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1 Introduction

The purpose of this thesis is to study the problems behind the stochastic quan-
tization of abelian Higgs model, which is the following system of stochastic partial
differential equations

8tA1 - 822141 - 8182142 — % [@8@ — <I>81<T>] — €2A1CI)(T) + 51

8tA2 = 8%/12 — 8182 Al — % [@8&) — <I>82<I>] — €2A2CI) o + 52

81@ = 8% P + 3% d — e (81141 + 82142)(1) — Qe (Aﬁl + A282)<I>
—e} (A3 + A3)D + ¢

which is studied in the paper [41]. These equations are motivated by the programs
of constructive quantum field theory [21], which try to construct probability mea-
sures on the space of distributions that satisfy the Osterwalder-Schrader axioms
of Euclidean quantum field theory, and then produce a theory in Minkowski time
through the reconstruction theorems [44]| [35] [36]. The stochastic quantization
method proposed by Parisi and Wu [37] is one of such approaches to produce a
candidate of probability measure [14]. The equations given by stochastic quan-
tization method are usually SPDEs, which is in general hard to interpret and solve.
The recent theory of paracontrolled analysis developed by Gubinelli, Imkeller and
Perkowski [23], and theory of regularity structures developed by Hairer [25] which
is used in [41], are powerful tools to tackle such problems. We will introduce both
the subject of SPDEs within the framework of paracontrolled analysis, and the
axiomatic quantum field theory. The structure of this thesis is following.

Chapter 2 contains a short introduction of theory of tempered distributions,
invented by Laurent Schwartz. Distributions are needed when we try to describe
singular objects. In general, random objects are distributions and stochastic dif-
ferential equations are equations of distributions. We study how to do operations
on tempered distributions, such as transformations, Fourier transformations, con-
volutions, and differentiations, etc. Theorems about tempered distributions with
compact supports are discussed.

Chapter 3 deals with the subject of paracontrolled analysis. The central difficulty
in the study of SPDEs is to interpret the nonlinear functions of tempered distribu-
tions, in particular the product of tempered distributions. We start by introducing a
way to measure the singular behavior of tempered distributions, the so called Besov
space is discussed. Then we introduce Bony’s paraproduct, from which we can define
products of tempered distributions and separate out the singular part. After that
we develop the first order paracontrolled calculus.

Chapter 4 is about the white noise and Gaussian analysis. In most stochastic
partial differential equations the random force term are usually given by white noise
due to the random nature of background. We talks about the Wick product of
Gaussian random variables and an important estimate of Gaussian variables, called
the Gaussian hypercontractivity. Then we find out the regularity exponent of a
white noise.
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Chapter 5 is an application of all the machinery we have developed so far to
a particular stochastic partial differential equation, called the parabolic Anderson
model. We first discuss heuristically how to set up the equations that one can apply
use fix point argument. Then we produce the space where we want to find the
solution and the Schauder estimates. Finally we sketch ideas in proving the existence
and uniqueness of the solution, and discuss about the renormalization.

Chapter 6 is devoted to the subject of axiomatic quantum field theory. We first
talk about what is the correct mathematical object to model a quantum field. We
argue from both mathematics and physics that one can not define quantum field by
assigning an operator to each point of space-time. Quantum field has to be averaged
by some good functions over some space-time regions. Then we come to the concept
of operator-valued distributors. Then we study the Lorentz group and their unitary
representations, which is needed in describing relativistic symmetry in quantum
theory. After that we talk about the Wightman axioms of fields, the vacuum cor-
relation functions and their properties. The distributions with these properties are
called Wightman distributions and a Wightman field theory can be reconstructed
from these correlation functions. We then move on to the analytic continuation of
there Wightman distributions to get Schwinger functions, and a system of properties
of such functions can be obtained. One can add some assumptions and assuming
these properties to get Osterwalder-Schrader axioms, then it can be shown that
Wightman axioms can be recovered from these axioms.

Chapter 7 concerns the stochastic quantization of the abelian Higgs model. We
first introduce the method of stochastic quantization. In order to find the Euclidean
path integral measure of a quantum field theory, one can go to one higher dimension
to study a non-equilibrium process described by Langevin dynamics. One hope
that the stationary measure can be obtained by solving such equations at infinite
time. Then we talk about the abelian Higgs model, including how the equations is
calculated, what we have tried to deal with it and problems.

Acknowledgment I would like to express my deepest appreciation to my
advisor Prof. Massimiliano Gubinelli for his kindness and patience to have discus-
sions, and for everything he taught me, including many great lectures in probability,
stochastic analysis and modern advanced topics. I would like to extend my sincere
thanks to Dr. Francesco de Vecchi for his numerous help and discussion. I am also
grateful to many of my friends and classmates, for their moral support and help.
Finally I would like to thank my family for their constant emotional, moral and
economical support.
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2 Distributions

This chapter is devoted to the study of tempered distributions. The motivation
originates from making a rigorous understanding of Dirac delta function, and many
singular functions appeared in the calculations of quantum field theory. The main
references for this chapter are [20], [4] and [39].

2.1 The Fourier Transform on Schwartz Space

The space S(R") of Schwartz functions on IR"™ consists of all smooth functions
whose derivatives fall off faster than any reciprocal power of polynomials. More
precisely, f € S(IR") if and only if f & C*(R™), and for any k € N, the following
quantities

[ fllx:= sup |2°0° f ()| < 00
loo| <K, B| <K,z €R™

are finite, where a = («,...,a,) EN" S=(f,..., () € N are multi-indices with
length |a|=a1+ -+ an, |B|=01+ -+ Bn, and 2% =27 X -+ X a2 98 =9 9.

Clearly S(IR™) is a vector space, for each k € N, ||-||x defines a norm on S(IR"),
hence S(IR™) is a countably normed space. The topology is then defined by giving
the neighborhoods, and it is this topology we are mostly interested in. So there are
other equally good families of norms which defines the same topology, for example

Ifllk=sup (1+[z[")|0*f(x)|

la| <k, zeR™

gives another choice. Moreover, one can show that S(R") is indeed a Frechet space,
which means this countably normed space is complete.

For any f € S(IR™), the Fourier transform F(f) of f is defined as

FHE)=f(€):= Rnf(:c)e*“w dx

Theorem 2.1. The map F:S(R") — S(R™) is bijective and continuous. More pre-
cisely, for any given k € N, there exists a constant C and an integer K € N such that

11 <CIIf llx

for all f € S(R™). The inverse of the map is given by

FAO @)= s [ S(@e6de
for any f€S(R").
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Proof. For any multi-indices @ and 3 such that |a|, |3| <k, we have

€207 F(&)] = |F(0(=" £))(&)

< 1027 f)lle

— n+1.19%( 8 .—1 n
_ /R"(1+|x|) o )| e
< call(L [z )0 £)le

< Cllfllktnta

where the last inequality follows an estimation of the expansion of the term in the
L*>*-norm. Thus we have

1715 < CIF Nrnsn
by definition. 0

We define the convolution f * g of two Schwartz functions f, g € S(R™) to be the
function

(fxg)(@):= | flz—y)g(y)dy
Rn
This operation has following simple properties.

Lemma 2.2. We have

(1) fxg=gx* fand f+xgeSR"™) for all f,geS(R");

(2) for fized g € S(R™), the map defined by f v gx* f, for all f € S(R™), is a
continuous map from S(R") to S(R™);

(3) F(f=g9)=F(f)F(g) and F(fg)=F(f)*F(g) for all f,g€S(R");

(4) (f*xg)xh= fx(gxh) forall f,g,heS(R").

Proof.

(1) Since the function f(x — y), as a function of y, is obtained by applying
translation f(y) — f(y —x) and reflection of the function f(y—xz)— f(x —y), thus
the resulting function is also a Schwartz function. Then the formula

IRnf(x —y)g(y)dy

is the L? — inner product( we use the convention that the inner product is conjugate
linear in the first vector, linear in the second) of two Schwartz functions, we can
apply the Fourier transform to each function which preserves this L? — inner product
up to a constant, so

(f*g)(x) = (z—-)(§)g(-)(§)d¢

= 1 . *i<57y>d h —i{&,h) dh :|d
(27)"[@{[@][(3: ye 3// g(h)e ¢
1 {A{nf(x — y)e*i<5,zfy> dy/ ng(h)efz’@,h) dh }eug,x)dg
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which clearly shows that f* g€ S(IR™). The equation f* g= g f is an easy conse-
quence of changing the variable of the integration.
(2) According to our computation above, we have

9 f =Gy | SOOTNOEae = FHF () F (1)

which is clearly continuous about f, since the Fourier transform and its inverse are
continuous by theorem 2.1.
(3) This is clear from previous computation.

(4) We have
(fxg)xh = FHF(fx=g)F(h))
= F Y F(f) F(g)F(h))
= FUF(f) F(g=h))
= fx(g*h)
which concludes the proof. 0]

2.2 Tempered Distributions

A tempered distribution F' on R" is a continuous linear functional on the Schwartz
space S(R™). The continuity of the linear map u: S(R™) — R can be character-
ized by existence of constant C' and an integer k such that the inequality |u(f)| <
C'|| f |lx holds for all fe€S(IR™). We also use the notation u(f)=(u, f)

The set of all tempered distributions is denoted by S’(R™). Clearly it is a vector
space, and the natural topology on S’'(R"™) is the weak topology. Equivalently the
topology is given by giving the notion of limit, a sequence of distributions {uy },en is
said to converge to the limit u € S’(R") iff for any f € S(R™), we have lim,, . cun(f)=

u(f).

Example 2.3. The map f+— f(x) for some fixed x € R™ defines a tempered distri-
bution on S(IR™). More generally, the map f+— 0°f(z) for fixed x € R™ and v € N"
defines a tempered distribution on S(R").

Example 2.4. The space LP(R") for all p € [1, +0o0] is contained in the space of
tempered distribution S’(R"), each u € LP(R") is identified with the map

fre | (@) f(z)de

Rn

A tempered distribution u € S’(IR™) vanishes on an open set U C R™ if (u, f) =0
for any f € S(IR™) with supp(f) C U. The support of a tempered distribution u €
S’(R™) is complement of the union of those open sets where u vanishes, thus the
support is always a closed set.
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A continuous linear map A: S(R™) — S(R™) is a linear map such that for all
k € N, there exists a constant C' and an integer K such that the inequality [|A(f)|x <
C| f|lx holds for all f € S(IR"™). To define operators on the space of tempered dis-
tributions out of some given continuous linear map on the Schwartz space, we use
duality.

Theorem 2.5. Suppose A: S(R") — S(R™) is a continuous linear map, then the
map AT:S'(R™) — S'(R") defined by

(AT (u), f):= (u, A(S))

for all f € S(R™), is linear and continuous. Here the continuity means for any
sequence {u,}nen CS'(R™) with limit u € S'(R™), the sequence {AT(uy)}nen has
limit AT (u).

Proof. We first show that A% (u) is a tempered distribution, which means A”(u) is
a continuous linear functional on S(IR™). Linearity is clear from the definition. We
proof the continuity.

Since u € §'(R™), there exists a constant C' and an integer k, such that

[u(g) < Cllgll
for all g€ S(R™).
Since A: S(R") — S(IR™) is a continuous linear map, then there exists a constant
C’ and an integer K such that the inequality

IACHIE<CIIf I

holds for all f€S(R™).
Combine there two inequalities, we have

[u(AUNI<CIAUN < C-ClI f I
holds for all fe€S(R™).

Hence AT(u) is indeed a tempered distribution. The second statement follows
directly from the definition of the convergence of a sequence of tempered distribu-
tion. 0

Example 2.6.

1. The differential operator (—0)® with o € N", acting on a Schwartz function
by taking derivatives, is clearly a continuous linear map from S(IR™) to itself, this
defines the differential operator 9* on tempered distributions.

2. Given a smooth function h € C*°(IR™) whose partial derivatives of any order
is at most polynomial growth, that is for each av € N" there is a constant C' and
a polynomial function P,(z) such that |0%h(x)| < C- P,(z) for all x € R™. Clearly
multiplying Schwartz function by h is a continuous linear map from S(IR") to itself,
this defines the multiplication operator h on tempered distributions.

3. Suppose L € GL(IR"), then the map

S(R")3 ()= gy 270D
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is a continuous linear map from S(IR™) to itself, this defines coordinate change L(-)
of tempered distributions. More generally, one can define coordinate change with
respect to other elements in the diffeomorphism group of R”. This operator also
makes it possible to talk about invariant distribution, for example rotation invariant
or Lorentz invariant.

4. Given a fixed function f € S(IR") and denote f~(x)= f(—=x), then the map
S(R") 39— f"xyg

is clearly a continuous linear map from S(IR") to itself by lemma 2.2. This gives how
to convolute a tempered distribution with a Schwartz function f.

5. We know from Theorem 2.1 that Fourier transform is a continuous linear
map from S(IR") to itself, then this defines the Fourier transform F on the space of
tempered distribution. In the same way, we can define the inverse Fourier transform
F~1 on the space of tempered distribution, and we will prove later they are indeed
inverse of each other.

Just like the case of Fourier transform on the Schwartz space, we have following
formulas.

Lemma 2.7. For any ue S'(R") and f € S(R™), we have
(10)* F(u) = F(z"u)
(i8)* F(u) = F(0u)
F(fru) = F(f)F(u)
F(fu) = F(f)*F(u)

Proof. These identities are easy to check. 0

Fourier transform is a continuous linear isomorphism on the space of tempered
distribution.

Theorem 2.8. The Fourier transform F from S'(R") to itself is linear, bijective
and continuous with continuous linear inverse F 1.

Proof. It is an easy consequence of theorem 2.1. 0

It can be shown that any tempered distribution is a derivative of some continuous
function, the precise statement is given bellow.

Theorem 2.9. Suppose ue€ S'(R"), then there is a polynomially bounded continuous
function f, that is
[f@)| <O+ ||z l?)™
for some constant C' € Ry m €N, such that
u=0"f

for some multi index o, where we think of f as a tempered distribution and then take
the partial deriwatives.
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The proof can be found in [39], we omit it here.

2.3 Convolution of Distributions

Taking the convolution of a Schwartz function and a tempered distribution is an
important operation, it gives a way to regularize a tempered distribution, which is
not regular enough in general.

Theorem 2.10.

(1) For a fixed function f € S(R™), the map defined by uw fxu for any u €
S'(R™), is a continuous map.

(2) We have following identities:

0 fxu)=(0f)xu= f*(0%)
(fxg)*xu=fx(g*u)
F(fru)=F(f) F(u)
F(fu)=F(f) = F(u)

for any f,g€S(R") and ue S’'(R").
(3) For any f € S(R™) and we S'(R™), the convolution f*u is a smooth function
such that for any multi index o, we have

|0°(f *u) (@) <O+ [lz]*)™
for some constant C' € R, m € N.
Proof.

(1) For any sequence {u,} C S’(R™) with limit u € S'(R"), and any h € S(R"),
we have

(fxup, h)y = tup, f[~xh)—(u, f[Txh)={(f*u,h)

which concludes that the convolution map with fixed Schwartz function f is a con-
tinuous map from S’(R") to S’(R™).

(2) These identities are easy to check.

(3) By theorem 2.9 we know that here is some continuous function A such that
u = 0% for some multi index «, and

()] <C(A+ |l )%™
for some constant C'€ Ry m € N. Then we have
fru=f*x0*h=(0“f)*h

which is a convolution of two functions, and

(0%f)*h(z) = 0“f(x—y)-h(y)dy

R"

= [ 10 B0 @ =) ey
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which shows f xwu is a smooth function since the first term is again a Schwartz
function and the second term is a bounded continuous function. Moreover

hy)
— 1+ 2 maoe _ . d
ra@l = | [ 10+ @ = ) Dy
h(y)|
< 14+ 2 maef(p — . | d
|1l e =)l iy
<l [T+ [y 7)o f (2 — y)|dy
= ¢ @tle=ylPmio sy
which is clearly polynomially bounded since 0%f is a Schwartz function. 0J

Sometimes we need to approximate a tempered distribution, we introduce here
the concept of approximate identity.

Definition 2.11. Suppose we have a positive smooth function p, whose support is
contained in the centered unit ball B C R"™, and

/ pla)de=1

Then the sequence of functions {cpg ::5*"¢(§)} parametrized by positive real number
g, 15 called an approximate identity.

Clearly this sequence tends to Dirac delta function as € — 0. We have following
result.

Theorem 2.12. Suppose . is an approximate identity and u € S'(R™), then we
have p.xu— u in the space S'(R") as e — 0.

Proof. We need to show that for any Schwartz function f, we have

(exu, f)—(u, f)
as ¢ — 0. Since
(pexu, f) = (u, oo % [)

then we only need to show ¢_ * f — f in the space S(IR"). Since Fourier transform
is a continuous isomorphism from S(R") to S(IR™), we only need to show the limit

F(pZ) F(f)— F(f) in the space S(R"). Since

Fe)©) = [ eme(T)eenda

= / o(x)e' ) da
= /gp(m)ei<55’x>dx
B
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then
FleD) F(f) - F(f) = [B () (€67 — 1) duF(f)
and
IFFH-F Dl = sup eaﬁ[ / go(x)(e“sw—1>dxf<f><f>}
la|<k,| B <k, E€R™ B

To show the right hand side tends to 0, it suffice to notice that when we use Leibniz
rule to compute the term

0| [ -1 aar(re)]
B
one case is there is some partial derivatives act on the first term, for example

¢o [B o (2)[0P(eC5) — 1)] da (97~ P F(£))(€)

sup
lo| <k, |B|<k,§€ER™

= sup
loo| <k, | BI<K, EERT

e [plagran e n da =27 (1)(6)

= Sup 8‘51|
lo| <k, |B|<k,§€ER™

< s £ /B (@) | dx |€2€5(P-BF(£))(€)]

la| <k, | B|<k,E€R™

[ooreoaseenoraz e
B

which clearly tends to 0 as € — 0, since £%¢M9°~ALF(f) is a Schwartz function,
another case is the following

sup
|la|<k,|B]<k,E€R™

< sw / 60 1 | €20 F (1)) (€)]

la|<k,|B]<k,E€R™

/ go(x)(e“ew—1>dxfa<aﬁf<f>><s>]

(e€,x)

e dA|dx [§2(07 F (1)) (€)

= sup /
|la|<k,|B]<k,E€R™

< m[o
|la|<k,|B]<k,E€R™

— e swp / (€, x)|dx [£2(88 F(£))()]

loe|<k,|B|<k,§€ER™J B

|€“I dA|da [€4(0° F(£)(E)

< e sup / )|l lld [1€]16*(0° F() ()

loe| <k, |BI<k,§€ER™J B

zgégo(x)nxndx sup [[€]1€X(@° F (1))

lo| <k, | 8| <k, §€R™
which clearly tends to 0 as € — 0. And this concludes the proof of the theorem. [J

2.4 Compact Supported Tempered Distribution
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A tempered distribution whose Fourier transform is compactly supported behaves
good, see book [15].

Theorem 2.13. Suppose u € S'(R™) and F(u) has compact support, then there
exists a smooth function u and constants C, € R, m € N, which depend on the mult:
mder o, with

|0%a(x)| < Ca(1+[|=]%)™
for all x € R", such that

(w )= [ ala)f(@)da

Proof. Since F(u) has compact support, then we can find a compact supported
smooth function p, whose value equals 1 on the set supp(F(u)), and clearly we have

F(u)=pF(u). Thus
u=F"1p)*u

and notice that p is also a Schwartz function, so is F~*(p), we can use theorem 2.10
to conclude that u is given by a smooth function whose derivatives are polynomially

bounded. O
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3 Besov Spaces and Paracontrolled Calculus

The first difficulty confronted in the study of stochastic partial differential equa-
tions, is to find a precise way to understand functions of, or product of the irregular
terms appearing in a stochastic partial differential equation. The motivation also
arise in quantum field theory, where most people believe that the infinities arise in
many calculations are due to multiplying distributions incorrectly. In this chapter
we introduce the Besov spaces, which offers a way to measure the regularity of a
tempered distribution, and the paracontrolled calculus, which offers a method to
manipulate the calculus of these irregular objects.

3.1 Littlewood-Paley Theory

To define the concept of Besov spaces, we need the smooth dyadic partition of
unity.

Definition 3.1. A smooth dyadic partition of unity consists two smooth radial
functions p_y, po € C that take values in the interval [0,1], where p_y is supported
in the ball B={x € R™ |z| < R} and py is supported in the annulus A= {xr € R™
0<ri<|z| <ro,withry <re} for some suitably chosen constants 11,12, R >0, such
that:

1. for each j € N, define functions p; by pj(x): :po(%), we have

o0

> pile) =1

j=—1

for all x e R™;
2. supp(p;) Nsupp(p;) =@, for all |i—j|>1.

The existence of dyadic partition of unity can be found in the book [4]. For a
given dyadic partition of unity, we have the definition of Littlewood-Paley decom-
position of tempered distribution as follows.

Definition 3.2. For any tempered distribution v € S'(R"™) and integer j > —1, the
j-th Littlewood-Paley block of u is defined by

Agu=F i)

thus A;:S'(R™) — S'(R™) is a continuous operator and we have the Littlewood-Paley
decomposition

j=-1
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For convenience, we assume A;=0 for j < —2. Since F~(p; ) =F Y p;) *u, we

denote K;=F"*(p;).

Lemma 3.3. For j >0, ||Kj|l =] Kol

Proof. We have for j >0

Kij(z) =

So

/ 27| Ko(27z)|d

| Ko(272)|d 27
R"L

| Ia)lda

which is exactly || K| = || Koz for j >0.

Lemma 3.4. Suppose u € LP C S’ with p € [1,00], then

Azl < || Kol ||wl|ze.

Proof. We use Young’s inequality for convolution

1A l[re

1 ]
5 o o
[ Kollz[ulze

O

Any tempered distribution can be approximated by a sequence of tempered
distributions whose Fourier transforms are compactly supported, hence a sequence

of compactly supported smooth functions.

Proposition 3.5. Suppose u e S'(R"), denote A ;= Zi<j—1 A;, then

u= lim A.ju
j—+o0
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in the space S'(R™).

Proof. For any Schwartz function f € S(IR"), we need to show

(u, f)= lim (Acju, f)= lim (u, Ac;f)

which amounts to prove

7j—1
lim A_;f= lim F! S | =
im Agjf i (Z Pf) f

J=toeo i——1

convergence in S(IR™). Since the Fourier transform F is a continuous isomorphism
from S(IR™) to itself with a continuous inverse F !, we only need to show

Jj—1

i 3 i~ f

gt T

convergence in S(IR™), which is equivalent to show that for all k€ N

=0
k

lim
j—+oo

Z Pz’f
i=j

If k=0, this is clear. For k> 0, since p;(z): I,Oo(%), any mixed partial derivative
of p; for all j >0 are uniformly bounded, hence

xo‘ﬁﬂ<z pf)(x)

for some constant C. The right hand side clearly tends to 0 when j — 4oc0. Thus
the result follows. 0

<C sup 207 ()|
\a|7|ﬁ|<k,z€supp(zfijm)

sup
|lal,| 8| <k,z €R™

3.2 Besov Spaces

Now we introduce a way to characterize the regularity of tempered distribution.
Since the smoothness of a function is connected to the decay property of its Fourier
transform, we need to control the growth of the Fourier transform of a tempered
distribution in each Littlewood-Paley Block to measure its regularity. The main
references are [23], [24] and [38], the book [4] contains more details.

For any u € S’(R"), since the Fourier transform of each tempered distribution
Aju is compactly supported, then it can be identified with a smooth function of at
most polynomial growth, so we can consider its LP-norm.
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Definition 3.6. Suppose a € R and 1< p, q< oo, the Besov space By ,(R") is a
subset of S'(R"™) which contains all tempered distribution u such that

lullsg,, = ( > (2j“||AjUI|LP)">

jz-1
s finite.

Clearly ||||gs, is a norm for any a € R and 1< p, ¢ < oo, we will show the
completeness later, hence the Besov space is a Banach space. Note that in this
definition, L — norm is used to measure the amount of frequencies in each blocks
and parameter « controls the decay speed of the amount of frequencies in each blocks
in the sense that the (9 — norm is finite, hence controls the decay of high frequency
terms, so  measures the regularity. The norm ||-||gs  depends on the choice of
dyadic partition of unity, but the space By ,(R") doesn’t, we will show this later.

In the application to stochastic partial differential equations, we will be more
interested in the special case B, (IR"), so we denote it by C*(IR"™) or C* for short,
and the norm ||-[|g _ by [|-||o for simplicity.

Lemma 3.7.
1. If a< B, we have ||ullo S ||ullg for all u € CP, hence CP C C%;
If a>0, then ||ullp= < ||ulla for all ueC®;
If <0, then ||ullp= 2 ||ulla for all ue L*;
If a<0, then ||Agu|lpe <279 ul|a for all ueC;
If a>0, then ||AsjullL= <27 ullo for all ueC?.

Cuds o e

Proof. 1. Since u € C?, we know the norm
[ullg= sup 27[| Ajul|pe
Jj=z-1
is finite. Since (> «, we have

sup 27| Ajul|pe = 277 sup 20FDE=D950| A | oo
i>—1 i>—1

> 2705~ qup 27| Aju |~
i>-1

= 20 ul],
2. Since u € C*, we know the norm

[uflo= sup 27 [[Ajul|e

jz-1

is finite, thus each block Aju is in L>. Consider a sequence of smooth functions, for
integer N > 1

N
unN = Z Alu

iz—1



18

we claim it is a Cauchy sequence in L*>°

SECTION 3

. For integers 1 < N < M we have the estimate

M
||UM—UN||Loo = Z AZU
12N =S
M
= D 272 Aw
i=N s
M
< Y 22| A=)
i>N
M
< Z 27 u|a
i>N
< 27N |, 0

Since L is a Banach space, the sequence uy converges to some function u € L.
We show that u=u almost everywhere. Since we know that

N
Z Au=u

i>—1

lim
N—+o0

lim wuy=
N—+o0

in the space of tempered distribution S’. Thus we have for any Schwartz function

fes

lim uN~fdx:/ u- fdx
N—+oo JRn n
however
N
/ (uy —a) - fdz| = / ( Aiu—ﬂ)~fd:c
" "\ix—1
N
< / (Z Am—ﬂ) | fldx
"I \iz-1
N
< / |f|dx Z Ay —1
" i>—1 Lo
after taking N — 400, we get
/ (u—a)- fdz|<0= [ (u—a)- fdx=0
n Rr

which concludes v =14 almost everywhere( this also shows u is a continuous function
since @ is L limit of a sequence of continuous functions). So we have

@]z

i>—1

]| o=

LOO

i Q_WQWAZ'U

iz—1

LOO
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Z 27 (2| Agu <)

i>—1

o
< Y 27 ullaxlulla

i>—1

3. Since u € L, and o <0, we have

sup 27| Aju ||
j=z-1

4. Since av <0 and u € C*, we have

| Agju]lres

N

AN

5. Since a> 0 and u € C%, we have

A julpe

N

AN

20 —1

277l

27 sup 20| Aju || Lo
j>—1

27%sup ||Ajul|r=
i>-1

27 ([ Koller + 1 allz) 1wl

LOO

Z 2—ia2io¢Aiu

1=—1 oo
> 272 A=)
i=—1

j .
lulla Y - 27
i=—1

27]'04 _ 22a
——Tjj§a——HUHa
277 Julla

+oo
i=j+1
+oo

Z 27ia2iaAiu
i=j+1

+oo

> 22 Aul|p)

LOO

LOO

i=j+1

—+00

lulla Y 27

i=j+1

2-7°
el

19
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O

Now we show that the Besov norm is left continuous with respect to the regu-
larity exponent.

Lemma 3.8. Suppose u € C?, then
lim_[luflar=[lulla

Proof. We know from lemma 3.7 that u € C*’, and ||u|| is an increasing function
of a’. So it is clear that the limit exists and

m|uflar <lufla
—
We only need to show the inequality in the other direction. By definition

[ullo= sup 27| Aju ||
iz-1

Case 1. There is some j’> —1 such that ||u||o=27"“||A;a||p~, then

lulla = 27| Ajn]lze

< 2j/(a—a/)"u"a,

SO

lulle < lim 29°©@=||u|| o
a’'—a~
= lim ||jul|a
P

o —x

Case 2. There is an increasing sequence j, — 00, such that 2/7%||A; u || is increasing
with limit ||« ||,. Then for any € >0, there is some integer N such that for n > N we
have ||ulo < 297%||A;, u||L=~+¢&. Then we have

2| Ajulpee + &
9in(@=a')||y ||, + &

[ulla <
<

SO

lulla < a,lin;,2j”(“‘“')||u||a’+ e

= lim |jul|o+e
a’'—a~



BESOV SPACES AND PARACONTROLLED CALCULUS 21

Since ¢ is arbitrary, we get the desired inequality. 0

The following lemma is useful when we need to approximate a distribution in a
Besov space with slightly smaller regularity exponent.

Lemma 3.9. Suppose o> 3 and u € C®, the the sequence Ag,u converges in CP.
Hence C® is contained in the closure of Schwartz functions in CP.

Proof. Since we have Aj(Ag,u—u)=0 for j <n, then

[Agnu —ullg
= sup 23ﬁ||Aj(A<nu — )|z

j=-1
A, > Aju

max{n,j—1} <k <j+1

= gup2/(F-a). e

jzn

< sup2/V0m 27 Aju
jzn
< 2707 ulla

n— 400

0

The second statement is true since each Ag,u is contained in S, hence in C#. [J

A set B is called a ball if it has the form {z € R™ |3:| R} with R>0, a set A
is called an annulus if it has the form {x € R™ 0 <r; <|z| <ro} with 0 <ry <rs.

Lemma 3.10. (Bernstein Type Inequalities) Suppose B is a ball and A is an
annulus. For any constants k€ N, 1< p<g<oo and A >0, then

1. there exists a constant C' which depends on k, B, p, q, such that for any func-
tion f € LP with supp(F(f)) CAB, we have:

k+n<

ma 0% 1 < O 67 £

2. there exists a constant C' which depends on k, A, p, such that for any function
f e LP with supp(F(f)) CAA, we have:

N[ fllr<C- max 10°f [|»

Proof. 1. Denote r to be the constant satisfies %—l—%: 1 +%. Let p € C2°, with p(z) =

1 when x € B, and denote p)(z) = gp(%) By Young’s inequality for convolutions
(see B.3), we have

10°fllze = 10°F " (r-f)lle
10%(F () # f o
< o (F @D ller - 1 ller



22 SECTION 3

Case 1. If r < oo, we estimate the term ||0*F ()|

T

ool = ([ o onlas )

T

oo )

Rn

T

)\nr+\a|rfn

(
(

= (o [ ooyl )
(

<aa<f—1so>><x>|rdx)

IR”|

ol +n(1=2) Ao e
e 1) e
so we have

a lal+n(1=7) 1 qap -
10°F e < A0 0n(F10) oo 1/ v

) Lo

g C)\kJrn(

with C'=[|0%(F o)L
Case 2. If 7 =00, then p=1, ¢= 00, we estimate the term ||0“F ~1(©y)]|L~

10°(F ()l = sup [0%(F ~H(on)) ()]

zeR?

= sup |0*(\(F o) (\r))|

zeR?

= Aol sup [(9(F L)) (Ax)|

zeR™

= X"l sup |[(04(F 1)) ()]

zeR™?

= X0 F 1)) (2)]|Le
so we have

l0°fllz < X™HI(0(F 1)) (@) lzoe - 1 £ 1o

< oG p s

Then the result follows.

2. Let ¢ € C°, supp(y) is a neighborhood of A which does not intersect a
neighborhood of 0 , with ¢(z) =1 when x € A, and denote p)(z)= @(%) Since we
can find a set of integers (N,), € N indexed by the multi-index «, such that

|z|?* = (21 + - +22)= Z N, (i2)*(—iz)*
la|=k
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and we have supp(F(f)) C AA, then we have the decomposition

C

f = FYFf)

= F Y e Ff)
f

< Epoger Nali) (i) Ff>

5
- ZM( et iers )
- ¥ (ol o)
- ZN?( )

By Young’s inequality for convolutions, we have

S (el ) s
— 13

|ov| =k

¥Y R,

lal=k

NIl = A

LP

N

N

A
la|=F

_ 1 (_ZS)Q i(&,x
- Y [o ), A3 ) Geibeeae

£

A
= 1 < Mei<f/>\,)\x) 2 0% s
|ZN/ o fuel3) a2 xe- 1o
o[ O

() e

7 (“” S )

which concludes the proof. 0

dz-[|0°f ||»

dz - [|0%f v

la|=Fk

:ZNa

la|=Fk

<<ZNa

la|=k

) max |0“f ||

laf=

Bernstein type inequalities are useful when we need to estimate functions with
compact Fourier transformations.

Corollary 3.11. Given ueC* where a € R and a multi-index € N", we have

19" a0y S M2l
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Proof. By Bernstein type inequality for balls with A =27, j € N, we have
1A;(0"u)l[ee = [ * (0"u)||>

197 (K5 5 ) | o

= [10"(Au)l~

S 2| Ajull e

= 2]’(|u|*0¢)2j0¢||Aju||Loo

< Qj(lul—a)HuHa

For j = —1, use Bernstein type inequality for balls with A=1, we have
[A-1(0"u)[lLe = [[0"(A_yu)]|L=

S 1Azl
< 2%ulla
In summary we get ||0#u||a—|u S [t o O

Now we use Bernstein type inequalities to show the equivalence of Besov spaces
B%, o, and Holder spaces C%* when a € (0,1).

Corollary 3.12. For a€(0,1), we have C*=C".
Proof.

1. C*C C%* Suppose u € C?, since a >0, we have ||u||z~ < [|ullo. As shown in
the proof 3.7 part 2, we have that

uw= lim z": Aju

n—oo
Jj=-1

in 1> and hence u is continuous and the limit converges at each point in R”. Suppose
x,y € R", since each block Aju is a smooth function, then there is some point z on
the line segment Ty such that

Aju(z) = Ajuly) = V(Aju)(z) - (z —y)
hence by Bernstein inequality we have

[Aju(r) = Agu(y)] = [V(Au)(2) - (z = y)|

< 6ZA oo * -
<m0l -y
S 2Ajullze-{lz -yl

< 20 Nullo- o -yl

We also have

If ||z — y|| > 1, we have

< fu(z) = u(y)]

S lullzee S llwlla

~Y
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If ||z — y|| < 1, then there is some j, € N such that 2770~ ||z — y|| and we have

) uw)] < Y 1Au() - Au(y)
= 3 @) - A+ Y [Au() - Au(y)

[e o]

Jo
< D YNl e —yll+ D 27 ula

j=—1 j=jo+1
= fulo(220- iz - y ]+ 2750)

~ ullo- [l —yll*

In summary we have

ju(z) —u(y)| -

|ullco.e = ||ul|Le + sup S e

£y ||ZL‘ - yHa
hence C*C C%=.
2. C*D (% Suppose f € (C%, then f € L and we have
[A—1f llzoe S F1lzee
For j >0, since p;(0) =0, then

Rnffl(/)j)(l’)dl‘ = Rnffl(/)j)(x)(f“x’o)df
= F(F(p))(0)
= p;(0)
=0

Since f € C*, we have | f(y) — f(2)| <[|fllco [z = y||* then

1Aif (@) = [F~(py) * f(z)]
fl(pj)(:v—y)f(y)dy’

Rn

F ) — ) (f(y) - f<x>>dy]

.
< Wfllcos [ 17 ) =)l ly—aldy
= [fllooe-2 [ )@z = )| ly —xldy
Rn
= fllgo-27 [ 17 o) (2 = )| |2 =) (2

= w27 [ )=o)l ly—dy

25
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which concludes the inequality || f|la S| f|lco.e- O

In general, it can be shown that if « € (0, 400)\ N, the Besov space C*(R") and
the Holder space C'l)-2~L2)(R") are the same, the Besov norm and Holder norm are
equivalent (see [4], and [1] for a proof), hence the space C*(R") and C'lele~lel(R?)
are the same. However if o € N, the Besov space C*(IR") is strictly larger than

C(R).

Theorem 3.13. (Besov embedding) Let 1 <p;<pa<oo, 1< 1 <2< 00, and
a€R. Then for any u € By, ,,(R"), we have

lull o x 1y Slulsg, ,
B P1 P2

p2,92
1 1

hence we have a continuous embedding of By , (R™) into B]?qu:(”l ”)(IR”).

Proof. We have

1

oo ‘ p
lullsg, ,, = (Z (2”||AjUHLP1)q1)
J
1
o in( At q1 \ a1
<2Ja2 J (m PQ)HAJ'UHLP?) )

L

— i <2j(an(pllP;))||Aju“”2>ql>q1

1

. i<2j<an<pl11’12))||Aju||Lp2>q2>q2

2V
]

where we used ||-||je2 < ||| ;1.

O

Next, we want to show the Besov space By ,(IR") is complete, and is independent
of the dyadic partition of unity used in the definition.

Lemma 3.14. Let ACR™ be an annulus and {u;};j>_1 be a sequence of smooth
functions such that F(u;) is supported in 29A, and ||u;||p S 277 for all j. Then
the limat

N

lim E U

N—o0
j=-1



BESOV SPACES AND PARACONTROLLED CALCULUS 27
converges in the space S'.

Proof. For any f €S, we need to show

<Z uj>f>zz <Uj,f>

j=—1 j=—1

converges as N — 0o. So we try to estimate a typical term (u;, f). As we did in the
proof of Bernstein type inequalities, let ¢ € C:°; supp() is a neighborhood of A
which does not intersect a neighborhood of 0 , with ¢(x) =1 when z € A, and denote
oa(x) = cp(%) We have

6
o) = 3 (o )*Wf( )

1Bl=k

%)
n )\

\ﬁ\ k
_ )\n kNﬁ 5 zé B i<§,>\(l‘—y)> , f
E \m K // (X) |53 € 0°f(y)d -dy

)\
_ X‘ kNﬁ 5) iENa—1) 9P
= V0P f(y)dédy
\m k /”/

Since the function

Nﬁ

Her=n 90 (y)dedy

n

_ie\8 .
/:‘0(5)( Zéz €z<£,)\y>d€

has compact supported Fourier transform, then it is a Schwartz function. Then by
using Holder inequality and Young’s inequality for convolution, we have

[ (s, f)]

_ )\n kNﬁ Z(g o)
- //Azsn |€|2k 0" f (y)u;(z)dédyda

Iﬁl k
//1;2n

PY
< g /
27r n
Iﬁl k

2<£ Az —y)) IPf(y)dédy

|uj(z)|dx

)fog

< 3 eiEa=0) 93 (y)dedy
A"~k Ng el (=i€)” iten)

< mzk =077 / o(e) W |

= > Sl [ | [ oo eemadan

1Bl=k
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Aka%
— Al oo |OBF 1|1 d
Iﬁlzk (271')" HUJHL || f”L R | | T
—k
= > 2 w0l | [ 90(5)(|§ g
|B]=k
—ja AikNﬁ ( ) z
< OBF |1 &g
S22 T 12l Jrer e e

We then choose A =27 and k to be some integer such that k4« > 0. Then

(s, f |<2N+k>z a0 / so<5><|g|§,2 e

1Bl=k

Ll

hence the series

converges absolutely. 0

Lemma 3.15.

1. Let ACR" be an annulus, « € R, and {u;};j>—1 be a sequence of smooth
functions such that F(u;) is supported in 27A, and ||u;||p~ <279 for all j. Then
the limat

converges in the space S', denote the limit by u, then u € C*, and

[ulla Sa sup {27|u;|z=}.
j=z-1

2. Let BCR™ be a ball, « >0, and {u;};>_1 be a sequence of smooth functions
such that F(u;) is supported in 27B, and ||u;||L~ <277 for all j. Then the limit

converges in the space S', denote the limit by u, then u € C*, and

[tlla Sa sup {27 [[u; |z}
jz—1

Proof.
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1. We have shown in previous lemma that the infinite sum converges in the space
S’. Denote the limit by u, we show u € C®. Since F(u;) is supported in in 274, then
Aju;# 0 only for i~ j. So

Al =

i

S > 2wy pe270
J~i

< sup {27y e}y 275
iz-1 e

~ sup {27%(|u;|p}27"
iz-1

thus
[ufla= sup 2| Ajullree S sup {27%(|u;[|reo}

i>—1 i=—1

which concludes the proof.
2. For any f €S8, we need to show

<Z uj,f>= 2 (uf)

converges as N — oco. For a typical term (u;, f), since a >0 and
| o s
< [ @ f@)lda
Rn
< Nl [ |7(@)lda
Rn

= ujllzell fllze
S 27 f |z
we then have the limit converges in the space of tempered distributions. Denote the

limit by u, we show u € C*. Since F(u;) is supported in in 2/B, then A;u; # 0 only
for i <j. So

[{uj, ) =

o0
A = (A
Jj=-1 Loo
<) (1Al

iz

SO 20y e2 e

iz
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< sup {27y e}y 275
iz-1

Jzi
~ sup {27%||u;l|p=}27*
i1
where we used o > 0. We then conclude that
[ullo= sup 2|| Ajulre S sup {27%(u;]|re}- O

i2-1 Jjz

One can prove a general version of this lemma for Besov spaces B, ,, which can
be found in the book [4]. We can get the following corollary easily from this lemma.

Corollary 3.16. If (pj)j>—1 is another dyadic partition of unity, and denote A]‘

to be the corresponding operators in Littlewood-Paley theory, B, , to be the corre-
sponding Besov spaces. Then By, ,= By, as a set, two norms ||-||ng and ||-||ps  are
equivalent.

Corollary 3.17. The Besov space By ,(R") is complete, for all « € R and 1< p,
q< 0.

Proof. Suppose {uy}r>0 is a Cauchy sequence in By ,(R™), hence for any ¢ >0,
there is some positive integer M, such that for all n,m > M, we have

1

||um_un||Bg’q:<Z (2]a||A]-um—Ajun||Lp)q> <e
iz

thus for all j
||A]um — AjunHLp < 2 Jag
we then get for each j, the sequence of smooth functions {Aju,},>o is a Cauchy

sequence in LP space, thus has a limit, denote it by v;. Let n — oo in previous
inequalities we get

| A jtt, — vj||Lp < 277%
for all m > M, and
> (@A —vyllie)? | <e
j=—1

for all K €N, then let K — oo to get

1

(Z (QjaHAjum—UjHLp)q) <e

j=-1
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Then we have an inequality

1
(Z (27 [0 | ») )
j=z—1
(z At — 51 ) (z zmmjumnm)q)

jz-1 jz-1

< e+ C

for some constant C' since the Cauchy is bounded. Since € >0 is arbitrary, we get

1

( > <2J‘auvjum>q)q <C

i>—1

and hence ||vj||r» < C277*. By Bernstein inequality, since F(Aju,,) is supported
in some ball 2/B where B is related to the domain used in the Littlewood-Paley
decomposition, then

ji
[Ajtm|lLee < C" 27 || Agti||r
also

in
[A iy — Ajug ||Loe < C"- 27 [ Ajin, — Aju ||

thus the sequence {Aju,},>0 is a Cauchy sequence in L™ space, hence has a limit
denoted by v which is clearly continuous. Then v; =v; almost everywhere, this
follows from for any compactly supported test function g, by using Holder inequality

| =)@tz

|(v; — Ajur)(x) g(z)|dx + |(vj — Ajug)(z) g(z)|dx
R R
k—oo
[v; — Aju|zr- ||9|| v+ [|v; = Agurllze - [lgller ——0

Thus taking limit as m — oo in our inequality we get

in o
||vj||L°°<C”‘2p||Uj||LP<CCI-2 ]( P>

For j >0, we know that the Fourier transform of v; is supported in the domain 274,
where A is the annulus used in the Littlewood-Paley decomposition, since we know
F(Ajuyy,) is supported in the domain 27A, then for any compactly supported test
function g supported outside 274, we have

F(Ajun) (@) - g (¢)dz = / Agun() F(g) ()

R"
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hence
[ @) F o) (@)da
= || (@)= dgunle)) - FHg) @)
< [ Iule) = Aunl@)] 17 g) )z
< Ny = Al 17 s =0

0= / oj(x)- FHg) (@)da = (v, F~H(g)) = (F(v5), 9)

this shows if we think of v; as a tempered distribution, then it is supported in 27A,
which also shows v; is smooth. Now we can use the lemma 3.14 to get the infinite

sum
2 U
jz-1

converges to some limit u € S’. We need to show that v € By, and vy — v in By,
We first show that u € By ,. Since supp(v;) C 27A, we know that A;v;#0 if and
only if |i — j| < 2. Moreover, we have the estimate

1A lle < ([ Kol - [|vs]»
for all 7, thus

lellsg, = (Z (2m||Az-u||m)q>

i=—1

Q| =

Z Aﬂ)j

i=—1 li—i|<2

q
P

oo q
(2” 3 HKoHLl-ijIIm)

lj—il<2

1
q

\'M

1

< Il S (z <zw||vj+k||m>q)
k=—1,0,1 \i

< 400

where we assume v_p=v_3=0 in the sum. This shows u € By ,.
Next we show that u,— u in By ,. For any € >0, take integer M >0 such that
when k> M, we have ||Ajuy — vj||» <277% and

1

o0
) q
( (2]“||Ajum—vj||m)q> <e
i>—1
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for all j. Then

|ur —ullBg ,

= | 2o @ fAdu—u) HLP)C’)Q

i=—1

Q| =

= i <2ia Aiuk— Z A{Uj

l7—1|<2

q
LP>

= i (2”‘ (Aiuk—vi)—< Z Az‘vj_vi>

lj—i|<2

q q
Lp>

1

q q
Lp>

= Z 2ia (Aluk — Ui) — Z ((Aﬂ}j — AZA]uk) — (Ajvi — AJAZUk))
i=—1 |7 —i[<2
< ( Z 2| (Agug —vi)[z») ) + Z < Z (2N A (Vi — Aiyru) HLP)q>
P— 1=—1,0,1 \i=—1
+ Z ( D> (20 A(vi - Aiuk)HLP)q)
—1,0,1 \i=—1
S e+ ( > (2 fvi— Aiuk”m)q) + ( > (@ vi- Az‘ukHLP)q)
i=—1 i=—1
< e
which gives the result. 0

3.3 First Order Paracontrolled Calculus

Now we know how to measure the regularity of distributions. We next consider
the problem of defining the multiplication of tempered distributions. Let us begin
with some heuristic discussion, we want to define the multiplication uv of u,v € S’
When u,v are smooth functions, we want it to be agree with the usual product of
functions. So we do the following formal computation

uv = Z Aju Z Aj
i>—1 j=—1
we can see the problem by following lemma.

Lemma 3.18. There exists an annulus A such that for any j>1 and all i< j—1,
we have

supp(F(AuAp)) C 27A
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for all u,v € S8'. And There exists a ball B such that for any i, j > —1 and all
li—j| <1, we have
supp(F(AulAwp)) C 2B

for allu,veS’.

Proof. Consider j > 1 and 1< j — 1, if : >0, we have

supp(F(AuApw)) = supp(F(Au) * F(Aw))
supp(F (Asu)) +supp(F(A;v))
2PA+27A

= 2/(2177A+ A)

C
C

by the construction of dyadic partition of unity we know that 2:=7AN A= @, then
there is an annulus A that 2074 + A C A. For the case of i =0, since

supp(F (AulA)) supp(F(Au)) + supp(F(Aw))
2'B+27A

= 20(2i-IB+ A)

C
C

by the construction of dyadic partition of unity we know that 2¢~/BN A= &, then
we may enlarge annulus A so that 2°=/B + A C A.
Consider i > j > —1 and |i — j| <1, then

supp(F(AuAv)) C supp(F(Aw)) +supp(F(Ajp))
C 2!B+2/'B or 2°A+2IB or 2A+2A
= 2/(2"79B+ B) or 2/(2177A+ B) or 2/(2177A+ A)
in each case, 277 'BN B+ or 27JANB+o or 2777AN A+ @. Which means we
can only find a ball B such that
supp(F(AuAp)) C 2B

which concludes the proof. 0

From this lemma we can see that if we decompose the sum as

uvzz Aiuz A]‘U:Z Z AZ"U/A]"U"‘Z Z Ajulv+ Z Z AjulAj

i>—1 j>—1 121 i—75>1 =21 j—i>1 j>—14:li—7|<1
J =z J J=z47 )=z VAR

the third term has a problem since we may add too much amplitudes to the fre-
quencies around 0, so we have to control the decay of product of blocks in order to
have a well-defined product distribution. For the first two terms there are no such
problems, since

Z Z AiuAjv:Z AZ‘UA<Z‘_1U Z Z AiUAjU:Z A<j_1uAjv

i1 i—j>1 i>1 =1 j—i>1 i>1
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there is no infinite sum involved in any annulus 274 of Fourier spaces. We use the
following notations to denote the three terms appeared in the formal decomposition

u%v:v>u:ZA<j_1uAjfu uo'u:z Z AVIPAN )

j>1 §>—1 ili—j|<1

and we call u <v and v <wu paraproducts, and uov the resonant product.
Theorem 3.19. (Paraproduct estimate)

1 lu=<vllgSs Jullellv]s for all BER, ue L* and v eCP;

2. Ju=<vlassSasllullallvls for all BER, a <0, ueC* and velCP;

3. Nuov|ats Sa.s lltllallv]s for all a, B €R such that a+ >0, ueC* and
velh.

Proof. 1. We know that there is an annulus A such that supp(F(A-; uAp)) C
27A, we need to estimate ||A-;_juAjv||L~. Since for all z € R" we have

I = /)—1(95)+Z pi()

= p-1(v) +§ po(%)

=
+oo
I = p71<2jxf1>+z p0<21+xjfl>
=0
+o0o
RESE O
i=7—
=
x = x
(555) = S n(2)
1=0
j—2
= P—1($)+Z pi(T)
1=0
=
Agjoiu = FH(po1t pot o+ pj—z) Fu)
= .7:_1(,0_1(%')7%)
— 2(7*1)”f—1(p_1)(2j—1.)*u
=

A 1t = (207" F 1 p_1) (2771 ) sou|pe
_ ] [ 25 E )@ (e~ )y

< ullz<llF = (o-1)llr

LOO
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|A<j1ulp]pe- |A<j_1u||ze]|Ajv ||z

<
< Nl 7 (-0 ll277 o5

Then by lemma 3.15 we have

Uu<v= Z A<]’,1UA]"U € Cﬁ
i>1
and moreover

lu=vlls S sup {271A <j-rudjolle} Sa llullellvlls
Jz—

which concludes the proof.

2. Again we know that there is an annulus A such that supp(F(A~;_1ulw)) C
27A, we need to estimate ||A<;_1uAv||L~. Since a <0, we have

1A rudplle < D [ Awloel| Al

i<j—1

< lallallolls Yo 275

i<j—1
Sa 27 A uflallv]ls

~

= u<veC P and ||[u <v|ats Sars.allt]allv]ls which is exactly the inequality

lv < vllats Sa,s lullallvlls

3. We know that there is a ball B such that

supp(]-"( Z A{uAfU))CQjB,

i:|i—j] <1

and

Z AZUA 45U

i:|i—j] <1

<D A=Al

irfi—j| <1

< 3 2l ol
irli—j|<1

~o 277 ullof|v g

Loe

By lemma 3.15 and a+ >0 we have uov € C* ¥ and |[uov||as s Sa.s |ullallv]s
0

From this theorem, we can then define the product of two distributions when
certain regularity conditions are satisfied.
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Corollary 3.20. Suppose a+ >0, the the map from C* x C%? — C*"B defined by
(u,v)—u<v+u=v+uov for any ue€C*ve€CP is a bounded bilinear map. The
terms u<v,u>v,uov depend on the specific dyadic partition of unity, the sum does
not.

Proof.
Case 1. 8>a>0. Then

luovlla<lluovlarsSasllullallvlls
lu < vlla <flu=<vlls Sp llullllvlls S llullallvlls
[u = vlla Sa llullallv]le S l[ullallvlls

which shows the sum v <v +u = v +wuov is well-defined in C¢.
Case 2. #>0>«. Then

luovlla<lluovlarsSa.p llullallvlls
lu < vlla < llu<vllatsSaslullallvls
[u = vllo Sa llullallv]iee S llullallvlls

which shows the sum v <v +wu = v +wuov is well-defined in C¢.
Case 3. #>a=0. Then

[wovlla<lluovlats Sasllullallvis

lu<vlla<llu<vlls_s Ss lull_sllvlls < llullallv]ls

lu = vlla Sa llullallvlle S llullallvlls

which shows the sum u <v+u >v+wow is well-defined in C®.

Now we show that the sum is independent of the specific dyadic partition of
unity, we denote the corresponding paraproduct and resonant product by u <wv,
u>=v and udwv. Clearly when u and v are smooth, we have

U<VF+UuSv+uov=uv=u<v+u>=v+uodv

and for general u € C® and v € C”, we take slight smaller o’ < o, 3’ < 3 such that
o'+ "> 0, and we know that u€C® and v €CP?. Then the maps

(u,v)—u<v+u>v+uov
(u,v)—u<v+u=v+udv

are both continuous bilinear maps from C* x C%" to C*'"¥', which agree with each
other on smooth elements. So the continuous extension of these two maps have
same value on the closure of (C*NC) x (C*°NCH), which contains C* x C? as a
subspace, hence two maps agree on space C* x C” and the uniqueness is proved. [J

In mathematical analysis, we approximate a differentiable function by a linear
function, with a remainder of higher order infinitesimal. Now we show some similar
result, which constitutes the so called first order paracontrolled calculus. The main
reference for the theorems is [23].
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Lemma 3.21. Suppose 0<a <1 and 3E€R, then for any u€C® gcCPland j > —1,

we have

1A (u < v) —uljolle S 277 Jullallv]ls

Proof. According to lemma 3.18, we know that there is an annulus A, such that
the Fourier transform F(A_;_jul;v) is supported on 2°A. Then

Aj(u<v) —ulp

i>1

i>—1

Aj(z A<HuAiv) —~ uA]( > Aiv)

= Z [Aj(A<i_1UAZ‘U) —UA]‘AZ'U]

IRSK]
= Z [Aj(A<i_1uAi’U) — A<Z‘_1UA]‘AZ"U] — Z A>Z~_1uAinv
IR IR

For the second term, since o >0, we have

>0— Y Kt
> AsiqudAp

114~

S D Al &A1
Lo it
S D 27 ulla27 P v]s
it

o~ 277 ulolv]s

For the first term, we have

AN

AN

[

| Kj(x

Rn

Rn

278 ||v
278 |v
278 |v

278 ||v

<z

- |

-
-

-

1wA) — A _uljAw)(x)|
D 1u(s) — Bes- ) B (1)

— )| [Acic1u(y) — Acimyu()] - [Aw(y)|dy

Kz = )| max [0 Aciyufli= - |2 =yl - [ Awllz~dy

mast [ F (1) peimnF ()= e =) (@ = y)ldy

st |7 pes @ 0l | K =) (@ = )ldy

mis | i 0%l [ | (=) (e =)l

max 27|90 / K(y) - yldy
R7L

| =1

2000 [0 A K,(y) - yldy
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If j=—1, we have

Z [Afl(A<i71UAiv) - A<i71UA71AiU]

iri~—1

LOO
S 3 20 ool | 1K) dy
tii~—1
~ 27 ENEEDy|o[|v s
If >0, we have
[K5(y) - yldy
Rn
= | |2"Ko(2%y) - yldy
Rn
= 277 |Ko(y)-yldy
Rn
thus
Z [Aj(A<i_1uAi’U) — A<Z‘_1UA]'AZ‘U]
irinj 00
S X 2 Iulalol2 [ |Kalw) - sldy
R "
= > el | Kalw) - sldy
R
~ 279D u|q o]l
which concludes the proof. 0]

Lemma 3.22. Suppose a € (0,1) and 3,7 €R, such that «+ 3+ ~v>0 and B+ v <0.
Then there exists a bounded trilinear operator C:C* x C? x C¥— C*TP*7 such that

C(u,v,w)=((u<v)ow) —u(vow)

whenever u,v,w € S.

Proof. Suppose u,v,w €S, then

C(u,v,w)

= ((u<v)ow)—u(vow)

= Z Z i(u=<v)—udw)Aw

j=—14:i—j|<1

= Z Z Z (Agu <v) — Aguldw)Aw

j=>—1dli—7|<1 k>-1
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By definition, we have

A <v = Z A<171AkuAﬂ)

I>1

= Z A<l_1AkuAl’U

>max{k+1,1}

then according to lemma 3.18 there exists a ball é~ such that the support of Fourier
transform F(Ayu <v) is contained in the R™\ 2*B, then

A(Agu<v)#0=kSi

Hence the commutator can be written as

C(u,v,w)
= Z Z (Ai(Agu <v) = AcuAjw) Ajw — Z Z AsuApAjw
i>—1 ili—j|<1 j>—1 ili—j|<1

First, let us look at the second term

jz—1ili-j|<1

= Z Z ZAkuAivAjw

i>=1 itli—jI<1 kX

= Z Z Z AguAvAjw

G>—1 k>-1 ili—j|<1iSk

= Z Z Z AguAvAjw

k>—1 j>—1 ili—j|<1,iSk

The commutativity of all the summation symbols follow from the absolute conver-
gence of the sum, which is from the estimation

Z Z ZHAkuAivAijLoo

i>=1 ili—jI<1 kX

SO S Al Al A

i>=1 itli—jI<1 kX

ST N e tefull27 o2 ],

i>—1 ali—jI<1 kX

YooY 2 ulalvlls2 wll

jz—1ili—j|<1

> 277 ulalollgllwll,

j>—1

N

N

12

12

where we used a >0, + 3+ v >0.
For any k > —1, by lemma 3.18 there exists a ball B’ such that the Fourier
transform of the sum

Z Z AkuAivAjw = Z Z AkuAivAjw

2—1 ili—j|<1,i<k j2-1,j<k a]i—jI<1
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is supported in 2*B’. Moreover, we have

Z Z AguAvAjw

i>—1 irli—j|<1,i<k

LOO
ST Awullpel Aol Ajwl|p

§>—1 iti—j|<1,i<k

< lullallolsliewll, Y5 ST 2-hogmivgn

jz—1ili—jI<1,iSk

= Nullallvllsllwlly, > Y 2hegmifp-i
72-1,5<k i:|i—j|<1

~ lullalollgllwl, Y 2kepmit
iz-1j<k

o 27T o lv]lgllw ]l

N

where we used 3+ v <0 in the last line. Since oo+ 3+ v >0, we use the lemma 3.15
to get

YooY AzudwAwectit

jz—1@li—jI<1

§>—1 i|i—j|<1

and

a+ [+

Z Z AZUAZ"UAJ"UJ

o+ B+
< sup 2l )
G=—1 i:li—j|<1,i<l

I>—1

)

< sup {21 AN HOE BTNy | o |5 ]|w]] }
I>—1

= [lullallolislwlly

Next, let us look at the first term. Clearly, for any j > —1, the Fourier transform
of the term

(Ai(Agu <v) = AcuAw)Ajw

iti—j|<1
is supported in some ball 2/B”. By using out previous lemma, we have the estimation

Z (Ai(Agu <v) = AcuAw)Ajw

it)i—j|<1 Loo
< Y IA(Agu=0) ~ Agub=| A o~
itli—j <1

< Y 2 Agullallolls2 7wl

itli—j <1

S > 2 ullalvlle2 T wll,

ili—7|<1

12

27BN | o [|v || 5] Jw
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where we used

[Agiulle =

N

S

~

sup 2/ AjA <iu || oo

I>-1
sup 2@ E N Au
12=1 Wk<ik~l oo

sup2' Y " || AAw

12=1 k<iknl

sup 2/ Z | A |

I2=1 k< kil

]|

Again, since a+ 8+ v >0, we use the lemma 3.15 to get

Z Z (Al(Aslu < ’U) — AsluAlv)A]w € Cothty

§>—1 ili—jI<1
and

j>—1 ili—j|<1

< sup 2l(0‘+ﬁ+7)
>-1

I>-1

= [lullallollsllwlly

Z Z (Ai(A<iu<v) — AuAv) Ajw

Z (Ai(Agu <v) = Aqulv) Nw

ili—j|<1

S sup {21 T |, v 5] wll, }

a+ [+

SECTION 3

)

So in summary, we have for any u,v,w € S, the following commutator estimate

1€ (u, v, w

1s true.

Moty S llullallvllslwll,

Now we need to extend this bounded map to the whole space by continuity. To
do this, we first choose slightly smaller regularity exponents o’ € (0, 1), 5/, 7' € R
such that o’ <, 8/ < 3,7 <~y and o' + ' +~'>0, f'+ ' <0. Since we know
from lemma 3.9 the space C® x C? x C7 is contained in the closure of the Schwartz

functions in space C* x C% x 7', and the space C**#+7 is contained in the closure
of the Schwartz functions in space C+t7+7. So we first obtain the estimate for

Schwartz functions in C* x C?' x C7" and then extend the commutator continuously
to get a definition of the commutator for any three elements in C* x C? x C7, the
extension is independent of o, 3, ¥’ since C* x C? x C7 is continuously embedded
in the space C* x C% x €. And the desired boundedness follows from

1C(w, v, w)llatpry =

N

lim B HC(U7U7w)H0¢/+ﬂ/+’Yl

a'—a”,B'—= BT,y =y

lim Nulladlollgllwll

a'—a”,B'—= BT,y =y

lllallvlsllwlly
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where the second inequality may have a constant that depends on o', ', 7" but the
limit exists and is finite, which can be seen easily from previous lemmas. 0

Now we prove the paralinearization theorem, which is useful when dealing with
nonlinearity.

Theorem 3.23. (Paralinearization) Suppose a € (0,1), 5€(0,a], and let F €
CYBle The map Rp:C* — C**F defined by the equation

F(u)=F'(u) <u+ Rp(u)
for any uwe C?*, is locally bounded. that is
IR a5 S I |1+ el F7)
If F € C*P/ then Rp is locally Lipschitz continuous, that is
1Rr(u) = Re(0)la+s S IF [l o2ora(L+ [ufla+ [Jolla) 7 lu vl

for all u,veC”.

Proof. By definition, we have

Rp(u) = F(u)— F'(u) <u
— Z (AiF(u) = Aci 1 F'(u)Au)

i>—1

Note that there is a ball B, such that for any i > —1, the Fourier transform of
AF(u) — Ai_F'(u)Agu is supported in ball 2'B. Also notice that

K (z)dz= | F Y p_1)(x)e dz=p_1(0)=1
R R
and for i >0, we have
Kix)dz= [ F~Yp:)(x)e "% dz = p;(0)=0
Rn R’n/

We use the fact that C*2 C%® to identify u as a o — Holder continuous function.
If i <1, we have

JAF (u) = Acio1 F7(u) Agu |

AP ()]
- | m—wrana)

= || [ Ko=) - Pty —Fut) [ K@=y
< IFle+ [ 1Kda =9l IFllsluloke = yledy

< |F (1 + full)
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If :>1, we have
A<z 1F( )AZU(ZE)

- / Kiw =) Pum)dy— [ K=ty | Koo —2)Fu(:)ds

- /n RnKz‘(x — YK 1(x—2)(F(u(y)) — F'(u(2))u(y))dydz
[ [ K)o ) - Flu) P u) () — =)y

By mean value theorem, there exists £ € (0, 1), such that

|F'(u(y)) = F(u(2)) = F'(u(2) (u(y) — u(2))]
|(F"(&u(y) + (1 = u(2)) — F'(u(2)))(u(y) — u(2))]

< NFNlgrsraluly) + (1= €u(z) —u(2)|?*lu(y) — u(2)]
= ||F|lgnsra €177 u(y) — u(z)[P 0/
< NF Nlgrssal|ul|LT072 |y — 2|08/

Thus
|AF (u) () — Aci o1 F'(u) Agu ()]
< N lnsre [ [ 1K= p)Eaa =) Jy— 2y

= WPlleasellalls™ [ [ [l Kesa(] - ly = 21y
n RTL

Now we try to estimate the last integral
|| K@@y =21y

— / |2mK0 21 ) (i-Dnp (Zi_lz)|~|y—z|a+ﬂdydz
n Rn

= 2t [ R K272y — 2|y
~ 9ila+B) .
In summary, we get
A () () = Aci 1 F'(u) Agu(x)| S 27| F | a7
By lemma 3.15, we know that Rp(u) € C**# and
1Re(W)]lavs S sup {27CFDAF (u) = Aci 1 F'(u) Agul|p<}

j=—1
1+8
S NP llenora(t 4 [fulle")
which concludes the proof of the first statement.
The second statement can be proved in a similar way. By definition, we have

Rp(u) — Rp(v) = (F(u)— F(v)) — (F'(u) <u—F'(v) <v)
= Z (AZ(F(U) — F(’U)) — (A<Z~_1F’(u)Aiu — A<Z‘_1F/(’U)Ai’l]))

i>—1
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Note that there is a ball B such that for any ¢ > —1, the Fourier transform of
A(F(u)— F(v)) — (A<i,1F/( )Au — Aci_F'(v)Aw) is supported in ball 2/B’.
If + <1, we have

||A2(F( ) ( )) ( <z—1F/(U)Az‘U - A<i—1F/(U)AiU)HL°°
= A(E() — F))lx
_ \ Ko — ) [F(u(y)) — F(o(y))]dy

R Lo
= ’ RnKi(x—y)[F’(fu(y)+(1—f)v(y))(U(x)—v(x))—(F(u(y))—F(v(y)))]dy—
(u(z) —v(z)) RnKi(x—y)F’(SU(y)vL(1—€)v(y))dy .

S HFHCIHU—’UIIMLA |Ki(x = y)| - [[Fllerl|u —vlla]z —yl|*dy
~ [[Fliellu=vlla
where ¢ depends on y such that

Fi(&uly) + (1= o(y))(uly) — v(y)) = Fu(y)) — F(v(y))

whose existence is given by the mean value theorem.
If :>1, we have

Ad(F(u) — F(0))(2) — (Aci—1 F'(u) Aju — Aoy F'(0) Ap) ()
- / / Ki(x — y)Kaia(z — 2)[(Flu(y)) - F(o(y))) -

(P (u(z))ul) — F'(o(2)o(w)] dyd
= [ K=Kl = 2 ((n) = Fo) = (F(u() = F(u()
—(F(u(=)) (u(y) - u(2) = F'(o()(0(y) — v(2)))] dyd>
0
Corollary 3.24. Suppose a € (0,1), 3€ (0,a] and v <0 which satisfies a+ B+~ >0

and a4 <0, let F € CYP/*_ Then there exists a locally bounded map Hp:C* x C7—
CotB+Y such that

F(u)ov=F'(u)(uowv)+Ilp(u,v)

for any u € C* and smooth veC?. Here the locally boundedness means the following
imequality

ITr (2, 0) ok g S IF lgmra( L+ el [0

If F € C%P/ then is Iy locally Lipschitz continuous

||HF(U17 U1) - HF(U27 /U2)||a+ﬁ+7
S N F llezara(T4 (lualla+ ualla) 2+ [[oall) (lua = ualla + [Jor — vall)

for any uy,us € C* and vy, v2 €C.
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Proof. For any u € C* and smooth v € C?, we have
Hp(u,v) = F(u)ov— F'(u)(uow)
= (F'(u)<u)ov— F'(u)(uov)+ Rp(u)ow
= C(F'(u),u,v)+ Rp(u)ov
then we use paralinearization and commutator estimate to get
[Hp(w,0)[la+p+y = (O (w),u,v)+ Rp(u) 0 vlat g4y
|CE (), u,v)llat gy + [ Be(u) 0 vllat 1~

<

S IF'@lsllullalvlly+ [[Be(w)llasslvoll

S F Ngrallulle™ (ol + 1 F oo+ lu et o
<

IE lgsra(L+ ulla™ ) ol

The last inequality follows from a similar estimate. 0

Converse to the paralinearization theorem, the collection of distributions that
look like some reference distribution in the sense of regularity, or intuitively a func-
tion of the reference distribution, should be important, we have following concept.

Definition 3.25. (Paracontrolled distribution) Suppose « € (0,1), 5 € (0, o]
and Z €C®. A distribution u € C® is called paracontrolled by Z, if there exists u’ € C?
such that

uti=u—u'<ZeCotr’

the collection of distributions paracontrolled by Z is denoted by D(Z), and to empha-
sise this structure, we write (u,u’,u®) € DP(Z). The norm

1w, ', u) [l pogz) = llulla+ [1w/lls + [|u*{lavr 5
1s then well-defined.

It can be shown that D?(Z) is a Banach space.

3.4 Higher Order Paracontrolled Calculus

In the paper [5], they developed a higher order paracontrolled calculus, which
generalizes the paralinearization theorem.

Theorem 3.26. Suppose o€ (0,1),k € Nt and let F' € C*¥*1 whose 4-th derivative
is bounded. There is a remainder map Rp:C*— C*+D% sych that

F(u)= Z i' - (—1)j( " )(qu(”)(u)) < (u"7) 4+ Rp(u)
for any ueC*.

For more informations on the estimate of remainder map, and various commu-
tator estimates, see [5].



(G AUSSIAN ANALYSIS 47

4 Gaussian Analysis

In this chapter we will introduce the subject of Gaussian analysis, which is about
the theory of white noise.

4.1 White Noise

We begin by a heuristic discussion of what is white noise. Before introduce the
white noise, we introduce the concept of generalized random processes, see [31] and
the references there in.

A generalized function or a tempered distribution u € §'(R"™) is used to model
a physical field, for example the temperature field, charge density field, electro-
magnetic field, etc. A measurement by a physical instrument is modeled by a test
function f € S(IR™), since usually we can only measure certain average of the field
instead of measure its accurate value at a point in the space. The result of the
measurement is given by the value (u, f).

If the field is random, then we expect the result of the measurement by f€S(IR")
gives a random variable instead of just one deterministic number, that is we have a
probability measure on the space of tempered distribution which models the random
field and the measurement (u, f) is then a random variable. Moreover we expect that
the resulting random measurement result look similar if we use similar instrument,
this requires some kind of continuity.

Definition 4.1. A generalized random process or a random field on R™ is a map
& from the space of Schwartz functions S(R™) to the space of random variables on
a fized probability space (Q, F,P), such that:

(1) Linearity: ®(c1fi1+ cafs) = a1®(f1) + c2®(f2) almost surely, for any ¢, co €
R and fi, fo€ S(]Rn) ;

(2) Continuity: If we have m sequences of test functions {fflj)}lgjgm,neﬂq and
j —th sequence converges to f9) in S(R™) for each 1< j <m, then the random vector
(@(fMY, ..., d(f'™)) converges in distribution to the random vector (®(fD),. ..,

n

O(f)) as n— oo.

The central limit theorem tells us the combined effect of an infinite number of
weakly correlated random variables is given by a Gaussian random variable. So it is
reasonable to expect that any measurement of a white noise &, which is the combined
result due to an infinite number of random background signal, is given by a Gaussian
random variable, that is all the random variables £( f) are Gaussian and the image of
this random field is a Gaussian linear space (linear subspace of all random variables
such that any finite elements are distributed as centered joint Gaussian). It is also
natural to assume that the white noise at different spacial regions are independent
from each other and the noise is the same under translation or rotations, that is we
can consider the Dirac normalization condition

E[E(0(-—2))€(0(-—y))] =d(x —y)
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Formally, for any fi, fo € S(R"), we have
El¢(f)E(f) = E[s( [ htayita- ->dx>5( / ﬁ(y)é(y—-)dy)}
~ [ @ RWBlEb( — )66~ Ddady
= [[ 5@ twyita = paady
- [ 7@ pla)da

which is the L? — inner product on the space of Schwartz functions. One can complete
the space of Schwartz functions to L?(IR"), since the Schwartz functions form a dense
subspace of L*(IR™). And convergence in distribution is equivalent to convergence
in L*(Q, F,P) for a Gaussian Hilbert space, then we can complete this generalized
random process to have the following formal definition.

Definition 4.2. A white noise & on R™ is an isometry from L*(R™) to a Gaussian
Hilbert space (a closed subspace of L*(2, F,IP) which consists only centered Gaussian
random variables), that is

E[E(f1)E(f2)] = (f1; f2r2mn)
for any fi, fo € L*(R"™).

Details about the Gaussian Hilbert spaces can be founded in the book [30].

4.2 Wick product

Now we study the Wick product of random variables. Let’s first consider the
case of a single random variable.

Definition 4.3. Fiz a probability space (Q,F,P) and a random variable X, such
that E[| X |"] <oo for any n € N. Define a sequence of random variables {: X™: },en,
which are polynomial functions of X, recursively by

(1) : X% =1;

(2) 8%: X" =n: X" forn=1,2,3,...;

(3) E: X™]=0 forn=1,2,3,...

i the second equation, we use the formal derivative of formal power series, and

the equality is in the sense of the corresponding coefficients of formal power series
are the same. We call : X™: the n-th Wick power of X.

Note that this definition depends on the probability space and the given random
variable on it. The motivation for the third equation comes from quantum field
theory, where one need to get rid of the infinities coming from the vacuum expec-
tation. The first few Wick powers are given in the following example.
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Example 4.4. With the same assumptions in the definition, we have

X = X —IE[X]
X% = ZIE[X]X E[X?] + 2E[X]?
(X% = X~ 3E[X]X2 - 3E[X?]X + 6E[X]2X — E[X]? + 6E[X]E[X?] — 6E[X?]

We study the Wick powers {: X™: },cnx when X is a Gaussian random variable
with mean 0. The Hermite polynomials are defined by the power series of the fol-
lowing analytical function

n

o0
xt—ftQ Z

First few Hermite polynomials are

HQ(JL') =1
Hi(z) = =z
Hy(z) = 2%2—1
Hi(z) = 2°—3x

Lemma 4.5. The Hermite polynomials has following properties:
(1) Hy(z) is a polynomial of degree n with coefficient of ™ equal to 1;
(2) H)(x)=nH,_1(x) forn>1;

(3) Hu(x)

n

22

2
2

Proof. Property (1) is clear from multiplying the power series of e** and e ~2"" The
property (2) follows from the equation

1.2 1.2
xt——=t xt——=t
o,e 2 =te 2

by comparing the coefficients of power series on both sides. For the property (3),
we observe that

n 22 n
d —7: _1 d = e 7($ t

"o

e n
dx™ (=1) dtn
and
2 2 1 o 22
e t—=t _ t—ft —5T 67
12 1
— cze 2(1 t)
22 X dn tn
e A D oo
dtm n!
n=0

thus the result follows by comparing the coefficients of power series on both sides. [J
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Lemma 4.6. Suppose X ~N(0,0?) where o >0, then

XM :a"Hn(E).
o

Proof. We check that the formula on the right hand side satisfy the definition of
Wick power. Clearly O'OHO(é):l. For the second condition, we have

o X , 0 X
8_XJ +1Hn+1<;) = 0 a_an—I—l(?)

o

— (n+ 1)aan<§>.

For the third condition, since X ~AN(0, 0?), then %NN(O, 1), so we have

1:]E|:zt+t2:|

e o
[e.9]

n=0

and then compare the coefficients on both sides. 0]

Remark 4.7. Notice that this lemma also works when ¢ =0, that is X =0 also
surely. Since H,(x) is a polynomial of degree n, the right hand side of the equation
is a polynomial function of two variables X and o, thus ¢ =0 does not make any
trouble.

Then under the assumption X ~ N(0,0?) for o >0, we have the identity

[e o]

=3 ()

n=0

and if we replace % by t, equivalently we get

Xt7702t2 Z i’ X”

Note that this formula also works when 0 =0. A simple consequence of this formula
is following lemma.

Lemma 4.8. Suppose (X,Y)~N(0,%) is a Gaussian vector with covariance matriz
>, then we have

E[l X": Y™ | =6, E[XY]"
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for any n,m € N.

Proof. Since we know that

Xt = Z tn n: Yr—f Y2r2 Z rm

and since Xt + Yr is again a centered Gaussian random variable, we have

Xt ]E[XQ]t? Yr—SE[Y?2r? (Xt+Yr)7%E[(Xt+Yr)2]€E[ XY]tr

then

E[XY]tr

E[eth%E[XQ]tQGer%E[YQ}TQ} _ E[e(XtJrYr)7%E[(Xt+Yr)2]€1E[Xy]tr} e

thus

E[eth%E[XQ}ﬂeer%E[YQ}rQ} _E i i tn:X":rm:Ym:

hence the result follows by comparing the coefficients on both sides of the equa-
tion. 0

Taking a special case of this lemma, if X =Y ~N(0,1), we have
E[l: X™: X™ ] =6,mn!
for any n, m € N. In other words, we have
E[H(X)Hpn(X)] = 6pmn!

which is equivalent to say that the Hermite polynomials are orthogonal with respect
to the weighted Lebesgue measure

/ Hn(x)Hm(x)e_%QCde = pmnl.
R

Wick product can be generalized to several random variables, and many similar
properties can be proved. We only give a definition here without go into the prop-
erties, since we will not need that much.

Definition 4.9. Fiz a probability space (2, F,P) and random variables X1, ... X,
such that E[| X;|"] < oo for any n € N and 1<I<m. Define a sequence of random
variables {: X{"'... X" Yo, n.eN, which are polynomial functions of Xi,... X,
recursively by

(1) : XP... X0 =1;
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(2) 81)(1: XX X = X XX for all 1<E<moand ng>0;
(8) BE[: X{"... X ]=0 forny+ -+ +4n,,>0
in the second equation, we use the formal derivative of formal power series, and

the equality is in the sense of the corresponding coefficients of formal power series
are the same.

4.3 Gaussian Hypercontractivity and Regularity of White
Noise

For Gaussian random variables, we have following estimates.
Theorem 4.10. (Gaussian Hypercontractivity) Assume X is a Gaussian

random wvariable on a probability space (2, F,P), and E[X]|=0. Then for any
p=2, there is a consant c(p), such that

E[IX 7] < c(p)E[X]P/?

Proof. We have

1 2
B[ X |7 :W@we ot

91 lovZire oy
=2 o e 2% do
(2#02)1/2/0 | Y )
2%1 oP /°° Pl _y vy
= 2 67
(271')1/2 . Yy Yy
LH
2> JPF p+1
_(271')1/2 2
QLH 1
§ D+ 21p/2
= r E[X=P
) (15 Jee
where I' is the Gamma function. Thus the result follows. O

There are generalizations to Wick product of Gaussian variables in a Gaussian
Hilbert spaces, see theorem 3.50 in [30]. As an application, we compute the regularity
of white noise.

Corollary 4.11. Suppose & is a white noise on d dimensiordml torus T¢, that is for
any x,y € R, we have E[£(x)E(y)] =6(z —y), then E€C 2 for any € > 0.

Proof. Denote a= —%, for any p > 2, by Besov embedding we have

€l s ShElag,
Boo,oo
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thus
el .|
L c °r
< Efl¢lzs )
= E| > 217|AiEl
Li=—1
= Y 2o [ Elagpn
j>—1 T
S D) zﬂap/ E[(A;€)%P/2dx
j>—1 T
0 p/2
= > o E{ K =)&)y | Kl x—y»s(yg)dm} do
j>—1 T
i p/2
= D / { / (96—yl)Kj(x—yz)E[f(yl)f(m)]dyldyz] dx
j>—1 T
i p/2
= Z Qjap/ |:/KJ(Q}—yl)Kj(Q}—yg)é(yl—yg)dyldyg} dzx
j>—1 T
= Y Kl b
j=z—1
= Y 2 K [ do
i>—1 ‘
< 400
where we used the Gaussian hypercontractivity for Gaussian variables A;¢. 0

The case of white noise on IR? can be shown with a similar method, the only
difference is we need some kind of modified Besov space.
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5 Parabolic Anderson Model

In this chapter we will present a complete solution of parabolic Anderson model
as an application of the tools we have developed so far. The main references are
[23], [24] and [38].

5.1 The Model and Paracontrolled Distributions

The parabolic Anderson model is a stochastic partial differential equation on
0, T) x T?

ou=Au+ Eu

where £ is spatial white noise, that is E [{(z)¢(z’)] = 0(x — 2’). This equation
described the diffusion in a random potential.

The first thing to do is to find the regularity of each term. We know the regularity
of the spatial white noise £ €C~'~, which can be seen by noting that it can be written
as tensor product of two one dimensional white noise, and one dimensional white

noise can be think of derivative of Brownian motion which has regularity exponent

1 In general the white noise in d dimension has regularity —% —.

2

Then we can only expect the solution u to be in C'~, since the heat operator
may improve the regularity of last term by 2. Observe that (1—)+(—1—)<0, so
the term &u is not well defined. Thus we identified where the problem is, next we
discuss heuristically how to deal with the equation, in order to build up a solution
theory by fixed point argument.

Suppose we have a solution u € C*, where a € (2/3,1) (2/3 comes from the need
for commutator estimate, we will see it later). Then the regularity of & is o — 2.
Define Z to be the solution of 0,7 =AZ + £, which is given by

2= | Pt

where P; is the heat kernel. Then Z has regularity o according to Schauder estimate.
We use the paraproduct decomposition to get

(Or—Au=E-u+Eou+&<u
if we denote L =0; — A, we have
u=L"Y¢-u+outé<u)=u<Z+[ L u<]E+ L (Eou+&<u)

according to the paraproduct estimate, we know that (£ <u) € C?*~2 suppose we
can show that (£ ou) € C?*~2 then the third term is in C** by Schauder estimate,
one can also show that the form of the second term is also in C** (see lemma 18 of
[24]). Thus we postulate the paracontrolled ansatz

u=u~<27+u#
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with u” € C?*, which means we also consider the solution with some extra structure
of being paracontrolled by Z. Having this at hand, we would like to ask what is the
equation for u#? Since

Lu=L(u<Z+u*)=u<LZ+|L,u<|Z+ Lu*

So
Lu?* = édu—u<LZ—[L,u<]Z
= ¢{rutéouté<u—u<E—[Liu=<|Z
= fo(u=<Z+u?)+E<u—|[L,u<]7
= w(Zo&)+C(u, Z, &) +ufol+E<u—[Lu<1]Z
and

w= [P u(Zog+ E<un[Laux1Z+ 00w 2.6 +utoe)ds
0

Everything is well-defined (since o > %), except the term Z o &, but this term does
not involve unknowns, so that we can assume it is given at first hand. Construction
of this term uses probability theory.

Then we have an equivalent system of equations

u = u<Z+u*

u = /tPt_s<u(Zo£)+§<u—[L,u<]Z+C(u,Z7£)+u#Of)d8
0

with input (u(0),&,Z,Z0&) €C*x C* 2 x C* x C**72) and we know that u € C,
u* € C**. Now we can apply Picard iteration and Banach fixed point theorem to
this system of equation, on the space of paracontrolled disrtribution D for some
suitable time interval [0, T, to get a unique solution that continuously depends on
the initial data (u(0), &, 7, Z o). We will do this in the following sections.

5.2 Schauder Estimates

Before the discussion we introduce the space needed for the discussion. We
denote C7C® by the continuous functions from [0,7) to C*, and C% C* be the C*

valued o’-Holder continuous functions. We define 2% = CrC*N C’%/ 2L for a € (0,
2), and we equip £ with the norm

[l 2 = max {| [leriges |- corp o

We refine the definition of paracontrolled distribution for our convenience.

Definition 5.1. (Paracontrolled distribution) Suppose a € (0,1) and Z € 7.
A distribution u € £ is called paracontrolled by Z, if there exists u' € ZF such that

uti=u—u' <7 e Lp”
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the collection of distributions paracontrolled by Z is denoted by DF(Z), and to empha-
size this structure, we write (u,u’,u®) € DH(Z). The norm

1w, w', u#) I pp(z) = Null 2 + 0l 2 + 0] 2z

is well-defined. DF(Z) is a Banach space.

Before talking about the Schauder estimate for the paracontrolled distributions,
we first introduce the standard Schauder estimate.

Theorem 5.2. (Schauder Estimate) Let o € (0,2), let (P;)i>0 be the semigroup
generated by the periodic Laplacian on T For f € CrC*~2, then the solution of
Lu= f,u(0)=0,

s given by

u(t):L‘lf(t):/tPtsf(s)ds

0

for any T >0, moreover, we have the following estimates

L= f e S L+ D) f Nlepen-

and for any u € C®, we have

[t = Prullzg < llulle

We will not prove this theorem, see lemma 11 of [24] and references therein.

Theorem 5.3. (Schauder Estimate for the Paracontrolled Distribution)
Let a€(0,1), £€CrC* 2 and LZ = € with Z(0)=0. Let u€ Zf, ffe€ OrC*~2,
and ug €C**. Then (g,u,g—u=<2)€DHZ), where g solves

Lg=u=<&+f% g(0)=uy,

and we have
19lpg(2) S llwollza + (1+T) (JJull zg (L4 11€llopea-2) + | fHllopeza-2)

for all T > 0. .
If furthermore £, 7,0, f% 4o, § satisfy the same assumptions as &, Z ., u, f*, ug, g
respectively, and if M =max {||u||.zg, ||£||cpco—2, 1}, then

dpg(2)(9, ) S 1o — tol|2a +

(L+T) M (flu—all g+ 1€ = Ellereaz+ 1/ = Fillogeza-2).

We will not prove this theorem, see theorem 7 of [24] and references therein.

5.3 Existence of Solutions and Renormalization
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We want to solve the system of equations
u = u<7+ut
t
u? = / Ps(u(Zo&)+&<u—[Liu<]Z+C(u,Z,€&) +utof)ds
0

with input (u(0),£,7,Z0&) €C*x C*72x C* x C?**~2, and we expect solutions satisfy
u€C, u” e C?.

We define the map ®7: D Z) — D Z) by

u=<Z+u*
o t
( u# ) / P s(u(Zo&)+E<u—[Lu<]Z2+C(u,Z,&)+uof)ds
0
where we only write down the derivative part and remainder part of the paracon-

trolled distribution, then we need to solve the fixed point problem @T< Y 4 )z
u

u
it Start from any element (u,u”) € DHZ), we have

LOr(u)=L(u<2)+u(Zoé)+E<u—[Liu<]Z+Cu,Z, &) +urol=u<E+ f#

where
ff=uw(Zo&)+&=u+C(u,Z,§) +urofeCrC?

together with ®7(u)(0) = up, then the Schauder estimate for the paracontrolled
distributions tells us that ®7(u) is an element of DF(Z) with derivative u, and

127(w)llpg2) S Nuolla+ (L+T) (ullzg (1+ [€llorea—2) + | fFllopeza-2)

Observe that since ¢ is a spacial white noise, then ||£||c,ca-2=||{]|ca-2 is a constant.
The estimate of the term || f¥|c,c2a—2 is too technical to produce here, see the
discussion below lemma 5.3 of [23], section 5.4 and theorem 8 of [24] and references
therein. The crucial fact is that one can take time 7' small enough, such that the
following inequality holds

1®7(w)[lpg2) < Cllullpgz)

for some constant C'< 1 which depends only on the data set (u(0),£, 7, Z0&), hence
one can run the Banach fixed point theorem to get the solution of the system of
equations. Moreover, one can prove that this solution depends on the data set (u(0),
£, 7,7 0¢&) in a locally Lipschitz continuous way, and this implies the uniqueness of
the solution.

Theorem 5.4. Suppose o € (2/3,1), then for any given set of data (ug, &, Z,
Zo&) el x Co72x C¥x C**2, there is a finite time T >0, such that a unique
solution (u =< Z +u?,u,u”) € DFH(Z) of the system of equations

u = u<Z+u¥

i = [ P@(Zo+e<u=[Lu<1Z+Cl0. 2,9 +uto s
0
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with initial condition w(0) =u¥(0) =uq exists. Moreover, the solution depends on
(ug, &, 2,72 0&)€C¥x CO2x C*x C**~2 in a locally Lipschitz continuous way.

Finally we say a few words on renormalization. We should notice that here Z o &
is just a notation, not a legal computation, and we thought it as an independent
element from Z and &. To construct this term, one may consider a sequence of
smooth approximations ¢ and Z¢ (convolution with some approximation of iden-
tity). Instead of the convergence of Z¢o &%, one find there is a sequence of numbers
c.(t) which tends to infinity as € — 0, such that

Z5(t) 0 &5 — (1)

converges in a suitable norm (expectation of some Besov norm). For each ¢ we can
solve previous system of equation, then take limit ¢ — 0 and use the continuity with
respect to the input data. So we actually solved the renormalized PAM

o= Au+ &u — oou

note that for each sample point in the probability space, the time interval for the
solution may be different, so the renormalized PAM exists within a random time
interval.
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6 Axiomatic Quantum Field Theory

In this chapter, we introduce the subject called axiomatic quantum field theory,
which try to extract basic properties that a relativistic quantum field theory should
satisfy. This is given by the Wightman axioms, and we show that one can use
correlation functions to reconstruct Wightman quantum fields. Then we introduce
how this is linked to the Schwinger functions in Euclidean quantum field theory,
and the axioms given by Osterwalder-Schrader.

6.1 Quantum Fields as Operator-Valued Distributions

In classical physics, a field is a function of space-time, which means an assignment
of quantities of particular type (for example scalar, vector, tensor or spinor, etc.) to
each point of space time. Such a concept allow us to know the observational value
of fields at each point with an infinite accuracy.

In quantum theory, an observable is a self-adjoint operator on some separable
Hilbert space, here we adopt von Neumann’s separable Hilbert space formulation
of quantum mechanics. It seems natural to think of a quantum field as a operator-
valued function of space-time, that is to each point of space-time, we assign a self-
adjoint operator on some fixed separable Hilbert space, which represents an observ-
able of some field components of a particular type. But this is not correct.

To see this from a mathematical viewpoint, let us see the case of free scalar Boson
field, the corresponding Hilbert space is the Fock space, namely

CoLAR)D(LA(RY)QLA(R)® ... =HoDH, D Ha® - -

where H, = ®"L*(R?) and a typical vector has form (Wy, ¥y, ¥y, ---) with ¥y € C,
U, € LA(R3), Uy € LA(R3) ® L*(IR?),. .. represents vacuum wave function, one particle
wave function, two particle wave function,etc. The scalar product is given by

<q), \I/> = i)o \Ilo—f—/ él(l’) \111(1‘) dgl’ —I—/ / éQ(l’l, ZBQ) \IIQ(Il, 172)d3]71d3172 + -
R3 R3J R3

if we define annihilation operator 1 (z) at each point of space by

(@Z}(x) \Il)n(xla SRR $n) =vn+l1 ‘I’n+1(1‘, Ty, - '7xn)

then define and compute the creation operator 1*(x) at the same point as the adjoint
operator of annihilation operator, we will find that the domain of the adjoint only
contains 0 vector, that is the field is too singular such that the operator at any point
can not act on any nonzero vector in the Hilbert space (see the arguments in [48],
or chapter 12 of the book [9]). Moreover, Wightman showed that in general, one can
not define the quantum fields at any space time point [47].
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Theorem 6.1. Suppose we have a quantum theory with a separable Hilbert space 'H,
and a strong continuous unitary representation of space-time translation R“3> a—
U(a) eU(H) such that the spectrum of the energy momentum operator is contained
i the closed forward light cone. Suppose the quantum theory has a unique vacuum
vector Wy, which is invariant under the action of space-time translation, that is

U(a)¥y= Yy foralla € R"3

Then a map B from a bounded open set O CIRY3 to Von Neumann algebra of bounded
operators on 'H, with the following properties

U(a)B(z)U(-a)= B(z +a)
[B(x), B(y)"] =0

where a is small enough and (x —y) is a space-like vector. Then B has constant
value equal to a constant multiple of identity.

See theorem 3.1 in [47], where the possibility of generalizing to unbounded oper-
ators is also discussed.

From physical viewpoint, this is a consequence of uncertainty principle for fields
as given by Bohr and Rosenfeld [11]. From Bohr and Rosenfeld’s analysis on measur-
ability of electromagnetic fields in the theory of quantum electrodynamics (see [11]
and [12], the English translation can be found in [46]), only the quantities formally
corresponds to the average of its classical analog over finite space-time regions are
measurable, and hence are observables, namely things like

1
W/OFHV(ZE) d4$

where O is an open set in R"?, |O| represents its volume, and F},, is the electromag-
netic tensor.

It was Heisenberg who first used smeared fields as fundamental object, since
by using smeared fields, he could avoid the infinite fluctuation in the computation
of Einstein’s fluctuation formula of blackbody radiation (see [26] and discussions
in [48]). He also argued that in general, to measure the field in a sharply defined
region, which is a mathematical idealization, one has to use an infinite amount of
energy, thus one can only measure the smeared field. The case of electromagnetic
field is special in the analysis of Bohr and Rosenfeld [11]|. But there is still a question
that what differentiability and regularity conditions one should assume in order to
define the smeared field. Heisenberg used second differentiable function to define
the smeared field, but the free electromagnetic field need not be smeared due to the
analysis of Bohr and Rosenfeld.

Inspired by the Laurent Schwartz’s theory of distribution, Wightman and Garding
[49] first try to use the Schwartz function space as the test function to define the
smeared field, which is the following definition. In this chapter, we use the com-
plex-valued Schwartz function space, namely the real and imaginary parts are both
Schwartz function, this space is also denoted by S.
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Definition 6.2. (Operator-valued distribution) Suppose H is a Hilbert space, an
operator-valued distribution is a complex linear map p from complex-valued Schwartz
function space S to the set of operators (bounded or unbounded) on Hilbert space
H, such that all the operators o(f),Vf €S have a common dense domain D, and
the map

S—=C, fr(2,0(f)¥)

15 continuous, where ® € H,V € D are fized vectors.

We should remark that there are different choice of test function space, not all
quantum field theories can be described by just using Schwartz function space as
the test function (see the discussion on page 804 [43], and [29]), more restrictive test
functions are needed for more singular behavior of vacuum expectations, and there
is no single choice for all the quantum field theory models. We also remark that
the requirement of the map ¢ to be weak continuous and together with choosing
Schwartz function as test functions in the Wightman axioms will lead to only renor-
malizable models in quantum field theory, see chapter 15 of [9].

6.2 Wightman Axioms of Relativistic Quantum Fields

Since we need to discuss the quantum theory of fields in Minkowski space-time,
we first set up the notations and tools in special relativity. For convenience, we
assume the speed of light ¢ is 1. Denote R"? the 1 4 d — dimensional Minkowski
space, with the scalar product of two typical vectors z;= (z/) = (29, z},..., 2¢) e RM4,
1=1,2 and u=0,1,...,d, given by

(1, 09) =228 — xjxy — - - — afaf = gzl
where goo=1,g11="...=gaa=—1 and g, =0if p#v. A vector x € R"? is called

time-like, if (x,2)>0
space-like, if (x,x)<0
light-like, if (z,2)=0

The set of all time-like vectors whose first component is positive is an open set,
which is called the forward light cone, denoted by V, this is the causal future of the
origin. Clearly the closure V, is the set of all time-like and light-like vectors whose
first component is non-negative.

Consider d = 3, which is the case of our physical world. The set of all linear
transformations A which preserves the Minkowski metric

<AfL’, A y> = <IL‘, y) < Jap AaMAﬁV:gMV
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forms a Lie group, called the extended Lorentz group, denoted by O(1, 3). Two
identities

det(A)?=1, (A%)* — (A'0)? — (A?0)? — (A%0)? =1
can be obtained directly from the definition. Thus, the Lorentz group has four
connected components, classified by four different range of conditions det(A) = =+1
and |A%o] > 1 (see page 10 of [44]). The connected component of the identity is a
subgroup, called the restricted Lorentz group, denoted by SO*(1,3), which preserves

the orientation of the whole Minkowski space (det(A) =1) and direction of time
(A°0>1). The other three components can be obtained by multiplying

ot ]

SR B L

which are time reversal operator, space inversion operator and their product.

The restricted Lorentz group is a six dimensional group, six independent sym-

metries are given by the rotation {R?, Rz, R} about three spacial axis

[1 1 -| ’71 cosf sin9-| [ : cosf —sind
\‘ cos 6 —siné’"[ 1 "\‘ sinf cosf ‘
1

sinf cos@ —sin 6 cos

and the boosts {M?, Mf, M?} about three axis

[ cosh¢ —sinh¢ -| ’V cosh¢ —sinh¢ -| ’V cosh¢

—sinh¢ -|
{sinhgb cosh¢ 1

1
1 "| —sinh¢ cosh¢ ’ 1 ’
1 1 —sinh¢ cosh¢

Together with the translation symmetry given by vectors in R"3, we can define
the Poincaré group P to be the set

{(a,A)|A€O(1,3),a e R}
with group law
(a1, A1)(az, A2) = (a1 + Ajag, A1As).
Clearly an element (a, A) of Poincaré group P should act on any = € R by
(a,N)v=Ax+ a.

The Poincaré group also has four connected components, we call the connected
component of the identity is called the restricted Poincaré group, denoted by R'3 x
SO*(1, 3) according to its construction.
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The Lie algebra of the Poincaré group is called the Poincaré algebra, which is
generated by generators of translations in four space-time directions {p° p', p? p3}
and generators of the rotation {Lj, Lo, L3} about three spacial axis

0 0][0 0 00][00 0 0]
0 0 00 01 00 —10
o -11'lo o oollo1 o0 o0
1 0 0 -100 00 0 0
and the boosts { My, My, M3} about three axis
[o —100][0 0—10][0
[1000 0 0 0 0 0
0

0o 0 00])|-10 0 0Y}
0 0 00 0 0 0 0 -1

The restricted Lorentz group SO7(1,3) has fundamental group Zs, its covering
group is SL(2, C), which is called the inhomogeneous Lorentz group. This is given
by following construction, there is an isomorphism of vector space between R and
the set of 2-by-2 Hermitian matrix, given by

(20 2!, 2% 23)

204+ 2% al—ix?
at+ix? 20 —a3
then clearly for any A € SL(2,C), the matrix
20+ bt —ia?

A
ol 4ix? 20—a3

A*

is still a Hermitian matrix, which induce a linear representation of SL(2,C) on R"3.
Moreover, we see that

det(A{ t+'x y_iz}A*>:det[ t+'x y—iz]
z+1y t—x Yy+iz t—x

=12 — g% — g2 — 2

which means A acts as a Lorentz transformation. Since the group SL(2,C) is simply
connected, this induce a group homomorphism from SL(2, C) to SO*(1,3) (for
surjectivity, see page 134 of [9]). Two elements A, B € SL(2, C) has the same image
if and only if B=—A.

The double cover of the restricted Poincaré group P is then given by the

{(a,A)| A€ SL(2,C),ac R}
with group law
(a1, Av)(az, As) = (a1 + Aras, A1 Ay)
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where the action on the Minkowski space vector is given by the representation
described above, this group is denoted by R x SL(2, C) according to its construc-
tion.

In the following discussion of quantum mechanics, we use the language of Hilbert
space in the spirit of von Neumann, where states are represented by unit rays {¥} in
a Hilbert space H, that is ¥ and ¢V represent the same state, for all cc*=1. It turns
out that we can not always construct the superposition of two states in the quantum
theory, for example the charge is conserved in nature, we don’t see a state of a system
which has nonzero probabilities to be observed with different charge number. Such
a property of non-existence of certain superpositions is called a superselection rule,
the maximal subspace of Hilbert space where superposition principle holds is called
a superselection sector. See chapter 1 of [44] for more discussion on this issue. In
the following discussion, we restrict ourself in a superselection sector.

A symmetry is a transformation of viewpoint which does not produce any obser-
vational physical effect, such transformations are divided into two classes, ones which
change the mathematical labelings and descriptions are called passive, and ones
which do change the status of the experimental apparatus are called active. Lorentz
transformations are both active and passive, gauge symmetries are only passive, not
active. In quantum mechanics, the only observational quantity is the probability of
a prepared normalized state ¥ observed in given normalized state ®, which is given
by Born’s rule |(¥, ®)|2. Thus a symmetry U any normalized state ¥ into a new
state UV in the same Hilbert space, such that

(U, UR)[=[(¥, ®)[

clearly this condition is independent of the representatives chosen in each unit ray.

Wigner showed such symmetries are either unitary or anti-unitary operators,
see [51] and [8]. A transformation U is called anti-unitary if the following condition
holds:

U@V +bP)=a*"U(V)+b*U(P)forVa,be C, U, dcH;
(UW,U ) = (&, ¥) for VI, b € M.

Clearly the product of two anti-unitary operators is a unitary operator.

In special relativity, we require the physical laws are invariant under Poincaré
transformations. It turns out that in particle physics, nature is not invariant under
time reversal, parity and their product, only restricted Lorentz transformations are
symmetries of nature. Thus each element A € R"3 x SO™(1,3) induces a symmetry
U(A). Since every element in the vicinity of identity of Lie group R»? x SO*(1,3) is
a square of some other element, and any element in RY3 x SO*(1,3) is a product of
finite number of elements in the vicinity of identity, the symmetry U(A) is actually
a unitary operator. Clearly

U(A)U(Ag) =U(A1A5)
on the space of unit rays, which is equivalent to say

U(A)U(Ay) = efAAIT(A1A) (6.1)
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where f: (RY3 x SO™(1,3)) x (R"? x SO*(1,3)) - R is a function. A map from
R x SO™(1,3) to the group U(H) of unitary operators on a Hilbert space is a
called a projective representation if the identity element is mapped to the identity
operator with a phase factor and 6.1 holds. The name comes from the fact that if
we consider the quotient group U(H)/{cI|c€ C,|c|=1}, then the composition of
the projective representation and the quotient map

RY3 x SOT(1,3) = U(H) —U(H) /{cI|ceC,|c|=1}

is then a representation of the Poincaré group. Cleary if we multiply a projective rep-
resentation by a phase factor which depends on the elements in the Poincaré group
is again a projective representation, and they correspond to same representation into
U(H)/{cI|ce C,|c|=1}. Moreover there is a one-to-one correspondence between
projective representations into U(H) up to a phase function and representations
into U(H)/{cI|ce C,|c|=1}. We have the following theorem by Bargmann [7] and
Wigner [50].

Theorem 6.3. (Wigner 1939, Bargmann 1954) Any projective representation
of restricted Poincaré group RY x SOT(1,3) to the group U(H) of unitary operators
on a Hilbert space is induced by a unitary representation of RY3x SL(2,C), this is
given by sending a pre-image of an element in RY3 x SO*(1,3) under double cover,
to the equivalence class of the unitary operator of representation of this element.

Thus one has to study the infinite dimensional strong continuous unitary repre-
sentation of the group R x SL(2, C). This was done by Wigner, see [50] and [6].
The original motivation of Wigner’s classification was to under stand the one-particle
state in quantum theory. Wigner though that for any quantum field theory, with or
without interaction, there must exist a subspace which describe the state where there
is only one single particle, and this subspace should look the same for each observer,
that is invariant under the action of Poincaré group. Wigner’s idea was that the
irreducible representations of Poincaré group can be used to classify the types of the
particles. The representation of R x SL(2, C) induces a representation of Poincaré
algebra, denote the image of each generator, one get the energy-momentum operator
{P*} and the generator of rotation and boosts {J” = —J#} such that e """
%7 are corresponding unitary operators. It can be shown that the following two
operators commute with all elements in the image of representation of Poincaré
algebra

Bt = (P92 = (P = (P = (P’
AL
where W, = % €uvpr My PP called the Pauli-Lubanski operator, €,,,) is the Levi-
Civita symbol. Since the representation is irreducible, then we know that they are

constant multiple of identity operator. Moreover, these constants can be used to
classify the representation

B, Pr=m?ld, W,Wr=m2s(s+1)
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where m is interpreted to be the mass, and when m is positive, s takes values in non-
negative half integers, is interpreted as the spin of the particle. We only consider
the case of m > 0. In this case, Wigner showed there is a one-to-one correspondence
between finite dimensional irreducible representations D% of SL(2,C) and massive
(m # 0) irreducible continuous unitary representation of R x SL(2, C). We first
briefly talk about the finite dimensional irreducible representation of SL(2,C) (in
complex vector space), more details can be found in [13].

The study of the finite dimensional irreducible representation of the spin group
can be reduced to the study of its Lie algebra, for convenience we can study the
complexification of this Lie algebra. We redefine the generators in the previous
discussion { L1, Lo, L3, My, Mo, M3} by {Ly =1Ly, My, =i My, k=1,2,3}, then the
commutator relations of these generators are given by

[Li, Lj] =i €;jx Li, [Li, Mj] =1 €55 My, [M;, Mj] = —1 €55 Ly,

where €, is the Levi-Civita symbol. Define J® :%(L. +iM.), then one can show
that
[Jz‘(Jr)a J}H] =1 €jk Jing)a [Ji(_)a J](_)] =1 €jk ng_)a [‘]i(+)7 J](_)] =0

thus the Lie algebra can be decomposed into a direct sum of two copies of rotation
Lie algebra. One can show that the complete list of inequivalent irreducible repre-
sentation of Lorentz group can be labeled by two half integers D+5-) where 54 =0,
1, 3
57 17 5’ e

As proved by Wigner, for m >0 and a half integer s, the unique irreducible con-
tinuous unitary representation of R x SL(2,C) can be constructed in the following

way. Consider in momentum 4-space the mass shell I} := {p € R}| p> =m?, 20> 0}

and the Lorentz invariant measure d§,,(p) = ——22idredes on it. Consider the

M2+ P+ 3+ 3
space @ZSH LT} of functions the form ¥(p, o) where pe L} and o =—s,...,s,
with inner product

with property [D(SJ”S—)]* and D%+ are equivalent representations.

@)= [ T 4,000

oO=—S8

and the action of (a, A) € R"* x SL(2, C) given by

((a, A)W)(p,0) =e~»> " DEL(R(p, A) (A~ 'p, o)

O—l

where R(p, A)=W (A 'p, A)=L(p) 'AL(A'p) € SU(2), which is the little group of
vector (m,0,0,0), L(p) is the Lorentz transformation satisfies p= L(p)(m, 0,0, 0),
and D® is an irreducible representation of SU(2), see chapter 2 of [45]. Under
the Mackey’s theory of induced representation, see [42], this representation can be
extended to the representation

((a, AW)(p,0) = e *PDE)L(A)U(A L p, o)
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where D((,S,Z, is the irreducible representation equivalent to D*%) as an extension of
irreducible representation of SU(2). The covariance in the Wightman’s axiom is
motivated by this transformation law.

Now we are in the position to introduce the Wightman axioms for the relativistic

quantum fields.

1. Space of states

- States are represented as unit rays in a separable complex Hilbert space H.

- There is a strong continuous unitary representation of the group R x SL(2,
C).

- (uniqueness of vacuum) There is a unique unit ray {2} (interpreted as
vacuum) such that

Ula, A)Q =0

for any (a, A) e R"3 % SL(2,C).

- (spectrum condition) The generators of space-time translations (P°, P!, P?,
P3), interpreted as the energy-momentum operator, has spectrum in closed forward
light cone V/,.

2. Observables and covariance

- A set of operator valued distributions {¢®[k,n € N}, where k labels the type
of the field which can be at most countable and n labels the components of the field
which can only take finite number of values, and a dense subspace D where all the
operators pF)(f) and p®)*(f) = p*)(f)* are defined, for all n € N and f € S(R").

- The vacuum {2 is contained in D.

- The domain D is invariant under the action of U(A,a), ¢®)(f) and p®W*(f),
for all (a, A) e R"¥ x SL(2,C), n€N and f e S(R?).

- The covariant transformation of fields operator under the action of (a, A) is
given by

U(a, A)e®O(f)U(a, A= D (A7) eMO)((a, A) f)

where D) (A) are matrices of a finite dimensional irreducible representation of the
group SL(2,C) with ¢®) as its components, and (a, A) f = f(A™! (z — a)). If the
representation D(A) is a representation of group SO*(1,3), then the fields are called
a tensor field, otherwise the fields are called spinor fields. This transformation law
is linear in the test function.

- The vacuum (2 is a cyclic vector, which means the linear span D of the set
{gpgkl)(*)(fl) ce ¢§ZM)(*)(fm) Ql me N) ila o 'aim € N) f17 ) fm € S(]R4)} is dense.

1
3. Locality or Microcausality
- For any two test functions f, g € R* whose supports consists only space-like

separated points, the operators p®)(f) and p*)()(g) satisfies

pWE(f)pkI(g) — o (k, k") pE))(g) o

n

B (f)=0

n

where o(k, k') =1 if one of k and k' is representation with integer spin, and o(k,
k)= —1 if both k and k' are representation of odd spin.
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We say that a field theory is a Hermitian scalar boson field, if real test functions
are mapped to the symmetric operators, the representation of the Lorentz group is
taken to be the trivial representation, and the sign in the microcausality is taken to
be 1. We make a few comments on these axioms.

Remark 6.4.

1. The original formulation of locality in [44], the number o(k, k) is not assumed
to be a constant depends only on the type of the fields, but afterwards, they proved
the famous spin-statistics theorem which says one has to choose the sign for compo-
nents of fields in a irreducible representation in the way we assumed, and for different
types of fields, one can do the Klein transformation to make the sign agree with our
choice, so there is no loss of generality. See page 328 of [10] for more discussion on
this issue.

2. The dense domain D in the assumption of observables, is a technical assump-
tion. But for the symmetric operators defined on a dense domain, it is a well-known
fact that there may not be a unique self-adjoint extension. Thus this axiom may
produce difficulties when constructing examples of Wightman fields.

3. It is clear that we can formulate the axioms for any space dimension d,
then one has to study the representation theory of the group SO*(1,d), in order
to formulate the correct transformation laws and commutator relations. For most
literature on the subject of axiomatic field theories, people usually treat the case of
single hermitian scalar field, which avoids these difficulties.

4. For the gauge theory, this set of axioms has to be modified. For the free
electro-magnetic field, there is a negative result by Ferrari, Picasso and Strocchi [18],
which says the covariant theory for the four-vector potential as operator-valued dis-
tributions, whose curl is also covariant, interpreted as the electromagnetic field, and
and satisfies the classical free Maxwell equations, does not exists. One can not just
consider the electromagnetic tensor as covariant observables as in classical electro-
dynamics, where the four potential is regarded as a mathematical trick. In quantum
theory, the four potential has physical effect, for example the famous Aharonov-
Bohm effect [2], where exp (ie§,A(z)dx) is an observable, but this includes less
information of the gauge field A(z). For an analogue in the case of non-abelian
gauge theory, see Yang and Wu [52]. These effects has been observed in experiments.
Glimm and Lee proposed a possible system of axioms for the quantum gauge theory,
see [22].

5. There is another approach called rigged Hilbert space approach to quantum
theory different from the Hilbert space theory by von Neumann. The motivation of
this approach is to make the Dirac’s formalism rigorous, and the crucial feature is
one can have non-normalizable eigenstate. For this approach to quantum mechanics,
see [40]. Bogoliubov and his collaborators modified the Wightman axiom into a
system using this rigged Hilbert space approach in [9], but they did not use it in
[10]. Prigogine and Antoniou argued that this is the suitable frame work to describe
the irreversible system in quantum theory [3].
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6. We assumed that the Hilbert space of states are separable, but the construc-
tions in physics usually result in a non-separable Hilbert space, for example if you
take tensor product an infinite number of Hilbert space, then you will get a non-
separable Hilbert space, but it can be shown that only a separable subspace is
meaningful to represents the physical states and define the operators.

The square of the energy-momentum operator
(PO)? = (P1)? = (P?)? = (P°)?

is called the mass operator. A quantum field theory is said to has a mass gap, if
there is a positive number A, such that there is no eigenvalue between 0 and A in
the spectrum of this operator.

The correlation of Wightman fields, given by

WAL s fa) o= (W, GO () - o) o)

for any fi, -+, fn € S(RY) is clearly a continuous multilinear functional, and thus
by nuclear theorem, this defines a tempered distribution on R**. The collection

(G N AC)) . . . .
{Wkl ’ Ii” } are called the Wightman distributions.

m17-..7m

Proposition 6.5. (Hermiticity) We have for all test functions

k(*), k‘( *) k_(*),---,k‘_(*)
Wmi, (f17 7f)_WmZ,---,m11 (frn'”?fl)
where the notation —(x) means if we have index k;, then we take ki_(*) =k, of we
have k}, we then take k:;(*) =k;.

Proof. Clearly we have

) )
Wil 2o (- fn)

= <\I/,<p5§1)(*’(f) wmn I f) Wo)

= (T, Pl )(fl)"'<PmZ (7*(fn)‘1’0>

_ Wk;(*)’.“’k;(*)(f f)

which gives the result. 0

Proposition 6.6. (Positivity) For any finite sequence of test functions
R T R 4i
{fmlmz J eS(R )}, we have

mi,-«-,Mm;

ki~ ). k{ ()k() kz(*) vk{(*)7___,kj/_(*) kg*)7---7k(*)
DIID DID DI N (R

W O /()k(), ,k-E)

/ / .
mlv"'ymj my,---,Mmyg
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OF ,
where f Lt is the function f T o(wj wiy. m).

k/(*) k!
i /
J m;

(SO A (%) (%) L
Proof. If all test function fffl i as the form fM fkl .This is just from the

s mi ms

fact that the norm of the vector

DO DR VA R AL
i ()

k(™

my,---,Mmyg
is non-negative. And note that any test function fm117_’,,7m; can be approximated
by a sequence of the form

k() k()
E fmll

where the convergence is in the space if Schwartz function. The statement is clearly
true for such elements in the approximating sequence. 0]

Proposition 6.7. (Covariance) We have

QI AC]
Z Dm1n1 Dﬁ?l'fllle(A_l)Wnkl177,n;kl ((a’7 A) f17 B (a7 A) fl)
k( )
_W (fh 7f)

for any (a,A) e R x SL(2,C), I, ky,..., ki€ N and 0<m; <2s(k;) +1,1<i <.

Proof. We use covariance property in the axioms of Wightman fields

Ula, A)~"¥ 7905,’2’( ><f> () Ula, A)~ D)
\\

0, Ula, A) SO (1)U (a, A)~'U(a, A)---Ula, A) g% (f) Ula, A)~" )

) <\I’°ZDW D, A) )Y D (AT el <<“’A)fl)%>

ny

Wk( *) k( )(fl, fl)
(Vo
(
(

= Z Dmm )... DI (AN (Tg, 9500 (@, A) f1)- - o809 ((a, A) 1) Wo)
() .. .(%)
= Z Dmml DI (AW R (0, A) iy - (a, A) )

-----

which gives the result. 0
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Proposition 6.8. (Locality or Microcausality) If the supports of test functions
f1, fix1 consist only space like points, then

B D )

Wm17'7"7ml,ml+17..m nn (fh o fl+17"'7fn)

kg*)y kl(*) kl(* ) 7

:(—1)U(kl,kl+l)wm17” '777,'Ll++117;nl7--.“ (fh fl+1’ fl, ey fn)

for all possible indices.

Proof. Using locality in the axioms of Wightman fields

OO C R
Wmi, ml,lml+l:.l. M, (fla : fl)fl-l-l""’f)
k1) (* * k * *

= (W0, 00 (1) D)t i) -0 O fr) W)

k k * (k
= ok, k) (W0, o0 (f1) -l ’<f D ) - (fr) o)

o k( ),,k‘(*) ,k‘(*),...,

= (_1) (kthI)Wmi,--~,mll:_11,mi,.. Moy (fh fl+17fl7---7fn)

which gives the result. 0

Proposition 6.9. (Spectrum Property) Under the change of variables

§1=01— T2, ..., {1 =Tpn_1— Tp, §n =Ty,
4 . . . k.(*) k.(*)
where 1,..., 1, €ER®, each tempered distribution W,,\ * " depends only on &y, ...,
&n1, that is
kl " 7k£x)
anl7 M — O
0,

. . . . k(*) k(*) , 4(n—1)
then there is a tempered distribution M,! >' ' € S'(R ), such that

7mn
k(*),~~~,k(*) k(*),--~,k(*)
W =My, 2o ®1

~ 1) )
. ) . ki kY
where 1 is a constant function 1 on R*. Moreover, the Fourier transform M, >/ "
o)

of the tempered distribution M 1 s ol is supported in the (n — 1) —fold product of
closed forward light cone V. x --- x V+.

Proof. Since the Wightman distributions are translation invariant, due to the trans-
lation invariance property of the Wightman fields, the first statement is clear. For
the second statement about the support, we first show that for all ¥, ® € 'H, we have

/ e’ da(V,U(a,1)®)=0
R4

for p¢ V. To show this, first we observe that this identity is continuous about two
vectors ¥, & € ‘H, then we only need to show this in the dense domain where the
unitary translation can be written as

U(a, 1) — e_i%P“
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for where {P*} is the energy-momentum operator. Then due to spectrum theorem
/ e’ da(V,U(a,1) D)
R4
= / e da (W, e wl" @)
R4

= /eip'“da@f,/ e~ ul" dB(p) )
R4 Vi

= / / ' P =P o, d (W, E(p) ®)
Vi) R

since we have assumed the spectrum of energy-momentum operator is in V, and
P&V, " "

To show Mk1 - k" has support inside V; x --- x V., first observe that for p¢ V7,
we have

0= A e da(Wo, o) o (U (—a, Dt ) o5 (f) W)

since

(Wo, @EVE (1) - @B FYU (—a, 1)U (i) - @EDE(f,) W)
= (To, @EV(f) - QIO ) QU (1) i) - 9B (—a, 1) ) W)

we have
0 _ ip-ad Wk"g*)v'"7kl(*)vkl(i)1v"'7 n . _ 1 _ ]_
N 46 AWy, omymy g, .. (fl’ ’fl?( a, )fl+1""’( a, )f”)
R

this implies

0= [ eradadah ok
- 46 aM,) > (&,.. ., &+a,.... 1)
R

which means if p; ¢ V,, then

~ k( ) k( )
ml, (pla"-apn—l)
; - k(*),“-,k‘(*)
— A)ﬁl /1R4d§1 .d§n71622p1 ngmll,---,m: (fl,...,&,...,fnfl)

= / .. / 4d£1 .. .dfnleizﬂ'#lpj'gj/ ePréide, Mrlflll” ";M (€17 R P SR
R* R R*

and this concludes the result. O

Note that we have used a different sign convention in Fourier transform, this
convention is usually taken in physics.
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Proposition 6.10. (Cluster Property) Suppose a € RY? is a space-like vector,
then

k(*),“ -,k‘(*),k(*) 77777 A—+
T e (fl, S fas D) fria, . (Na, I) f) —

k()

(%) (*) *)
Wk k <f17 7f) miill (fl-i—lv”'ufn)

for all possible indices and test functions.

Proof. By definition and covariance, clearly

R TORTO TG
Wm1 mlml+1 (f17 ' flv()\a’ [)fl+17"' ()\a’ [)fn)

= (I ,soml W) - wifff(*(f) pU O (a 1) fien), -, o5 (Na, I) fa) Wo)

= (W, g (f1) PO ), Ua, DR VO (fi)Ua, )7L, UNa,
)ikt )(f)U(M 1)~

= (W goml N fr) - wﬁfﬁ’(*’(f) Uha, D800 (fion),. . E0 O f,)0)

= (PR - QIO ) W), UAa, T (@R (fri), ., oD f)T))

In general one can show that

)\hm <CI)7 U()\G,, [) \I]> = <CI)7 qu) <‘;[]07 \Ij>
we do not produce the proof here, see [10]. It is clear the cluster property for the
Wightman distribution follows from this result. OJ

6.3 Wightman Reconstruction Theorem

Now we collect all the properties from previous section and formulate the axioms
for Wightman distributions, see page 117 of [44] and page 333 of [10].

(G A C))
Wightman distributions a collection of tempered distributions {Wkl =

s
S'(R*™)[neN,0<m; <2s(k;) +1<+00,1<i< n} and W without any index is
assumes to be 1, where s(k;) is understood to be the spin described by k; — th field,
with following properties:

1. (Hermiticity) We have

()_ (%) ()__ —(*)
Wk = W Tk )

where the notation — () means if we have index k;, then we take k™ =k, if we
have &k}, we then take ki_(*) =k;.
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k%*),...,kz(*)

M, My

P

mi, My

S

2. (Positivity) For any finite sequence of test functions {
S(IR“)}, we have

k{_(*) k‘/_(*) k(*) k(*) k‘/( *) k/(*) k‘( ) k( )
J ) sl sl s g sty ] 1 >
E E E ng‘v---,mi,ml,"-,mi <fmi my ® fml’ Hm ) >0

,J k{(*)77k;(*) k‘g*),,k‘i*)

mi7...7m§ m17...7mi
MORVON . OO
where f ’7m’3/ is the function fmli m;ﬂﬂ (xj,j_1,...,21)

3. (Covariance) We have
) e
Z Dm1n1 ) Dﬁf]jllle(Ail)Wn]?,, n;kl (((l, A) f17 Tt ((I, A) fl)

k‘(*),---,k‘(*)
:Wmi, mll (fla T fl)

)

for any (a, A) € R¥ x SL(2,C), I, ky,..., ki€ N and 0 <m; <2s(ky) +1,1<i <.
4. (Locality or Microcausality) If the supports of test functions f;, fi+1
consist only space like points, then

k(*) ...7k(*) k§1)17___7k *

Wmi,-i-,mlfm;_H,.. ! (flﬁ fl’fl+17"'afn)

k‘ ) k‘( ) k.(*
:( 1) (kflyk‘l+l)Wm17 mlikllvmly---v (fh fl+1’ fl, ey fn)

for all possible indices.

5. (Cluster Property) Suppose a € R is a space-like vector, then

k.(*) . k (*) k‘( ) A——400

(%)
Wm17-7- ml,mljl-t.li:. S (fh fla()‘0’7[)fl+17"'7()\avl)fn)—>

1M

k( o kl(+17 k
Wmh (f17 7f) mis, (fl+17 ) f )

for all possible indices and test functions.
6. (Spectrum Property) Under the change of variables

flle_x%- < én—lzxn—l_xna fn:xn
4 . . . ki*)7...’k(*)
where x1,..., 2, € R, each tempered distribution W' * 7'» depends only on &y,...,

&,_1, that is
g

mi,: - ,Mn :O

O

A
then there is a tempered distribution Mk1 e S’(R*"=1), such that

M

Wk ek g

mi,- mn
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(%) (*)
Bk
where 1 is a constant function 1 on R*. Moreover, the Fourier transform M 1 n

() D
of the tempered distribution M, kl " nf" is supported in the (n — 1) — fold product
of closed forward light cone Vi x --- x V.

The celebrated Wightman reconstruction theorem in the following, show there
is an one-to-one correspondence between Wightman fields and Wightman distribu-
tions. Thus one can construct a quantum field theory by proposing its correlation
functions.

Theorem 6.11. (Wightman Reconstruction Theorem) For a given set of
Wightman distributions satisfying azioms 1 to 6, there exists a unique Wightman
quantum field theory up to unitary equivalence.

For connivence, we produce the proof for the case of single Hermitian scalar field,
the general case is true with more technical analysis.

Proof. Basically this is a GNS type construction. First we construct the Hilbert
space. Consider the vector space H of sequence f=(fo, f1,...) where f;€S(R*) with
only a finite number of nonzero components. The vacuum vector is ¥o=(1,0,0,...).
Define skew-linear form by

= Z Wisi(fi® g;)
i,j=0
which is clearly linear in g, conjugate-linear in f. It is skew symmetric by hermiticity
and non-negative definite by positivity. Representation of Poincaré group is given by

U<a7A)f: (fov (avA)flv (avA)f% . )

then by covariance assumption, the skew linear form is preserved, and clearly the
vacuum is an invariant vector.
Now we define the field. For any test function h €S, the operator ¢(h) is given by

p(h) f=(0,h® fo,h® fi,...)

with transform law U(a, A)p(h) U(a, A)™ = o ((a, A)h) easily verified. It’s easy to
see that ¢ is a operator valued distribution, and real, which means (h) = p(h)*.

Define the subspace Hy:={f € H|(f, f) =0}, which is clearly leave invariant by
acting U(a, ) and ¢(h). Thus one can complete the space H / Hy to get the physical
Hilbert space H, and dense domain D = H / Hy, thus H is separable. The element
in D corresponding to f is denoted by W;. Clearly this domain is invariant under
the action of field operator and the unitary representation of Poincaré group.

The representation of Poincaré group on H induced a representation on H / H,
hence can be extended to a strong continuous unitary representation on H. The
strong continuity can be seen by

<\IJf—U(a,A)\Iff,\Iff—U(a,A)\Iff)
=(f=Ula,A)f, f—U(a,\) )
=3 Wiy (= (@) B (= @ ) 15)
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which is clearly convergent to zero as (a,A) — (0, ), since the Poincaré group acts
on the space of test functions continuously. This continuity can be extended to all
‘H easily by noting that D is dense.

Denote the corresponding ¥, in ‘H also by Wy, which is the vacuum operator. To
show it is the unique invariant vector, consider another one W, if exist, orthogonal
to ¥y and normalized without loose generality. If it has the form ¥; for some f € H,
then for all space-like vector a and cluster property, we have

(Wp, Uy)
= lim <\I’f, U()\a, I) \I’f>

A—00
oo

— 1im Y Wi (fi®(a, D) fy)

A—o00 =
1,j=0

= > WV ()

= (Wg, o) (Wo, Yg) =0

and for Wy € H which does not have this form, one can approximate if by a normalized
s, then one can still get (Ug, Ug) =0. Thus this vacuum is unique. It is not hard
to see that this vacuum is cyclic, and the vacuum expectation is just the Wightman
distributions in the assumption.

We need to show that the spectrum of the energy-momentum lies in the closed
forward light cone. Due to spectrum property, we have

/ e?da(¥s,U(a,1) W) =0
R4

for any f,g€ H, and p¢ V,, which means p is not in the spectrum of the energy-
momentum.

This completes the proof of existence part. We need to how the uniqueness up
to unitary transformation. Suppose there is another Wightman fields with the same
set of correlation functions, the corresponding informations are H’, Wy, U'(a, A), ¢'.

Then the map V' from H to H’, defined by
V= folg+ o' ()8 + @' (f3) ' (i) W+ -

where f=(fo, f1, f2(1) ® f2(2), 351) ® f§2) ® f§3), ...), note that vectors of this form are
dense in D and ‘H, and V preserves the inner product, hence extends to a unitary
operator by cyclicity of ¥). The relations

o(h)=V=Y'(W)V,U(a,N)=V~U'(a,\)V

are easy to verify. 0

6.4 Osterwalder-Schrader Axioms for Schwinger Functions
and Euclidean Quantum Field Theory
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Before talking about the Schwinger functions, we discuss heuristically what we
are doing. In quantum theory, according to Born’s rule, one is interested in the
quantity ( g |U (t1 —to)| @i ), which is the probability of finding the system in the
final configuration | ¢y ) after some time from initial configuration | ¢; ), here the time
evolution operator is given by the exponential of Hamiltonian U (¢t —ty) = et
The essence of Feynman path integral is to represent this transition probability into
a probability theory on the space of all historical configurations between two times,

that is
H

is
0= [y I
W(io):%ﬁi

p(t1)=wps

where S|[¢] is the classical action functional, for example, if ¢ is the configuration
of the historical position g of a particle, then

ﬂdzﬂﬂgm«@—w«@ﬁw

or if ¢ is the configuration of the historical distribution ¢ of a scalar field, then

hrr 1
Stel= [ [ |50 - M)ett.a,5,9) - gt V(e a.p.2) |dsdady

The goodness of path integral representation is, the expectation value of time ordered
product operators (operators in Heisenberg picture), can be turned into some kind
of probabilistic expectation value over histories, that is

/ (ta) -+ p(t)er S DIy
o(to)=w;

o(tnt1)=f

= /dcpn---/dso1<<pf U (tn+1—ta)@n) onlenl- - [p1)p1(e1|U (t1 — to)|¢i)

= (@7 Uty 2)@(tn) - - 2(82)U(—t0)| 1)

= (t=0,¢7[®(tn) --- ©(11)] 0, )
where t,,11>1,>1,_1>--- >t >ty and P is the quantum analog of ¢, usually given
by canonical quantization. The state |t =0, ¢;) means the time zero state which

evolves to labeled by configuration ; in time t.
Usually the Hamiltonian is positive H >0 in the sense (¢|H|¢) >0 for all

L H
possible state |1 ), then clear if we replace the positive time ¢ in e "m by —ir for
7 >0, then

should also make sense, and the path integral formula turns into

_lg
90@->=/ e DLy
e(t0)=1i
p(T1)=wy

H
o~ (M=)

(s [Up(mi—70)|pi ) = (s
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where Sg[ip] is the Euclidean action, which is positive usually. We have an analog
formula for expectations

1

(1=0,07 |D(70) - P(11)| 7=0, ) = /(p(f - o(Tn) -+ cp(Tl)e_ﬁSEM D[]

‘P(Tnil)=;’f
with Tn41>Tpn > Tp—1> " >T1 > T0-

We observe the similarity between the Fuclidean path integral measure and
Boltzmann distribution in equilibrium statistical mechanics, where the Euclidean
time 7 and the temperature 7' should be related by 7= kiT According to quantum
statistical mechanics, if we assume the spectrum of H is discrete for convenience,
say By < E1<--- < E, <---, the ensemble average at temperature T of an operator
A should be given by

T(e i 4) 3y (i]A])
<A> = - 1

1
Tr(eikaH) oo o ~wrhi
i=0

where £ is the Boltzmann constant. Clearly if we consider the limit T'— 0, we have

1
S e T (i Ald) 10
1
.Oooef’TTEi
1=

(0]A]0)

and this limit corresponds to the limit 7 — 4o00. Thus the equation

_lg
JAP'[ oy, () - p(m)e Dl
<P(Tn+1):,<,9f
(B(1) -+ B(7)) = P(0)=¢ o
fdgp/f e (T0) =i er o 'D[QO]dQO/

o(Tny1)=c5
p(0)=¢’

subjects to the limit 79 — —o0, 7,41 — +00, one has

Tn) -+ s ef%SE[‘P] /
Je D)

where the path integral measure is over the space of all configurations with some
decay property (one can also pose the periodic condition on Euclidean time, and
then study the limit that the period goes to infinity). Note that the right hand
can be interpreted as the moment in probability theory, and the left hand side is
the vacuum expectations. Clearly if we change back from the Euclidean time to
Minkowski time, we get the corresponding formula of vacuum expectation of time
ordered product and averaging over path integral measure, and this explain what
we are really describing about with the Wightman distributions.

Now we describe how to construct the Schwinger functions by analytic con-
tinuation of Wightman distributions. Such Schwinger functions are the Euclidean
correlation functions we just described. For simplicity we do it for a single scalar
Boson field.
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The analytic continuation takes three steps. The first step is to continue the
Wightman distributions to complex variables in the tube. This is based on the
following theorem, for the proof, see theorem 3.5 of [44]. We continue to use the
notation in the axioms of Wightman distributions.

Theorem 6.12. There are holomorphic functions Wy(z1,...,2,) and M, _1(Z1,...,

Zn_1), where z;= (29, 2}, 2%, 2}) and denote Z;=x; — iy, such that

Wi(z1, s 2n) = Mp—1(z1— 22, ..., Zne1— 2n)

defined on the tube T),_1 ={—Im (2; — zi41) € V4| i=1,---,n— 1}, and polynomially
bounded, such that the boundary value M,,_1(Z1,..., Zn—1) is the distribution M, _1, i.e

lim Mn—1<x1 _iyla oy Tp—1 _iyn—l) = Mn—l
y;—0

in the sense of tempered distribution.

Next step, we use the covariance property of the Wightman distributions. We
need to introduce the complex Lorentz group, which is the connected component of
the identity of the group of complex matrices that preserve the complex bilinear form

(21, 20) = 2029 — 2123 — 2223 — 2323

on the space C"3. Denote this group by L(C). The fundamental group of L(C) is
also Zs and its covering group is given by SL(2,C) x SL(2,C). A point in the space
C'3 is called a Euclidean point if it as the form (—iz? z!, 2% z3) where 2°, 2!, 22,
23 € R, the name come from the fact that when then complex bilinear form restricts
to such real subspace, we have Euclidean inner product (up to a minus sign). We
denote these points by FE.

Since we are dealing with Boson fields here, it is enough to consider the Lorentz
group and its complexification. Since we know that the tempered distributions W,
transforms as following

Wn(l'l, o '7xn) == VI/n(Axla o 7Axn)
for any A € SOT(1,3), by the uniqueness of the analytic continuation we have

V[/;L(Zl7 ”’7Zn):Wz(Azla .. .’Azn)
and
My (21, Zn1) =My (A 2y, -, A Z9)
but we can see here that the Lorentz transformations preserve the tube 7,,_1, now

one can use this identity to extend the action of Lorentz group to complex Lorentz
group. Then one can define M,,_; on the so called extended tube

Tr_1:= U AT, 4

AEL(T)

and this extension is single valued, see theorem 2-11 of [44]. The points in the
extended tube can be characterized by the following theorem due to Jost.
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Proposition 6.13. A point (Z1, -+, Z,_1) such that Zy, -+, Z,_1 € RY3 is in T°_; if
and only if all points of the form

[ury

n—1

1 i=1

n—

7

are space-like.

These points are called the Jost points. The last step we use the locality condi-
tion, in our case of single scalar Boson field, we have

V[/;L(xh SR xn) = Wn<xa(1)7 ce 7370(71))

for any permutation o. Thus one can define the value of Wy(z,a), ..., Zo(m)) by
Wy (21, -+, 2,), and hence one can define M,,_; when W, (2,(1), ..., 20(n)) is define. It
is a fact that this analytic continuation is well-defined and also single-valued. The
intersection of Euclidean points £ and W,,’s holomorphic domain is the following set

R’in::{(xhx% 7xn)|xl€R47xl#x]le7éj}CEn

and the Schwinger function 5, is defined to be the restriction of W, on this subspace,
note that it is a polynomially bounded analytic function, hence can also be view as
a tempered distribution.

For the general case of analytic continuation of Wightman distributions for tensor
or spinor fields, this procedure also works.

Now we introduce the Osterwalder-Schrader axioms for scalar boson fields, see
[35] and [36]. We introduce the sets

R :={(z1, 22, -+, wn)| i € RY, i F xjif i £ j }
RY:={(z1, 29, , )| mi ERLO< 21 0 <0< -+ <o}
RV = {(&, - &) GERY &0<0,i=1,2,--,n — 1}
and the time reflection operator
© f(wo, x1, T2, v3) = f(—0, 71, To, T3)
O (2o, 71, To, 13) = (— X0, T1, Ta, T'3)

Of(x1,...,xn) = f(Oxy,...,0x,)

Schwinger distribution is a collection of tempered distributions
{S, €S (RY)|IneN}

and Sy:=1, with following properties:
1. (Linear Growth) There exists an integer s € N, and a sequence {o,} of
positive numbers, such that

o, < C(n)

for some constants C, C’ independent of n, and

[Sn(H < onllf llnxs
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for all fe IR;*&” and n € N.
2. (Euclidean Invariance) We have

Sn(((l, A)fla T (a’ A)fn)
=Su(f1, s fa)

for any (a,A) € R*»x SO(4), and f;€ S(RY).
3. (Reflection Positivity) For any finite sequence of test functions {f;|f; €
S(IR*) supported in R¥}, we have

Z S@'Jr]'(@_.fj ® fi) =0.

2%
4. (Symmetry) For all test functions
Sn(f17 T fl7 fl+17"'7fn)

=Su(fr, - fien, fr oy f)

hence for all permutations of {1,...,n} and fi® - ® f, supported in ]Ri".

5. (Cluster Property) Suppose a € R? is a non-zero vector of the form (0, ay,

as, ag), then
A——+o00

Sm+n(fm7 ()\a7 [)fn) -

Sm(fm)Sn(fn)
for all f,,€ RY™ and f, € R

It can be shown that the Schwinger functions defined by analytic continuation of
Wightman distributions satisfy all these axioms except the linear growth condition,
in [36] they showed that if one assumes the growth of Wightman distributions, one
can produce these linear growth conditions on Schwinger functions, and then they
showed these two systems of axioms are equivalent.

The property of reflection positivity is simply a result of positivity of Wightman
distributions together with the fact that for Minkowski time we have

(p(t, ZE) — eitPOfixlplfinginzg,PB 90(0’ O)efitPOJrilelJringQJringB

and after using Wick rotation ¢ = —i7 we have

0_; 1_; 2_ 3 _.p0 1, 2. - 3
@(T,x):eTP ix1 Pt —ixo P*—ix3 P QO(0,0)@ TP +ix1 P'+ixo P°+ix3 P

then we have
©*(1,2) = p(—7,1)

for any Euclidean time 7, note that conjugate transformation of a Hermitian scalar
Boson field in Euclidean theory is different from Minkowski theory. This is a crucial
discovery to recover the Wightman fields from Schwinger functions, and this prop-
erty is found to be fruitful to have many applications in other problems, see [28] and
references therein.
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Note that this axiom can also be formulated in any dimension d > 1. The first
condition on linear growth was appeared in [36], since they found some errors in the
argument of the first paper [35], and this condition makes the Osterwalder-Schrader
axioms stronger than the Wightman axioms. In the page 397 of the book [10], they
gave a different condition corresponding to the spectrum condition in the Wightman
axioms and they considered more general fields of spinor or tensor character. And
then they proved that their axioms are equivalent to the Wightman distribution.

Theorem 6.14. (Osterwalder-Schrader Reconstruction) There exist a unique
Wightman quantum field theory whose Schwinger functions agree with the given set
with properties listed above.

The proof is rather technical, we do not produce it here, see [36]. Note that in
there papers, they remarked that this theorem also works for the general spin or
tensor fields.

There is another theorem which could also have the name Osterwalder-Schrader
reconstructions theorem, just like the Wightman reconstruction theorem, which says
that these assumptions of Schwinger functions can produce a set of operator-valued
distributions on some Hilbert space, with a similar set of axioms as in Wightman
fields, but are Euclidean invariant.

A different set of Osterwalder-Schrader axioms is given Jaffe and Glimm [21],
which characterize the probability measure on space of tempered distributions S’(IR%)
(see the footnotes on page 91 of [21]).

A Euclidean quantum field theory is a probability measure du on S’(IRY), such
that following conditions are satisfied:
1. (Analyticity) Define the generating functional S|f] by

S[f] 22/ e Ndp
S/(RA)

then for every finite set of test functions f; € S(R?),j=1,2,...,n, and complex
numbers z={z1,..., z,} € C", the function

n

ZHS[Z 2; fj

j=1

is an entire function on C™.
2. (Regularity) There is a constant p with 1 <p <2 and ¢, such that for all
f € S(RY), we have

IS[f]] < cUFIL+IF 1)

If p=2, then we also assume there exists a locally integrable function Ss(xy, x2) on

R? x R such that
/ 616 fo)dp = / F1(0) fol2) So(r, )il
S'(R%) Ra. Ra

for all fi, fo€ S(RY).
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3. (Euclidean Invariance) The Euclidean group R? x SO(d) act on S(IR?) by
{(a,R) f Hx)= f(R™'(x —a)), then we assume that S[f] is invariant under Euclidean
symmetries, that is S[f]=S[(a, R) f] for all (a, R) € R%x SO(d).

4. (Reflection Positivity) For any sequence fi,..., f, of test functions sup-
ported on the upper half plane R% :={(xo, 21,...,74_1) |70 >0}, the matrix defined by

M;j:=S[fi+ O[]

is positive semi-definite, where © is time reflection operator, i.e. O f(z, x1,. ..,
xdfl) = f(—$0, Tiy.-. ,$d71)-

5. (Ergodicity) For any test function f supported on the upper half plane R4,
we have

t
lim L [ et TN s — / D dy
t—oo T 0 S/(R4)
where T'(—s) :=((—s,0,...,0),I) € R? x SO(d).
The Schwinger function can be defined from this axioms by
Sulfi o ) =Bl 0= [ o). o

for any fi,..., fn € S(R?). The expectation converges due to the analyticity condition,
one can use the Cauchy integral formula for several complex variables. See chapter
19 of [21] for the proof that axioms by Jaffe and Glimm implies Wightman axioms.
We should remark that there are many other choices to produce a system of axioms
that can used to deduce the Wightman axioms, for example see [19] and [16].
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7 The Stochastic Quantization of Abelian Higgs
model

We introduced the axioms that a quantum field theory should satisfy, then
one has a natural question whether there is an interesting example of interacting
quantum fields satisfying these axioms. In this chapter, we first concern the problem
of constructive quantum field theory by introducing the stochastic quantization
method. Then we introduce the Abelian Higgs model, including its definition, diffi-
culties, related works, and so on.

7.1 Stochastic Quantization

In the last chapter, we introduced the Euclidean quantum field theory where
we described the axioms that Schwinger functions should satisfy. An important
question is, how can we construct an example of Euclidean quantum field theory,
that satisfying these axioms, hence one get a quantum field theory in Minkowski
space time by using the Osterwalder-Schrader reconstruction theorem.
1VVe noted the similarity between the Euclidean path integral measure
¢ wElE pr [¢] the Boltzmann distribution in equilibrium statistical mechanics. In
the study of statistical mechanics, such an equilibrium state is obtained by preparing
some non-equilibrium statistical mechanical system and subject to some relax-
ation time. This process can be described by the Langevin dynamics. Thus to

1
get the Euclidean path integral measure e 7oElel py [¢], one imagine a non-equi-
librium system, evolves according to the Langevin equation

0.5,
at@(t; 17) = _(%) |<p:<p(t,z)+£
or equivalently
88 ;
Op(t, ) = —% +¢, Selel= /dtSE[w]

where 0 is the functional derivative, t is some fictitious time describes the evolution
of non-equilibrium system, and £ is the space-(fictitious)time white noise. Since the
white noise is delta correlated in fictitious time direction, then the solution process
if exists, should be a Markov process.

Let us see formally why the Euclidean path integral measure is an stationary
measure of this equation. We need to compute the Fokker-Planck equation of this
Langevin equation, which is the dynamical equation of the probability distribution
P(p,t). For any functional F'[y], we have
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where [E; is the expectation with respect to the law of white noise, since the solution
of the Langevin equation should be a functional of the white noise. In order to find

the time derivative of both side, we need to find the first order expansion of left
hand, which is

Ee [F (¢ (t+dt)) — F(p(t))]
P2 F

OF ,
—Egh/dxmﬁtgpdt%—//dxdx W(@gpdt) (&gcpdt)}

[ G 2
= /dm?—i(—%—%%—S)dt—l—//dxdx’%(fdt)(ﬁ/dt)]

|- fartEeS

0p 0
:/dx/Dgp

o
—/dx/DgoF%

where we used that ¢(¢) and £(t) are independent to deduce any functional of ¢ up
to time ¢ should be independent with £(¢), since ¢(t) only depends on instantaneous
past of £(t) due to the Markov property. Thus

2
dt+ [ [ dxdx'IE, F Ee [£dtg dt]
00 o e
S(z—z')dt
SF6Ss O°F

—%W‘Fé—(pz P((,D,t)dt

§Sg ¢

d
EEﬁ[F[SD(t)H
B 5 |6Ss, o

- / F(9)0P(p,t) Dy

holds for any functional F'. Then the Fokker-Planck equation is given by

B 5|08k, o
3tp(<ﬂ7t)—/dxw WJFE P(p,t)

and it is clear e~%7l¥l is a stationary solution.

The stochastic quantization method is proposed by Parisi and Wu in [37], and
one should note the difference between this method and Nelson’s in [32] [33] [34],
where Nelson used the real time to derive the Schrodinger equation. The method of
Parisi and Wu is based on an hypothetical process depending on a fictitious time.
And one can use different Langevin equations to describe the Euclidean path integral
measure, see [14]. There are cases where the stochastic quantization method does
not work, that is the proposed Langevin dynamics does not have a limit stationary
measure, see [17].
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The stochastic quantization equation requires us to study the solution theory
for stochastic partial differential equations, establish the meaning of the equation,
the existence of local solutions, and most importantly the long time existence of the
solution, since we need to take ¢ — oo to get the equilibrium state. This is already
a hard problem in general, but the requirement that the limiting measure should
satisfy the Osterwalder-Schrader axioms or its some kind of modifications makes
it even harder. It has been shown by Jaffe in [27], that reflection positivity is not
satisfied in the finite time non-equilibrium state of the solution, even for free scalar
field theory. For the gauge theories, as we talked about in last chapter, we are not
sure about how Wightman axioms should be modified to contain gauge theories, in
particular we have negative results in the case of free electro-magnetic field.

7.2 The Model

The Abelian Higgs model is described by following classical Lagrangian density
in Minkowski space-time

1
L=—<F " +(D,®)'Dre — V(3! P)

where ® is a complex scalar field, F},, is the curvature of a gauge field A,, and
V(OTD) = —m?PTd + \(DT)?
F.,=0,A,—0,A,
D,®=0,P —ieA,P
note that when A =0, this model is also called the scalar quantum electrodynamics,

the paper [41] studied the case A=m =0. The Lagrangian density is invariant under
following gauge transformation

A—A+Vf, & —cld

for any f € C'. Note that the first transform is just adding an exact differential
df to the connection one-form A,dx*, which preserves the curvature. The second
transformation is just a multiplication of one-form. The gauge covariant derivative
transforms like

D,® — 0,(e"®) —ie(A,+ 0,f)e/®=e/D,d

thus it is clear that the Lagrangian density is invaraint under these transformations.
To compute the Euclidean action, note that according to the Wick rotation, we
have

To— —Z'l'(])E, 80—> z@dE, A0—> ’LAg", FOM—> ZF(EH DQ(I) —>2ng)

where the rule is keep the relations 9%z =4}, and Afdz} is a Euclidean one-form,
now combine this with the Minkowski metric, we have

F FH — —F,E,Fg”, d*x —id*zp
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For simplicity we drop the subscript or superscript £. Thus we turn the action in
Minkowski space time (multiply an 7)

15 = i/d‘lx(—iFwF“” + (DMQD)TD“CD — V(CDT (I>)>
into the Euclidean action
1S — —Sp= —/d%(%FwF“” + (DMQ))TD"Q) — V(QDT q)))

where the gauge covariant derivative and the electro-magnetic field tensor are still
given by
D,®=0,® —ieA,®, F,,=0,A, —0,A,.

In the following we assume the Euclidean dimension is 2 and we assume the V (®T®) =
0 for simplicity.
Then we can write down the Langevin equations for the random field (A, )

8tA1 - 822141 - 8162142 — % [@8@ — <I>81<T>] — 62141(1)&) + 51

0 Ay = O?Ay— 01954, — % [0, — DOD] — e2ArD P + &
615@ == (9% 0] + (9% d —ie (61/11 + 82142)@ — 2ie (Alal + Agﬁg)q)
—e2(A3+ AP+ ¢

where &1, & are real white noise, ( is a complex white noise, that is they satisfy

E [§a(t1, 71)Ep(t2, T2)] = 6apd(z1 — 2)d(t1 — t2)

IE [C(t1, 1) (to, 2)] =20 (21 — 22)d(t1 — t2)
E [£(t1, #1) C(t2, 22)] =0

Note that the equations for the gauge fields are not parabolic equations, our inten-
tion is to make them into parabolic ones. This is achieved by stochastic gauge fixing
in physics literature, see [14], where they worked in momentum space. We first solve
the equations

OBy = (O +08) By — 5 [0y — v0rd] — By + &

0By = (07 +03)By— %e [002) — 1p0stp] — e Boh) + &5

) = (03 +03)¢) — 2ie(B10) + Bads)tp — (B} + B3)w
+eief(§(8131+8232)d8<

and then transform them into original variables
t
Al = Bl —/ 81(6131 +8ng)ds
0

t
A2 == Bg—/@g (81B1+6232)d8
0

b — efiefg(8131+8232)w
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where one can formally check this is indeed a solution of original equations. Note

. t
that e'lo@1B1+2:B2ds hag the same law of a space-time white noise. So we arrive
the equations

OBy = (B} +3B)By 5 [0n) — wOyT) — *Brird + &

OuBs = (87 +03)By— 2 (0w — 0] — Bl + &

(7.1)

In the paper [41], the author showed how these transformation works in the case
of lattice approxiations of gauge theory, where one has one SDEs instead SPDEs.
We did not find a way to show the stochastic gauge fixing works rigorously without
lattice gauge theory, so this is a problem.

Assuming this can be done, we try to see where is the hard part of equations 7.1.

We try to do the Da Prato trick: We set B; :El + Z1,By= Eg + Zy, ®=¢+Y where
(at - A)(Zh ZQ7 Y) = (517 527 C)

2
with &, &, (€ C2 ' =02 and Z1, o, Y € C™¢ then

8,8, — ABl—gﬂ GO\ b — 0016 |+ YD Y —YOY

HPDY +Y01 ¢~ Y6 — DY |]

—e2(Bi¢pd+B1oY +B oY +B)YY +Y 21+ ¢ Z\Y ++¢ 2, Y +Z, YY)
010 = Ad—|2ie (B0 + Bydy) ¢ — 2ie (7,0, + Z,3) ¢ |

—2ie| (B) O, + By 8,) Y|~ 2ie (Z1 01+ Zo0)Y

—e2(B}+ B3+ 723+ Z3+2B, 2, +2 By Z5) ¢

—e2 (B + B3+ 23+ Z3+ 2B, Z1+2 By Z,)Y

where we expect El, gg, ¢ € C'7%. The terms in block are not well-defined. We
arrived at here, and did not find a way to solve these SPDEs.
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Appendix A Notation

a < b for variables a, b: if there exists some positive constant ¢ which is indepen-
dent of the variables under our consideration, such that a <c-b.

a~b for variables a,b: if a <b and b <a.

1 < 7 for indices in Littlewood-Paley decomposition: if there is some integer N € N
independent of the the indices under our consideration, such that ¢ < j 4+ V.

i~ j for indices in Littlewood-Paley decomposition: if ¢ < j and j <.
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Appendix B Inequalities

In this appendix, we collect some useful inequalities.
Lemma B.1. (Hdlder’s inequality) Suppose (X, i) is a measure space. Given
1<p,q,r <o with %4—%:%, for any functions f € LP(X, u), g€ LYX, ), we have
fgeL"(X, n) and
1 fgller <[ flle- [g]lLa

Proof. When p=1 or p=o0, the inequality is trivial, so we assume that 1 < p <oo.
Without loss of generality, let us assume || f||r» = ||g|lre=1. Since the logarithm
function is concave, then for any a,b>0 and ¢ € [0, 1] we have

tlog(a) + (1 —t)log(b) <log(ta+ (1 —1t)b)

thus
alb' "t <ta+(1—1t)b
Then
Jrsaran = [ arpQatnian
X X
r r
< - P +_/ aq
pAIfI 1 qxlgl 1
ro oo
= 4=
P q
= 1
So the result follows. O

The proof can be easily generalized to the case of any number of functions, so
we have the following generalization.

Lemma B.2. Suppose (X, ) is a measure space. Given 1< py,..., pn, 7 <00 with
p—ll +...+ pin = %, for any functions f; € LP(X, pu) where i € {1,...,n}, we have
fi--- fa€Ll"(X, u) and

e Faller < flloos - fullm

Lemma B.3. (Young’s inequality for convolutions) Given 1< p, q,r <oo with
%—I— % =1+ %, for any functions f € L?, g € L9 we have

1 gller < 1Nl llg lles

Proof. The case of =00 is easy, let us consider the case r <oco. From the identity
%4—%: 1 +% we see that ¢ <r and p<r, thus we can define the constants a=1 —%

and =1 —% which are all in the interval [0, 1], and define the constants p’= g >1
and q’:% > 1. Clearly, we have

1 1 1 a g 1 1 1 1 1 1
—t =t ==t = === |+ === |+ ==1
pq r p q r p T q T r
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So by using Hélder’s inequality, we have

fratal = | [ so=n)- st

< IRn|f(:rf — )| g ()| fla =) 1 g(y)|Pdy

/N

([ 5= 0= 110y )

1 1
7/

([ 1sa=viay)"( [ oty )
(

1

fla— )P lg(y >|qdy)*-||f||gp-||g||£q

Rn
Thus

I ( =) lgw)ledy Vde- 112 19l
R" n\JRn

)
- /( [ 1fa= P loty >|de)dy 1711E5- g1

= N FUE- lgllze- I1£ 1125 g s
= I lIze- [lgllZe

Hence the result follows.
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Appendix C Functional Analysis

C.1 Function Spaces

In this appendix, we introduce some function spaces.

Definition C.1. For non-negative integer k € N, the space C*(R™) is the set of all
k-times differentiable function f:IR™ — R with continuous k-th derivative, such that

Ifloei= 3 sup [0°f(a)

o 0<a<k TER"
s finite.

Lemma C.2. The space C*(R"™) with norm ||||cx is a Banach space.

The concept of Holder continuous function with exponent « € (0, 1] generalizes
the concept of Lipschitz continuous function and gives a way to characterizes the
regularity of continuous functions.

Definition C.3. A continuous function f:Q— R, where Q CIR" is an open subset,
is called Holder continuous with exponent o € (0, 1] if there is some constant C >0,
such that

|f(@) = f)I < Cllz =yl
holds for any z,y € ). In other words, the quantity

wp LF@) = ()
o wtyea T =yl
s finite.

Definition C.4. For the non-negative integer k € N and real number o € (0, 1],
the Hélder space C*(IR") is defined to be the collection of C*-functions whose k-th
deriwatives are Hélder continuous with exponent o such that the norm

[ fllroa = Z sup |65f(x)|+z Sup |aﬁf(x)—aﬁf(y)|_

0<[BI<k ER" b wrvern llz =yl

18 finite.

Lemma C.5. The space C**(R"™) with norm ||-||cx.« is a Banach space.

C.2 Stone’s Theorem

Stone’s theorem deals with the strong continuous unitary representation of the
abelian group R, more precisely, it is a map R — U(H) where H is a complex
separable Hilbert space, such that

U(tl)U(tg) = U(tl + tg) for any t1, 1o € R
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and R — H defined by ¢t —— U(t)® is a continuous map for any fixed ® € H. Notice
that in the case of complex separable Hilbert space, the strong continuity condition

is equivalent to weak continuity, which means the map R — R defined by ¢+ (U,
U(t)®) is continuous for any fixed ¥, ® € H.

Theorem C.6. (Stone) Suppose R — U(H) is a strong continuous unitary repre-
sentation of the abelian group R, then there exists a self-adjoint operator H, defined
on a dense domain D, such that

Ut)y=e H
on D. The domain D is defined by
{CID € H| limwexists}.
e—0 —1e

Conversely, if there is a self-adjoint operator H, defined on a dense domain D, then
the map t v e can be extended to a unique strong continuous unitary represen-
tation of the abelian group R.

C.3 Nuclear Theorem

The nuclear theorem says a continuous bilinear functional can be uniquely
extended to a tempered distribution on the product space of underlying variables.

Theorem C.7. (Nuclear Theorem of Schwartz) Suppose B is a continuous
bilinear functional on S(R™) x S(R™), then there is a unique tempered distribution
p € S'(R™™) such that

B(f,9)=¢(fg)
for any f € S(R™) and g€ S(R™).
It is clear that is theorem is also true for case of continuous multilinear functional.

The nuclear theorem of Schwartz is also called the Schwartz kernel theorem, see page
61 of [10] and references therein.
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