�)
;kl+1
(�)

; : : : ;kn
(�)

(f1; � � �; fl; (�a; I)fl+1; : : : ; (�a; I)fn)

= h	0; 'm1

(k1)(�)(f1) � � �'ml

(kl)(�)(fl); 'ml+1

(kl+1)(�)((�a; I)fl+1); : : : ; 'mn

(kn)(�)((�a; I)fn)	0i

= h	0; 'm1

(k1)(�)(f1) � � �'ml

(kl)(�)(fl); U (�a; I)'ml+1

(kl+1)(�)(fl+1)U (�a; I)¡1; : : : ; U (�a;

I)'mn

(kn)(�)(fn)U(�a; I)¡1	0i

= h	0; 'm1

(k1)(�)(f1) � � �'ml

(kl)(�)(fl); U(�a; I)'ml+1

(kl+1)(�)(fl+1); : : : ; 'mn

(kn)(�)(fn)	0i

= h('ml

(kl)¡(�)(fl) � � � 'm1

(k1)¡(�)(f1)	0); U(�a; I)('ml+1

(kl+1)(�)(fl+1); : : : ; 'mn

(kn)(�)(fn)	0)i

In general one can show that

lim
�!1

h�; U(�a; I)	i= h�;	0ih	0;	i

we do not produce the proof here, see [10]. It is clear the cluster property for the
Wightman distribution follows from this result. �

6.3 Wightman Reconstruction Theorem

Now we collect all the properties from previous section and formulate the axioms
for Wightman distributions, see page 117 of [44] and page 333 of [10].

Wightman distributions a collection of tempered distributions
n
Wm1; � � �;mn

k1
(�)
; � � �;kn

(�)
2

S 0(R4n)
������n2N; 06mi6 2s(ki) + 1<+1; 16 i6n

o
and W [0] without any index is

assumes to be 1, where s(ki) is understood to be the spin described by ki¡ th field,
with following properties:

1. (Hermiticity) We have

Wm1; � � �;mn

k1
(�)
; � � �;kn

(�)
(f1; � � �; fn)=Wmn; � � �;m1

kn
¡(�)

; � � �;k1
¡(�)

(fn; � � �; f1)

where the notation ¡(�) means if we have index ki, then we take ki
¡(�)= ki

�, if we
have ki�, we then take ki

¡(�)= ki.
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2. (Positivity) For any finite sequence of test functions
n
fm1; � � �;mi

k1
(�)
; � � �;ki

(�)������fm1; � � �;mi

k1
(�)
; � � �;ki

(�)
2

S(R4i)
o
, we haveX

i;j

X
k1
0(�); � � �;kj0(�)
m1
0 ; � � �;mj

0

X
k1
(�)
; � � �;ki

(�)

m1; � � �;mi

Wmj
0 ; � � �;m1

0 ;m1; � � �;mi

kj
0¡(�); � � �;k10

¡(�);k1
(�)
; � � �;ki

(�)�
f�m1

0 ; � � �;mj
0

k1
0(�); � � �;kj0(�)
 fm1; � � �;mi

k1
(�)
; � � �;ki

(�)�
> 0

where f�m1
0 ; � � �;mj

0
k1
0(�); � � �;kj0(�) is the function fm1

0 ; � � �;mj
0

k1
0(�); � � �;kj0(�)(xj ; xj¡1; : : : ; x1).

3. (Covariance) We haveX
n1; : : : ;nl

Dm1n1
(k1) (A¡1): : :Dmlnl

(kl) (A¡1)Wn1; � � �;nl
k1
(�)
; � � �;kl

(�)
((a;A)f1; � � �; (a;A)fl)

=Wm1; � � �;ml

k1
(�)
; � � �;kl

(�)
(f1; � � �; fl)

for any (a;A)2R1;3oSL(2;C), l; k1; : : : ; kl2N and 06mi6 2s(ki)+ 1; 16 i6 l.
4. (Locality or Microcausality) If the supports of test functions fl; fl+1

consist only space like points, then

Wm1; � � �;ml;ml+1; : : : ;mn

k1
(�)
; � � �;kl

(�)
;kl+1
(�)

; : : : ;kn
(�)

(f1; � � �; fl; fl+1; : : : ; fn)

=(¡1)�(kl;kl+1)Wm1; � � �;ml+1;ml; : : : ;mn

k1
(�)
; � � �;kl+1

(�)
;kl
(�)
; : : : ;kn

(�)

(f1; � � �; fl+1; fl; : : : ; fn)

for all possible indices.
5. (Cluster Property) Suppose a2R1;3 is a space-like vector, then

Wm1; � � �;ml;ml+1; : : : ;mn

k1
(�)
; � � �;kl

(�)
;kl+1
(�)

; : : : ;kn
(�)

(f1; � � �; fl; (�a; I)fl+1; : : : ; (�a; I)fn)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !�!+1

Wm1; � � �;ml

k1
(�)
; � � �;kl

(�)
(f1; � � �; fl)Wml+1; � � �;mn

kl+1
(�)

; � � �;kn
(�)

(fl+1; � � �; fn)

for all possible indices and test functions.
6. (Spectrum Property) Under the change of variables

�1=x1¡ x2; : : : ; �n¡1=xn¡1¡xn; �n= xn

where x1;:::; xn2R4, each tempered distributionWm1; � � �;mn

k1
(�)
; � � �;kn

(�)
depends only on �1;:::;

�n¡1, that is

@Wm1; � � �;mn

k1
(�)
; � � �;kn

(�)

@�n
=0

then there is a tempered distribution Mm1; � � �;mn

k1
(�)
; � � �;kn

(�)
2S 0(R4(n¡1)), such that

Wm1; � � �;mn

k1
(�)
; � � �;kn

(�)
=Mm1; � � �;mn

k1
(�)
; � � �;kn

(�)

 1
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where 1 is a constant function 1 on R4. Moreover, the Fourier transformM~m1; � � �;mn

k1
(�)
; � � �;kn

(�)

of the tempered distribution Mm1; � � �;mn

k1
(�)
; � � �;kn

(�)
is supported in the (n¡ 1)¡ fold product

of closed forward light cone V+� � � � �V+.

The celebrated Wightman reconstruction theorem in the following, show there
is an one-to-one correspondence between Wightman fields and Wightman distribu-
tions. Thus one can construct a quantum field theory by proposing its correlation
functions.

Theorem 6.11. (Wightman Reconstruction Theorem) For a given set of
Wightman distributions satisfying axioms 1 to 6, there exists a unique Wightman
quantum field theory up to unitary equivalence.

For connivence, we produce the proof for the case of single Hermitian scalar field,
the general case is true with more technical analysis.

Proof. Basically this is a GNS type construction. First we construct the Hilbert
space. Consider the vector space H of sequence f=(f0; f1;:::) where fi2S(R4i) with
only a finite number of nonzero components. The vacuum vector is 	0=(1;0;0; : ::).
Define skew-linear form by

hf ; gi :=
X
i;j=0

1

Wi+j(f�i
� 
 gj)

which is clearly linear in g, conjugate-linear in f . It is skew symmetric by hermiticity
and non-negative definite by positivity. Representation of Poincaré group is given by

U(a;�)f =(f0; (a;�)f1; (a;�)f2; : : : )

then by covariance assumption, the skew linear form is preserved, and clearly the
vacuum is an invariant vector.

Now we define the field. For any test function h2S, the operator '(h) is given by

'(h)f =(0; h
 f0; h
 f1; : : : )

with transform law U(a;�)'(h)U(a;�)¡1= ' ((a;�)h) easily verified. It's easy to
see that ' is a operator valued distribution, and real, which means '(h�)= '(h)�.

Define the subspace H0 :=ff 2H jhf ; f i=0g, which is clearly leave invariant by
acting U(a;�) and '(h). Thus one can complete the space H/H0 to get the physical
Hilbert space H, and dense domain D=H /H0, thus H is separable. The element
in D corresponding to f is denoted by 	f. Clearly this domain is invariant under
the action of field operator and the unitary representation of Poincaré group.

The representation of Poincaré group on H induced a representation on H /H0,
hence can be extended to a strong continuous unitary representation on H. The
strong continuity can be seen by

h	f ¡U(a;�)	f ;	f ¡U(a;�)	f i
= hf ¡U(a;�)f ; f ¡U(a;�)f i
=
X
i;j

Wi+j ((f�i¡ (a;�) f�i)
 (fj¡ (a;�)fj))
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which is clearly convergent to zero as (a;�)! (0; I), since the Poincaré group acts
on the space of test functions continuously. This continuity can be extended to all
H easily by noting that D is dense.

Denote the corresponding 	0 in H also by 	0, which is the vacuum operator. To
show it is the unique invariant vector, consider another one 	00, if exist, orthogonal
to 	0 and normalized without loose generality. If it has the form 	f for some f 2H,
then for all space-like vector a and cluster property, we have

h	f ;	f i
= lim

�!1
h	f ; U(�a; I)	f i

= lim
�!1

X
i;j=0

1

Wi+j(f�i
� 
 (�a; I)fj)

=
X
i;j=0

1

Wi(f�i
�)Wj (fj)

= h	00;	0ih	0;	00i=0

and for	002H which does not have this form, one can approximate if by a normalized
	f, then one can still get h	00;	00i=0. Thus this vacuum is unique. It is not hard
to see that this vacuum is cyclic, and the vacuum expectation is just the Wightman
distributions in the assumption.

We need to show that the spectrum of the energy-momentum lies in the closed
forward light cone. Due to spectrum property, we haveZ

R4

eip�a dah	f ; U(a; 1)	gi=0

for any f ; g 2H, and p2/ V+, which means p is not in the spectrum of the energy-
momentum.

This completes the proof of existence part. We need to how the uniqueness up
to unitary transformation. Suppose there is another Wightman fields with the same
set of correlation functions, the corresponding informations are H 0;	0

0; U 0(a;�); '0.
Then the map V from H to H 0, defined by

V	f = f0	0
0+ '0(f1)	0

0+ ' 0(f2
(1))'0(f2

(2))	0
0+ � � �

where f =(f0; f1; f2
(1)
 f2

(2); f3
(1)
 f3

(2)
 f3
(3); : : :), note that vectors of this form are

dense in D and H, and V preserves the inner product, hence extends to a unitary
operator by cyclicity of 	00. The relations

'(h)=V ¡1'0(h)V ; U(a;�)=V ¡1U 0(a;�)V

are easy to verify. �

6.4 Osterwalder-Schrader Axioms for Schwinger Functions
and Euclidean Quantum Field Theory
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Before talking about the Schwinger functions, we discuss heuristically what we
are doing. In quantum theory, according to Born's rule, one is interested in the
quantity h 'f jU (t1¡ t0)j 'i i, which is the probability of finding the system in the
final configuration j'f i after some time from initial configuration j'i i, here the time
evolution operator is given by the exponential of Hamiltonian U (t1¡ t0)=e¡i(t1¡t0)

H

~ .
The essence of Feynman path integral is to represent this transition probability into
a probability theory on the space of all historical configurations between two times,
that is

h'f jU (t1¡ t0)j 'i i= h'f
������e¡i(t1¡t0)H~ ������'i i=Z

'(t0)='i
'(t1)='f

e
i

~S[']D[']

where S['] is the classical action functional, for example, if ' is the configuration
of the historical position q of a particle, then

S[q] =

Z
t0

t1
�
1
2
mq_(s)¡ V (q(s))

�
ds

or if ' is the configuration of the historical distribution ' of a scalar field, then

S['] =

Z
t0

t1
Z
R3

�
1
2
(@t

2¡�)'(t; x; y; z)¡ 1
2
m2'2¡V ('(t; x; y; z))

�
dsdxdydz:

The goodness of path integral representation is, the expectation value of time ordered
product operators (operators in Heisenberg picture), can be turned into some kind
of probabilistic expectation value over histories, that isZ

'(t0)='i
'(tn+1)='f

'(tn) � � � '(t1)e
i

~S[']D[']

=

Z
d'n: : :

Z
d'1h'f jU(tn+1¡ tn)j'ni'nh'nj� � � j'1i'1h'1jU(t1¡ t0)j'ii

= h'f jU(tn+1)�(tn) � � ��(t1)U(¡t0)j'ii
= ht=0; 'f j�(tn) � � ��(t1)j 0; 'ii

where tn+1>tn>tn¡1> ���>t1>t0 and � is the quantum analog of ', usually given
by canonical quantization. The state j t= 0; 'ii means the time zero state which
evolves to labeled by configuration 'i in time t0.

Usually the Hamiltonian is positive H > 0 in the sense h jH j  i> 0 for all

possible state j  i, then clear if we replace the positive time t in e¡it
H

~ by ¡i� for
� > 0, then

e
¡itH~ ! e

¡�H~

should also make sense, and the path integral formula turns into

h 'f jUE(�1¡ �0)j'i i= h'f
������e¡(�1¡�0)H~ ������'i i=Z

'(�0)='i
'(�1)='f

e
¡1

~SE[']D[']
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where SE['] is the Euclidean action, which is positive usually. We have an analog
formula for expectations

h� =0; 'f j�(�n) � � ��(�1)j � =0; 'ii=
Z

'(�0)='i
'(�n+1)='f

'(�n) � � � '(�1)e¡
1

~SE[']D[']

with �n+1>�n>�n¡1> � � �>�1>�0.
We observe the similarity between the Euclidean path integral measure and

Boltzmann distribution in equilibrium statistical mechanics, where the Euclidean
time � and the temperature T should be related by � = ~

kT
. According to quantum

statistical mechanics, if we assume the spectrum of H is discrete for convenience,
say E0<E1< � � �<En< � � �, the ensemble average at temperature T of an operator
A should be given by

hAi= Tr
¡
e
¡ 1

kT
H
A
�

Tr
¡
e
¡ 1

kT
H
� =

P
i=0
1

e
¡ 1

kT
Ei hijAj iiP

i=0
1 e

¡ 1

kT
Ei

where k is the Boltzmann constant. Clearly if we consider the limit T! 0, we haveP
i=0
1

e
¡ 1

kT
Ei hijAj iiP

i=0
1 e

¡ 1

kT
Ei

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !T!0 h0jAj 0i

and this limit corresponds to the limit �!+1. Thus the equation

h�(�n) � � ��(�1)i=

R
d'0
R

'(�0)='i
'(�n+1)='f
'(0)='0

'(�n) � � � '(�1)e¡
1

~SE[']D[']d'0

R
d'0
R

'(�0)='i
'(�n+1)='f
'(0)='0

e
¡1

~SE[']D[']d'0

subjects to the limit �0!¡1; �n+1!+1, one has

h0j�(�n) � � ��(�1)j 0i=
R
'(�n) � � � '(�1)e¡

1

~ SE[']D 0[']R
e
¡1

~SE[']D 0[']

where the path integral measure is over the space of all configurations with some
decay property (one can also pose the periodic condition on Euclidean time, and
then study the limit that the period goes to infinity). Note that the right hand
can be interpreted as the moment in probability theory, and the left hand side is
the vacuum expectations. Clearly if we change back from the Euclidean time to
Minkowski time, we get the corresponding formula of vacuum expectation of time
ordered product and averaging over path integral measure, and this explain what
we are really describing about with the Wightman distributions.

Now we describe how to construct the Schwinger functions by analytic con-
tinuation of Wightman distributions. Such Schwinger functions are the Euclidean
correlation functions we just described. For simplicity we do it for a single scalar
Boson field.
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The analytic continuation takes three steps. The first step is to continue the
Wightman distributions to complex variables in the tube. This is based on the
following theorem, for the proof, see theorem 3.5 of [44]. We continue to use the
notation in the axioms of Wightman distributions.

Theorem 6.12. There are holomorphic functions Wn(z1; : : : ; zn) and Mn¡1(z~1; : : : ;
z~n¡1), where zi=(zi

0; zi
1; zi

2; zi
3) and denote z~j=xj¡ i yj, such that

Wn(z1; � � �; zn)=Mn¡1(z1¡ z2; : : : ; zn¡1¡ zn)

defined on the tube Tn¡1= f¡Im (zi¡ zi+1)2V+j i=1; � � �; n¡ 1g, and polynomially
bounded, such that the boundary valueMn¡1(z~1;:::; z~n¡1) is the distributionMn¡1, i.e

lim
yj!0

Mn¡1(x1¡ i y1; � � �; xn¡1¡ i yn¡1)=Mn¡1

in the sense of tempered distribution.

Next step, we use the covariance property of the Wightman distributions. We
need to introduce the complex Lorentz group, which is the connected component of
the identity of the group of complex matrices that preserve the complex bilinear form

hz1; z2i= z10z20¡ z11z21¡ z12z22¡ z13z23

on the space C1;3. Denote this group by L(C). The fundamental group of L(C) is
also Z2 and its covering group is given by SL(2;C)�SL(2;C). A point in the space
C1;3 is called a Euclidean point if it as the form (¡ix0; x1; x2; x3) where x0; x1; x2;
x32R, the name come from the fact that when then complex bilinear form restricts
to such real subspace, we have Euclidean inner product (up to a minus sign). We
denote these points by E.

Since we are dealing with Boson fields here, it is enough to consider the Lorentz
group and its complexification. Since we know that the tempered distributions Wn

transforms as following

Wn(x1; � � �; xn)=Wn(� x1; � � �;� xn)

for any �2SO+(1; 3), by the uniqueness of the analytic continuation we have

Wn(z1; � � �; zn)=Wn(� z1; � � �;� zn)
and

Mn¡1(z~1; � � �; z~n¡1)=Mn¡1(� z~1; � � �;� z~n¡1)

but we can see here that the Lorentz transformations preserve the tube Tn¡1, now
one can use this identity to extend the action of Lorentz group to complex Lorentz
group. Then one can define Mn¡1 on the so called extended tube

Tn¡1
e :=

[
�2L(C)

�Tn¡1

and this extension is single valued, see theorem 2-11 of [44]. The points in the
extended tube can be characterized by the following theorem due to Jost.
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Proposition 6.13. A point (z~1; � � �; z~n¡1) such that z~1; � � �; z~n¡12R1;3 is in Tn¡1e if
and only if all points of the formX

i=1

n¡1

�iz~i; �i� 0 and
X
i=1

n¡1

�i> 0

are space-like.

These points are called the Jost points. The last step we use the locality condi-
tion, in our case of single scalar Boson field, we have

Wn(x1; : : : ; xn)=Wn(x�(1); : : : ; x�(n))

for any permutation �. Thus one can define the value of Wn(z�(1); : : : ; z�(n)) by
Wn(z1; � � �; zn), and hence one can define Mn¡1 when Wn(z�(1); : : : ; z�(n)) is define. It
is a fact that this analytic continuation is well-defined and also single-valued. The
intersection of Euclidean points En andWn's holomorphic domain is the following set

R=/
4n := f(x1; x2; � � �; xn)jxi2R4; xi=/ xj if i=/ jg�En

and the Schwinger function Sn is defined to be the restriction of Wn on this subspace,
note that it is a polynomially bounded analytic function, hence can also be view as
a tempered distribution.

For the general case of analytic continuation of Wightman distributions for tensor
or spinor fields, this procedure also works.

Now we introduce the Osterwalder-Schrader axioms for scalar boson fields, see
[35] and [36]. We introduce the sets

R=/
4n := f(x1; x2; � � �; xn)jxi2R4; xi=/ xj if i=/ jg

R<
4n := f(x1; x2; � � �; xn)jxi2R4; 0<x1;0<x2;0< � � �<xn;0g

R¡
4(n¡1) := f(�1; � � �; �n¡1)j �i2R4; �i;0< 0; i=1; 2; � � �; n¡ 1g

and the time reflection operator

�f(x0; x1; x2; x3)= f(¡x0; x1; x2; x3)

�(x0; x1; x2; x3)= (¡x0; x1; x2; x3)

�f(x1; : : : ; xn)= f(�x1; : : : ;�xn)

Schwinger distribution is a collection of tempered distributions

fSn2S 0(R=/
4n)jn2N g

and S0 := 1, with following properties:
1. (Linear Growth) There exists an integer s 2N, and a sequence f�ng of

positive numbers, such that

�n6C(n!)C
0

for some constants C;C 0 independent of n, and

jSn(f)j6�nkf kn�s
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for all f 2R=/
4n and n2N.

2. (Euclidean Invariance) We have

Sn((a;A)f1; � � �; (a;A)fn)

=Sn(f1; � � �; fn)

for any (a;A)2R4o SO(4), and fi2S(R=/
4n).

3. (Reflection Positivity) For any finite sequence of test functions ffijfi2
S(R4i) supported inR<

4ig, we haveX
i;j

Si+j(�f�j
 fi)> 0:
.

4. (Symmetry) For all test functions

Sn(f1; � � �; fl; fl+1; : : : ; fn)

=Sn(f1; � � �; fl+1; fl; : : : ; fn)

hence for all permutations of f1; : : : ; ng and f1
 � � � 
 fn supported in R=/
4n.

5. (Cluster Property) Suppose a2R4 is a non-zero vector of the form (0; a1;
a2; a3), then

Sm+n(fm; (�a; I)fn)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !�!+1

Sm(fm)Sn(fn)

for all fm2R<
4m and fn2R<

4n.

It can be shown that the Schwinger functions defined by analytic continuation of
Wightman distributions satisfy all these axioms except the linear growth condition,
in [36] they showed that if one assumes the growth of Wightman distributions, one
can produce these linear growth conditions on Schwinger functions, and then they
showed these two systems of axioms are equivalent.

The property of reflection positivity is simply a result of positivity of Wightman
distributions together with the fact that for Minkowski time we have

'(t; x)= eitP
0¡ix1P 1¡ix2P 2¡ix3P3 '(0; 0)e¡itP

0+ix1P
1+ix2P

2+ix3P
3

and after using Wick rotation t=¡i� we have

'(� ; x)= e�P
0¡ix1P 1¡ix2P 2¡ix3P3 '(0; 0)e¡�P

0+ix1P
1+ix2P

2+ix3P
3

then we have

'�(� ; x)= '(¡� ; x)

for any Euclidean time � , note that conjugate transformation of a Hermitian scalar
Boson field in Euclidean theory is different from Minkowski theory. This is a crucial
discovery to recover the Wightman fields from Schwinger functions, and this prop-
erty is found to be fruitful to have many applications in other problems, see [28] and
references therein.
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Note that this axiom can also be formulated in any dimension d > 1. The first
condition on linear growth was appeared in [36], since they found some errors in the
argument of the first paper [35], and this condition makes the Osterwalder-Schrader
axioms stronger than the Wightman axioms. In the page 397 of the book [10], they
gave a different condition corresponding to the spectrum condition in the Wightman
axioms and they considered more general fields of spinor or tensor character. And
then they proved that their axioms are equivalent to the Wightman distribution.

Theorem 6.14. (Osterwalder-Schrader Reconstruction) There exist a unique
Wightman quantum field theory whose Schwinger functions agree with the given set
with properties listed above.

The proof is rather technical, we do not produce it here, see [36]. Note that in
there papers, they remarked that this theorem also works for the general spin or
tensor fields.

There is another theorem which could also have the name Osterwalder-Schrader
reconstructions theorem, just like the Wightman reconstruction theorem, which says
that these assumptions of Schwinger functions can produce a set of operator-valued
distributions on some Hilbert space, with a similar set of axioms as in Wightman
fields, but are Euclidean invariant.

A different set of Osterwalder-Schrader axioms is given Jaffe and Glimm [21],
which characterize the probability measure on space of tempered distributions S 0(Rd)
(see the footnotes on page 91 of [21]).

A Euclidean quantum field theory is a probability measure d� on S 0(Rd), such
that following conditions are satisfied:

1. (Analyticity) Define the generating functional S[f ] by

S[f ] :=

Z
S 0(Rd)

e�(f)d�

then for every finite set of test functions fj 2 S(Rd); j = 1; 2; : : : ; n, and complex
numbers z= fz1; : : : ; zng2Cn, the function

z 7!S

"X
j=1

n

zj fj

#
is an entire function on Cn.

2. (Regularity) There is a constant p with 1� p� 2 and c, such that for all
f 2S(Rd), we have

jS[f ]j � ec(kf kL1+kf kLp
p )

If p=2, then we also assume there exists a locally integrable function S2(x1; x2) on
Rd�Rd such thatZ

S 0(Rd)

�(f1)�(f2)d�=

Z
Rd

Z
Rd

f1(x1)f2(x2)S2(x1; x2)dx1dx2

for all f1; f22S(Rd).
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3. (Euclidean Invariance) The Euclidean group RdoSO(d) act on S(Rd) by
f(a;R)f g(x)= f(R¡1(x¡a)), then we assume that S[f ] is invariant under Euclidean
symmetries, that is S[f ] =S[(a;R)f ] for all (a;R)2RdoSO(d).

4. (Reflection Positivity) For any sequence f1; : : : ; fn of test functions sup-
ported on the upper half planeR+

d :=f(x0; x1;:::; xd¡1)jx0>0g, the matrix defined by

Mij :=S[fi+�fj
�]

is positive semi-definite, where � is time reflection operator, i.e. �f(x0; x1; : : : ;
xd¡1)= f(¡x0; x1; : : : ; xd¡1).

5. (Ergodicity) For any test function f supported on the upper half plane R+
d ,

we have

lim
t!1

1
t

Z
0

t

e�(T (¡s)f)ds=

Z
S 0(Rd)

e�(f)d�

where T (¡s) := ((¡s; 0; : : : ; 0); I)2Rdo SO(d).

The Schwinger function can be defined from this axioms by

Sn(f1; � � �; fn) :=E[�(f1): : :�(fn)] =

Z
S 0(Rd)

�(f1): : :�(fn)d�

for any f1;:::; fn2S(Rd). The expectation converges due to the analyticity condition,
one can use the Cauchy integral formula for several complex variables. See chapter
19 of [21] for the proof that axioms by Jaffe and Glimm implies Wightman axioms.
We should remark that there are many other choices to produce a system of axioms
that can used to deduce the Wightman axioms, for example see [19] and [16].
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7 The Stochastic Quantization of Abelian Higgs
model

We introduced the axioms that a quantum field theory should satisfy, then
one has a natural question whether there is an interesting example of interacting
quantum fields satisfying these axioms. In this chapter, we first concern the problem
of constructive quantum field theory by introducing the stochastic quantization
method. Then we introduce the Abelian Higgs model, including its definition, diffi-
culties, related works, and so on.

7.1 Stochastic Quantization

In the last chapter, we introduced the Euclidean quantum field theory where
we described the axioms that Schwinger functions should satisfy. An important
question is, how can we construct an example of Euclidean quantum field theory,
that satisfying these axioms, hence one get a quantum field theory in Minkowski
space time by using the Osterwalder-Schrader reconstruction theorem.

We noted the similarity between the Euclidean path integral measure
e
¡1

~SE[']D 0['] the Boltzmann distribution in equilibrium statistical mechanics. In
the study of statistical mechanics, such an equilibrium state is obtained by preparing
some non-equilibrium statistical mechanical system and subject to some relax-
ation time. This process can be described by the Langevin dynamics. Thus to

get the Euclidean path integral measure e¡
1

~ SE['] D 0['], one imagine a non-equi-
librium system, evolves according to the Langevin equation

@t'(t; x)=¡
�
�SE[']
�'

�
j'='(t;x)+�

or equivalently

@t'(t; x)=¡
�ŜE[']
�'

+ �; ŜE['] =

Z
dtSE[']

where � is the functional derivative, t is some fictitious time describes the evolution
of non-equilibrium system, and � is the space-(fictitious)time white noise. Since the
white noise is delta correlated in fictitious time direction, then the solution process
if exists, should be a Markov process.

Let us see formally why the Euclidean path integral measure is an stationary
measure of this equation. We need to compute the Fokker-Planck equation of this
Langevin equation, which is the dynamical equation of the probability distribution
P ('; t). For any functional F ['], we have

E�[F ['(t)]]=

Z
F (')P ('; t)D'
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where E� is the expectation with respect to the law of white noise, since the solution
of the Langevin equation should be a functional of the white noise. In order to find
the time derivative of both side, we need to find the first order expansion of left
hand, which is

E� [F (' (t+ d t))¡F ('(t))]

=E�

�Z
d x

�F
�'

@t'd t+

ZZ
dx dx0

�2F
�' �' 0

(@t'd t) (@t'd t)

�
=E�

"Z
d x

�F
�'

 
¡� ŜE
�'

+ �

!
d t+

ZZ
dx dx0

�2F
�' �'0

(� d t) (� 0 d t)

#

=E�

"
¡
Z
dx

�F
�'

� ŜE
� '

#
dt+

ZZ
dx dx0E�

�
�2F
�' �'0

�
E� [� d t � 0 d t]||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

�(x¡x0)dt

=

Z
dx

Z
D'

"
¡�F
�'

� ŜE
� '

+
�2F
�'2

#
P ('; t)dt

=

Z
dx

Z
D'F

�
�'

"
� ŜE
� '

+
�
� '

#
P ('; t)dt

where we used that '(t) and �(t) are independent to deduce any functional of ' up
to time t should be independent with �(t), since '(t) only depends on instantaneous
past of �(t) due to the Markov property. Thus

d
dt

E�[F ['(t)]]

=

Z
dx

Z
D'F

�
�'

"
� ŜE
�'

+
�
� '

#
P ('; t)

=

Z
F (')@tP ('; t)D'

holds for any functional F . Then the Fokker-Planck equation is given by

@tP ('; t)=

Z
dx

�
�'

"
� ŜE
� '

+
�
� '

#
P ('; t)

and it is clear e¡SE['] is a stationary solution.
The stochastic quantization method is proposed by Parisi and Wu in [37], and

one should note the difference between this method and Nelson's in [32] [33] [34],
where Nelson used the real time to derive the Schrödinger equation. The method of
Parisi and Wu is based on an hypothetical process depending on a fictitious time.
And one can use different Langevin equations to describe the Euclidean path integral
measure, see [14]. There are cases where the stochastic quantization method does
not work, that is the proposed Langevin dynamics does not have a limit stationary
measure, see [17].
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The stochastic quantization equation requires us to study the solution theory
for stochastic partial differential equations, establish the meaning of the equation,
the existence of local solutions, and most importantly the long time existence of the
solution, since we need to take t!1 to get the equilibrium state. This is already
a hard problem in general, but the requirement that the limiting measure should
satisfy the Osterwalder-Schrader axioms or its some kind of modifications makes
it even harder. It has been shown by Jaffe in [27], that reflection positivity is not
satisfied in the finite time non-equilibrium state of the solution, even for free scalar
field theory. For the gauge theories, as we talked about in last chapter, we are not
sure about how Wightman axioms should be modified to contain gauge theories, in
particular we have negative results in the case of free electro-magnetic field.

7.2 The Model

The Abelian Higgs model is described by following classical Lagrangian density
in Minkowski space-time

L=¡1
4
F��F ��+(D��)yD��¡V (�y�)

where � is a complex scalar field, F�� is the curvature of a gauge field A�, and

V (�y�)=¡m2�y�+�(�y�)2

F��= @�A�¡ @�A�

D��= @��¡ ieA��

note that when �=0, this model is also called the scalar quantum electrodynamics,
the paper [41] studied the case �=m=0. The Lagrangian density is invariant under
following gauge transformation

A!A+rf ;�! eief�

for any f 2C1. Note that the first transform is just adding an exact differential
df to the connection one-form A�dx�, which preserves the curvature. The second
transformation is just a multiplication of one-form. The gauge covariant derivative
transforms like

D��! @�(eief�)¡ ie(A�+ @�f)eief�= eiefD��

thus it is clear that the Lagrangian density is invaraint under these transformations.
To compute the Euclidean action, note that according to the Wick rotation, we

have

x0!¡ix0E; @0! i@0
E ; A0! iA0

E ; F0�! iF0�
E ;D0�! iD0

E�

where the rule is keep the relations @�
Ex�= ��

� and A�
EdxE

� is a Euclidean one-form,
now combine this with the Minkowski metric, we have

F��F ��!¡F��EFE�� ; d4x! id4xE
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For simplicity we drop the subscript or superscript E. Thus we turn the action in
Minkowski space time (multiply an i)

iS= i

Z
d4x

�
¡1
4
F��F

��+(D��)
yD��¡V (�y�)

�
into the Euclidean action

iS!¡SE=¡
Z
d4x

�
1
4
F��F ��+(D��)yD��¡V (�y�)

�
where the gauge covariant derivative and the electro-magnetic field tensor are still
given by

D��= @��¡ ieA��; F��= @�A�¡ @�A�:

In the following we assume the Euclidean dimension is 2 and we assume the V (�y�)=
0 for simplicity.

Then we can write down the Langevin equations for the random field (A;�)

@tA1 = @2
2A1¡ @1@2A2¡

ie
2
[��@1�¡�@1��]¡ e2A1��� + �1

@tA2 = @1
2A2¡ @1@2A1¡

ie
2
[��@2�¡�@2�]¡ e2A2��� + �2

@t� = @1
2�+ @2

2�¡ ie (@1A1+ @2A2)�¡ 2ie (A1@1+A2@2)�

¡e2(A1
2+A2

2)�+ �

where �1; �2 are real white noise, � is a complex white noise, that is they satisfy

E [��(t1; x1)��(t2; x2)]= ��� �(x1¡x2)�(t1¡ t2)
E [��(t1; x1)�(t2; x2)] = 2�(x1¡x2)�(t1¡ t2)
E [�(t1; x1) �(t2; x2)]= 0

Note that the equations for the gauge fields are not parabolic equations, our inten-
tion is to make them into parabolic ones. This is achieved by stochastic gauge fixing
in physics literature, see [14], where they worked in momentum space. We first solve
the equations

@tB1 = (@1
2+ @2

2)B1¡
ie
2
[ �@1 ¡  @1 �]¡ e2B1  �+ �1

@tB2 = (@1
2+ @2

2)B2¡
ie
2
[ �@2 ¡  @2 �]¡ e2B2  �+ �2

@t = (@1
2+ @2

2) ¡ 2ie(B1@1+B2@2) ¡ e2(B1
2+B2

2) 

+eie
R
0
t
(@1B1+@2B2)ds�

and then transform them into original variables

A1 = B1¡
Z
0

t

@1(@1B1+ @2B2)ds

A2 = B2¡
Z
0

t

@2 (@1B1+ @2B2)ds

� = e¡ie
R
0
t
(@1B1+@2B2)  
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where one can formally check this is indeed a solution of original equations. Note

that eie
R
0
t
(@1B1+@2B2)ds� has the same law of a space-time white noise. So we arrive

the equations

@tB1 = (@1
2+ @2

2)B1¡
ie
2
[ �@1 ¡  @1 �]¡ e2B1  �+ �1

@tB2 = (@1
2+ @2

2)B2¡
ie
2
[ �@2 ¡  @2 �]¡ e2B2  �+ �2

@t = (@1
2+ @2

2) ¡ 2ie(B1@1+B2@2) ¡ e2(B1
2+B2

2) + �

(7.1)

In the paper [41], the author showed how these transformation works in the case
of lattice approxiations of gauge theory, where one has one SDEs instead SPDEs.
We did not find a way to show the stochastic gauge fixing works rigorously without
lattice gauge theory, so this is a problem.

Assuming this can be done, we try to see where is the hard part of equations 7.1.
We try to do the Da Prato trick: We set B1=B1

e +Z1;B2=B2
e +Z2;�= �+Y where

(@t¡�)(Z1; Z2; Y )= (�1; �2; �)

with �1; �2; � 2C¡
2

2
¡1¡"

=C¡2¡" and Z1; Z2; Y 2C¡" then

@tB1
e = �B~1¡

ie
2

�
��@1 �¡ �@1�� +Y�@1Y ¡Y@1Y�

+ ��@1Y +Y�@1 �¡Y @1��¡ �@1Y� ]
¡e2 (B~1 ���+B~1 �Y� +B~1 ��Y +B~1YY� +Y�Z1+ �Z1Y� ++��Z1Y +Z1YY�)

@t� = � �¡ 2ie (B~1 @1+B~2 @2) �¡ 2ie (Z1 @1+Z2 @2)�
¡2ie (B~1 @1+B~2 @2)Y ¡ 2ie (Z1 @1+Z2 @2)Y
¡e2 (B~12+B~22+Z12+Z22+2B~1Z1+2B~2Z2)�

¡e2 (B~12+B~22+Z12+Z22+2B1
e Z1+2B~2Z2)Y

where we expect B1
e ; B2

e ; � 2 C1¡2". The terms in block are not well-defined. We
arrived at here, and did not find a way to solve these SPDEs.
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Appendix A Notation

a. b for variables a; b: if there exists some positive constant c which is indepen-
dent of the variables under our consideration, such that a6 c � b.

a' b for variables a; b: if a. b and b. a.
i. j for indices in Littlewood-Paley decomposition: if there is some integerN 2N

independent of the the indices under our consideration, such that i6 j+N .
i� j for indices in Littlewood-Paley decomposition: if i. j and j. i.
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Appendix B Inequalities

In this appendix, we collect some useful inequalities.

Lemma B.1. (Hölder's inequality) Suppose (X; �) is a measure space. Given
16 p; q; r61 with 1

p
+

1

q
=

1

r
, for any functions f 2Lp(X; �); g2Lq(X; �), we have

fg 2Lr(X; �) and
kfgkLr6 kf kLp � kgkLq

Proof. When p=1 or p=1, the inequality is trivial, so we assume that 1< p<1.
Without loss of generality, let us assume kf kLp= kgkLq= 1. Since the logarithm
function is concave, then for any a; b> 0 and t2 [0; 1] we have

t log(a)+ (1¡ t)log(b)6 log(ta+(1¡ t)b)
thus

atb1¡t6 ta+(1¡ t)b
Then Z

X

jfg jr d� =

Z
X

(jf jp)
r

p(jg jq)
r

qd�

6 r
p

Z
X

jf jpd�+ r
q

Z
X

jg jqd�

=
r
p
+
r
q

= 1

So the result follows. �

The proof can be easily generalized to the case of any number of functions, so
we have the following generalization.

Lemma B.2. Suppose (X; �) is a measure space. Given 16 p1; : : : ; pn; r61 with
1

p1
+ : : : +

1

pn
=

1

r
, for any functions fi 2 Lpi(X; �) where i 2 f1; : : : ; ng, we have

f1 � � � fn2Lr(X; �) and
kf1 � � � fnkLr6 kf1kLp1 � � � kfnkLpn

Lemma B.3. (Young's inequality for convolutions) Given 16 p; q; r61 with
1

p
+

1

q
=1+

1

r
, for any functions f 2Lp; g 2Lq we have

kf � gkLr6 kf kLp � kgkLq

Proof. The case of r=1 is easy, let us consider the case r<1. From the identity
1

p
+

1

q
=1+

1

r
we see that q6 r and p6 r, thus we can define the constants �=1¡ p

r

and �=1¡ q

r
which are all in the interval [0; 1], and define the constants p0= p

�
> 1

and q 0=
q

�
> 1. Clearly, we have

1
p0
+
1
q 0
+
1
r
=
�
p
+
�
q
+
1
r
=

�
1
p
¡ 1
r

�
+

�
1
q
¡ 1
r

�
+
1
r
=1
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So by using Hölder's inequality, we have

jf � g(x)j =
��������Z

Rn

f(x¡ y) � g(y)dy
��������

6
Z
Rn

jf(x¡ y)j(1¡�) � jg(y)j(1¡�) � jf(x¡ y)j� � jg(y)j�dy

6
�Z

Rn

jf(x¡ y)j(1¡�)r � jg(y)j(1¡�)rdy
�1

r

��Z
Rn

jf(x¡ y)j�p0dy
� 1

p0 �
�Z

Rn

jg(y)j�q 0dy
�1

q 0

=

�Z
Rn

jf(x¡ y)jp � jg(y)jqdy
�1

r

� kf kLp� � kgkLq
�

Thus Z
Rn

jf � g(x)jrdx 6
Z
Rn

�Z
Rn

jf(x¡ y)jp � jg(y)jqdy
�
dx � kf kLp�r � kgkLq

�r

=

Z
Rn

�Z
Rn

jf(x¡ y)jp � jg(y)jqdx
�
dy � kf kLp�r � kgkLq�r

= kf kLpp � kgkLqq � kf kLp�r � kgkLq�r

= kf kLpr � kgkLqr

Hence the result follows.
�
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Appendix C Functional Analysis

C.1 Function Spaces
In this appendix, we introduce some function spaces.

Definition C.1. For non-negative integer k2N, the space Ck(Rn) is the set of all
k-times differentiable function f :Rn!R with continuous k-th derivative, such that

kf kCk :=
X

06j�j6k
sup
x2Rn

j@�f(x)j

is finite.

Lemma C.2. The space Ck(Rn) with norm k�kCk is a Banach space.

The concept of Hölder continuous function with exponent �2 (0; 1] generalizes
the concept of Lipschitz continuous function and gives a way to characterizes the
regularity of continuous functions.

Definition C.3. A continuous function f :
!R, where 
�Rn is an open subset,
is called Hölder continuous with exponent �2 (0; 1] if there is some constant C > 0,
such that

jf(x)¡ f(y)j6Ckx¡ yk�

holds for any x; y 2
. In other words, the quantity

sup
x=/ y2


jf(x)¡ f(y)j
kx¡ yk�

is finite.

Definition C.4. For the non-negative integer k 2N and real number � 2 (0; 1],
the Hölder space Ck;�(Rn) is defined to be the collection of Ck-functions whose k-th
derivatives are Hölder continuous with exponent � such that the norm

kf kCk;� :=
X

06j� j6k
sup
x2Rn

j@�f(x)j+
X
j� j=k

sup
x=/ y2Rn

j@�f(x)¡ @�f(y)j
kx¡ yk� :

is finite.

Lemma C.5. The space Ck;�(Rn) with norm k�kCk;� is a Banach space.

C.2 Stone's Theorem

Stone's theorem deals with the strong continuous unitary representation of the
abelian group R, more precisely, it is a map R! U(H) where H is a complex
separable Hilbert space, such that

U(t1)U(t2)=U(t1+ t2) for any t1; t22R
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and R!H defined by t 7¡!U(t)� is a continuous map for any fixed �2H. Notice
that in the case of complex separable Hilbert space, the strong continuity condition
is equivalent to weak continuity, which means the map R!R defined by t 7! h	;
U(t)�i is continuous for any fixed 	;�2H.

Theorem C.6. (Stone) Suppose R!U(H) is a strong continuous unitary repre-
sentation of the abelian group R, then there exists a self-adjoint operator H, defined
on a dense domain D, such that

U(t)= e¡itH

on D. The domain D is defined by�
�2Hj lim

"!0

U(" )�¡�
¡i" exists

�
:

Conversely, if there is a self-adjoint operator H, defined on a dense domain D, then
the map t 7! e¡itH can be extended to a unique strong continuous unitary represen-
tation of the abelian group R.

C.3 Nuclear Theorem

The nuclear theorem says a continuous bilinear functional can be uniquely
extended to a tempered distribution on the product space of underlying variables.

Theorem C.7. (Nuclear Theorem of Schwartz) Suppose B is a continuous
bilinear functional on S(Rm)�S(Rn), then there is a unique tempered distribution
'2S 0(Rm+n) such that

B(f ; g)= '(fg)

for any f 2S(Rm) and g 2S(Rn).

It is clear that is theorem is also true for case of continuous multilinear functional.
The nuclear theorem of Schwartz is also called the Schwartz kernel theorem, see page
61 of [10] and references therein.
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