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Introduction
Non-commutative probability is an area of mathematics which tries to understand non-
commutative algebras inspired by classical probability theory. In this framework, non-com-
mutative random variables are defined as abstract elements of non-commutative algebras.
Such a theory can emerge as a non-commutative generalization of classical probability
theory.

The fundamental notion in classical probability theory is that of a probability space (
;
F ;P), where 
 is a set, F is a �-algebra on 
 and P is a probability measure on (
;F).
Starting with these data, it is possible to build commutative algebras of random variables
X: 
!C (e.g. L1(
;F ;P;C)). In probability and statistics, a lot of times is of interest
the computation or the estimation of the expected value E[X], in order to obtain useful
information for the random variable X 2L1(
;F ;P;C). Thus, the triple (
;F ;P) is the
building block which allows us to define random variables X 2L1(
;F ;P;C) and their
expected values E[X]. A first step in order to pass from classical probability theory to non-
commutative probability is to ignore the probability space (
;F ;P) and to consider the
algebra of random variables (that we are interested in to study) and their expectations,
as being the foundational objects. This leads to a more general formalism of �algebraic
probability� where the algebra of random variables is replaced by an abstract unital algebra
A over C and the random variables can be identified with elements a2A. Moreover, the
expectation E is replaced by a linear functional �:A!C, such that �(1A)=1, where 1A
represents the unit of the algebra A. Of course the condition �(1A) = 1 is proportional
to the fact E[1L1(
;F ;P;C)] = 1. Thus, in this algebraic framework our main players are
the elements a 2A that we want to observe and the functional � :A!C which can be
thought as the experimental mechanism which correspnds to every observable a2A a value
�(a)2C, which provides useful information about a. For a1; : : : ; an2A, the expressions
�(a1: : :an) can be thought as the joint moments of the random variables a1; : : : ; an2A.
In the context of non-commutative probability theory, the algebra A is not commutative
and the elements a2A are called non-commutative random variables. This more general
formalism encompasses quantum mechanics, since the random variables a 2A can take
the rolle of physical observables and the expectation �(a) can be thought as the expected
value of a on a given quantum state [ . . . ].

Free probability is a mathematical theory that studies non-commutative random vari-
ables. It was introduced by Dan Voiculescu in the 1980's. This branch of mathematics can
be described by the exact formula

free probability = non-commutative probability + free independence:

In the context of non-commutative probability, free independence is one of the most cele-
brated notions of stochastic independence, which comes to replace the classical notion of
independence. Free probability theory is extremely useful in order to study large random
matrices. Dan Voiculescu proved that independent Gaussian matrices behave as free random
variables in a non-commutative probability space, as their size goes to infinity [...]. Except
of it's strong connections with random matrices, free probability has relations with other
fields of mathematics, such as combinatorics, operator algebras and representations of sym-
metric groups. It's relations with combinatorics (especially non-crossing partitions) leads
to a lot of comparisons of free probability with classical probability theory, where the differ-
ence between the two is very concrete and stable. This fact leads to �free analogues� of some
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of the most crucial notions of classical probability theory, such as Gaussian distribution,
Poisson distribution and Brownian motion. The goal of this Master Thesis is to present
some of these notions and to provide interpolations between classical and free probability.

The first part of this Master Thesis aims to present some aspects of free probability
theory, concentrated on their combinatorial structure. In the first section we present the
basics of free probability theory. In subsections 1.1 and 1.2 we start by defining the notions
of non-commutative probability space, non-commutative random variables and that of
free independence. We do so in mainly following the book [ . . . ]. In subsection 1.3 we
concentrate on the computation of joint moments of free random variables. Our goal is to
better understand the definition of free independence and to see whether this new notion
of independence can be related, in some sense, with the classical one. We also introduce
the notion of non-crossing partition, which will be crucial for the further development of
the theory. Our main reference for this subsection is [ . . . ]. Then, mainly based on [ . . . ],
in subsection 1.4 we formulate the free analogues of the central limit theorem and of
the Poisson limit theorem. These lead to the determination of the free analogues of the
Gaussian variables and of the Poisson variables. At the end of the first section, in subsection
1.5, we give an example of �free Gaussian variables� in some non-commutative probability
space. In order to do so, we introduce the notion of Dyck paths. This example was taken
by the book [ . . . ].

In section 2, we present the basics of the theory of free cumulants, which was intro-
duced by Speicher in proportion to the theory of classical cumulants of Rota. We start by
introducing some useful combinatorial properties about the lattice of non-crossing parti-
tions. One of them is the Mo�bious inversion formula which will be very important for the
determination of free cumulants. Then, we continue with the definition of free cumulants.
The definition of free cumulants shows the analogy with classical cumulants quite clearly,
in the sense that compared to the latter, the lattice of all partitions of the set f1; : : : ; ng
is replaced by the lattice of non-crossing partitions of that set. Our final goal is to show a
characterization of the notion of free independence via free cumulants. Similarly to classical
probability theory, in the context of free probability we have that non-commutative random
variables are freely independent if and only if certain cumulants vanish. In this section we
mainly follow [. . . ].

In section 3 we turn to non-commutative stochastic processes. More precisely, in the
context of free probability we focus on non-commutative processes with stationary and
independent increments. In this framework, for a non-commutative process (ct)t�0 in some
non-commutative probability space, we demand the non-commutative random variables
ct1¡ ct0; ct2¡ ct1; : : : ; ctm¡ ctm¡1 to be freely independent, for all m2N and for all 0� t0<
t1< � � � < tm. We give the definition of free Levy processes and we examine the combina-
torics of their non-commutative distribution. The special examples of free Levy processes
that we are interested in are the free Brownian motion and the free Poisson process. We
prove the free analogue of Wick formula that allows us to determine the non-commutative
distribution of the free Brownian motion. Whereas the moments E[Xt1:::Xt2n] of a classical
Brownian motion (
;F ;P; (Xt)t�0) are related to the second moments E[XtiXtj] via a
sum on the whole set of 2-partitions of f1; : : : ; 2ng, the corresponding moments of a free
Brownian motion can be computed with the help of non-crossing partitions. Finally, we
realize the free Brownian motion and the free Poisson process as processes on the full Fock
space of L2(R). Our main reference for this section are [ . . . ] and [ . . . ].
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Section 4 corresponds to the work of Boz_ejko and Speicher about the generalized Brow-
nian motion [...,...]. Inspired by the results of section 3 about free Brownian motion,
we present a non-commutative stochastic process which gives an interpolation between
classical and free Brownian motion. In order to do so, we present an interpolation between
the canonical commutation relations (C.C.R.) and canonical anticommutation relations
(C.A.R.). The C.C.R. are fundamental relations which are algebraically defined by

ai
�aj¡ aj ai�= �i;j 1:

These relations describe bosons in quantum mechanics. On the other hand, the C.A.R. are
defined by

ai
�aj+ aj ai�= �i;j 1

and they descibe fermions. In order to provide an interpolation between C.C.R. and C.A.R.,
we are interested in the generalized commutation relations, which are defined by

ai
�aj¡ � aj ai�= �i;j 1;

where ¡1� � � 1. These relations were also proposed by Greenberg [ . . . ], in order to
describe particles with statistics intermediate between Bose and Fermi statistics. Inspired
by the fact that the bosonic Fock space gives a natural realization of the C.C.R. and the
fermionic Fock space gives a realization of the C.A.R., we introduce the �-Fock space
(¡1� �� 1) which gives an interpolation between the bosonic Fock space and fermionic
Fock space. It also includes the full Fock space (for �= 0). In order to define the �-
Fock space of a Hilbert space H , we consider the completion of the set of finite linear
combinations of product vectors, with respect to a scalar product h�; �i�. This scalar product
differs from the usual scalar product of

L
n�0H


n. In this direction, the main problem
is the positive definiteness of h�; �i�. For this reason, we introduce the notion of a posi-
tive definite kernel, mainly following in [ . . . ]. We define the corresponding creation and
annihilation operators on the �-Fock space and we show that they satisfy the generalized
commutation relation. This is an analogous situation with the well known bosonic and
fermionic relations. Then, we give an example of a generalized Brownian motion, which is
formulated by considering the sum of creation and annihilation operators on the �-Fock
space. This comes in proportion to the examples of non-commutative Brownian motions,
which are given by [ . . . ].

Finally, in section 5 we continue our investigation of the generalized Brownian motion,
which was presented in section 4. We show that this non-commutative Brownian motion
which was motivated by the fact that the moments of classical Brownian motion can be
calculated by 2-partitions, can actually emerge via a central limit theorem. More precisely,
we examine the Gaussian distribution corresponding to this process and we show that it
can be derived from a non-commutative central limit theorem. In order to do so, we use a
stochastic interploation. Taking into account this non-commutative central limit theorem,
we generalize it to an invariance principle, which leads to the generalized Brownian motion
of section 4. The formulation and proof of this non-commutative central limit theorem is
due to Speicher [ . . . ]. Moreover, in order to determine this non-commutative analogue of
Gaussian distribution, we introduce the �-analogues of the Hermite polynomials, mainly
following in [ . . . ] and [ . . . ]. As a consequence, this leads to the determination of the
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probability measure which characterizes the non-commutative distribution of this non-
commutative Gaussian variable. Inspired by the definition of �-Hermite polynomials, we
present the �-analogues of Charlier-Poisson polynomials. Given this sequence of poly-
nomials, it arises an orthogonalizing probability measure on R which is an �-analogue
of the Poisson distribution. We realize �-Poisson variables on the �-Fock space. This is
done in full proportion to the corresponding result of [ . . . ], which gives non-commutative
realizations of Poisson variables in the bosonic Fock space. Our main reference for �-
Poisson variables is [ . . . ].
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1 Combinatorics of Free Probability

Free probability is a non-commutative probability theory, in which the notion of inde-
pendence of classical probability theory is replaced by that of free independence. It was
introduced by D.Voiculescu around 1985, in order to study some problems in the context
of von Neumann algebras, but some years later, around 1991, he realized that a concrete
probabilistic model of free random variables is afforded by large independent random
matrices. Since then, free probability became the natural framework to study random
matrices as their size go to infinity. While the relation of free probability with random
matrices gave rise to important results about operator algebras and random matrices,
we shall not discuss these relations here. Free Probability Theory has a combinatorial
description, which was developed by Speicher around 1994, based on free cumulants. This
combinatorial description shows the analogy with classical probability theory quite clearly,
since compared to the later, in free probability the lattice of all partitions of a finite set is
replaced by the lattice of non-crossing partitions.

1.1 Non-commutative Probability Spaces

First, we start by introducing the notions of non-commutative probability space and non-
commutative random variables. As we already mentioned, non-commutative probability
can be thought as a kind of generalization of classical probability from a merely algebraic
point of view.

Definition 1.1. We say that a pair (A; �) is a non-commutative probability space, if the
following conditions hold:

1. A is a unital (associative) algebra over C

2. � is a linear functional �:A!C such that �(1)=1:

An element a2A is called non-commutative random variable.

By abuse of notation, we will denote with 1 the unit of a unital algebra A over C. An
additional property that can be given to � is that

�(ab)= �(ba); for all a; b2A:

Then we say that the non-commutative probability space (A; �) is tracial.

The previous definition can be extended to the case where the algebra A is endowed
with more structure. More precisely, if (A; �) is a non-commutative probability space where
A is a �-algebra and � is a positive functional (i.e. �(aa�)� 0 for all a2A), then we say
that the pair (A; �) is a �-probability space. In the framework of a �-probability space,
for a non-commutative random variable a2A we have that

� a is said normal if a�a= aa�

� a is said self-adjoint if a�= a.

5



Note that if (A; �) is a �-probability space, then every non-commutative random variable
a2A can be written in the form a=x+ iy where x; y 2A are self-adjoint variables.

Definition 1.2. Let (A; �) be a �-probability space. The linear functional � is said faithful,
if for a2A we have

�(aa�)= 0 if and only if a=0:

Remark 1.3. For a �-probability space (A; �) using the positivity of �, it is easy to note
that the functional � is self-adjoint, which means that

�(a�)= �(a); for all a2A:

Example 1.4. We give some examples of �-probability spaces.

1. Let (
;F ;P) be a classical probability space. We define the algebra

L1¡(
;F ;P;C) :=
\

1�p<1
Lp(
;F ;P;C);

of classical random variables with finite moments of any order. Then we have that
the pair (L1¡(
;F ;P;C);E) is a �-probability space if we consider the �-operation
as the conjugation of complex functions.

2. For d2N, we consider Md(C) the algebra of d� d complex matrices. Then Md(C)
is a �-algebra on C, if we consider the �-operation �:Md(C)!Md(C), where for
A=(ai;j)2Md(C) we define A�=(ai;j� ) such that ai;j� := aj ;i for all i; j 2f1; : : : ; dg.
Moreover, if we define the trace tr:Md(C)!C by

tr(A) :=
X
i=1

d

ai;i; for all A=(ai;j)2Md(C);

then the pair
�
Md(C);

1

d
� tr
�
is a �-probability space.

3. Let (A; �) and (B;  ) be two �-probability spaces. Then the vector space tensor
product A
B is turned into a �-algebra by setting

(a
 b)(a~
 b~) := aa~
 bb~

and

(a
 b)� := a�
 b�;

for all a;a~2A and b;b~2B. Moreover, if we define the functional �
 :A
B!C by

(�
  )(a
 b) := �(a) (b); for all (a; b)2A�B ;

then (A
B ; �
  ) is a �-probability space.
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For a �-probability space (A; �), given a family of non-commutative random variables
faigi2I we can define the set of moments of faigi2I as�

�
¡
ai(1)
k(1)

: : :ai(r)
k(r)� j r2N; (i(1); : : : ; i(r))2 Ir; (k(1); : : : ; k(r))2f1; �gr

	
:

C�-algebras provide an appropriate environment where non-commutative probabilistic
ideas can be developed. For a C�-algebra A and a state (i.e. positive linear functional)
� we have that the moments of a normal element a2A can be characterized by a prob-
ability measure � on C, in the sense that there exist a probability measure � on C

(where it's support is contained in the spectrum of a), such that

�(ak(a�)l)=
Z
C
zkz�l�(dz); for every k; l 2N:

The existence of such a probability measure emerges from the functional calculus for a and
Riesz's theorem. Note that if the element a2A is self-adjoint, then we haveZ

C
jz¡ z�j2�(dz) =

Z
C
(z¡ z�)(z¡ z�)�(dz)

= 2
Z
C
zz��(dz)¡

Z
C
z2�(dz)¡

Z
C
z�2�(dz)

= 2�(aa�)¡ �(a2)¡ �((a�)2)
= 0:

Therefore, using that the function C 3 z 7! jz ¡ z�j2 is continuous and non-negative, we
deduce that supp(�)�fz2C jz=z�g=R. Hence the measure � can be seen as a probability
measure on R and we will have that

�(ak)=
Z
R
xk�(dx); for all k2N:

So in this case we see that the moments of the non-commutative random variable a2A
can be identified with the moments of a classical random variable.

Definition 1.5. A C�-probability space is a �-probability space (A; �) where A is a unital
C�-algebra.

Remark 1.6. For every C�-probability space (A; �) we have that the linear functional �
is bounded.

Example 1.7. Let (H; h�; �i) be a Hilbert space. We consider the C�-algebra B(H) of
bounded linear operators on H (where the �-operation is given by taking the adjoint
operator). Moreover, for a vector e2H such that he; ei=1, we define the linear functional
�:B(H)!C determined by

�(T )= he; Tei; for all T 2B(H):

Then � is a state and (B(H); �) is a C�-probability space.
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1.2 The Notion of Freenes

We now present the notion of free independence which is one of the most celebrated notions
of stochastic independence in the context of non-commutative probability theory. We start
by defining freenes and by giving some examples in order to better understand whether
this new notion of independence is related with the classical one.

Definition 1.8. Let (A; �) be a non-commutative probability space and I be an index
set. A family of unital subalgebras (Ai)i2I of A is called freely independent in (A; �) if
�(a1: : ::ak)= 0 whenever

1. k 2N,

2. i(j)2 I for all j=1; : : : ; k,

3. aj 2Ai(j) for all j=1; : : : ; k,

4. neighboring elements in a1: : :ak are from different subalgebras, i.e. i(j) =/ i(j + 1)
for all j=1; : : : ; k¡ 1,

5. �(aj)=0 for all j=1; : : : ; k.

Remark 1.9. A family of non-commutative random variables (ai)i2I in some non-commu-
tative probability space (A; �) is said free if the unital subalgebras that each of ai generate
are free. In the context of �-probability spaces, we say that the family (ai)i2I is free if the
unital �-subalgebras that each of ai generate are free.

The concept of free independence has a probabilistic flavour. It is easy to note that if
a is a non-commutative random variable, then we have that a; 1 are free.

Example 1.10. Let A1, A2 be free unital subalgebras in (A; �). For an arbitrary variable
c2A we define the zero mean variable c0: =c¡ �(c)1.

1. If a1; a22A1 and b1; b22A2, we have

0= �(a10b10a20b20)= �[(a1¡ �(a1)1)(b1¡ �(b1)1)(a2¡ �(a2)1)(b2¡ �(b2)1)]

which implies,

�(a1b1a2b2)= �(a1a2)�(b1)�(b2)+ �(a1)�(a2)�(b1b2)¡ �(a1)�(b1)�(a2)�(b2):

2. If a2A1 and b2A2, we have

0= �(a0b0)= �[(a¡ �(a)1)(b¡ �(b)1)]= �(ab)¡ �(a)�(b):

Hence,

�(ab)= �(a)�(b):
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The previous example shows that independence and free independence are quite dif-
ferent. In fact, freenes is a really non-commutative notion of independence, which does
not have particular interest in the classical case, where A=L1¡(W;F ;P;C) and �(X)=R
X(w)P(dw), for some probability space (W;F ;P).

Proposition 1.11. Let (A; �) be a �-probability space and � be a faithful functional.
Assume that x; y 2A are self-adjoint and free random variables such that xy= y x. Then
we have that,

x= �(x)1 or y= �(y)1:

Therefore, at least one of them must be a constant.

Proof. By the previous example we have

�(x2)�(y2)= �(x2y2)= �(x yx y)= �(x2)�(y)2+ �(x)2�(y2)¡ �(x)2�(y)2;

where in the second equality we used that x; y commute.

Hence, it follows,

0= �(x2)�(y2)+ �(x)2�(y)2¡ �(x2)�(y)2¡ �(x)2�(y2)= [�(x2)¡ �(x)2][�(y2)¡ �(y)2]:

Therefore, if �(x2)¡ �(x)2=0 we have,

0= �(x2)¡ �(x)2= �[(x¡ �(x)1)(x¡ �(x)1)�];

where in the second equality we used that x is self-adjoint and �(a) 2R for every self-
adjoint random variable a2A: Thus, because � is faithful the claim holds. �

For the time being, we have not seen any example of free random variables. In classical
probability theory we can create independent random variables by forming products of
probability spaces. Analogously, in free probability we can create free random variables by
forming free products of non-commutative probability spaces.

Definition 1.12. Let f(Ai; �i)gi2I be a family of C*-probability spaces. Furthermore, let
a unital C*-algebra Â and a state �̂ on Â be given. Then, the C*-probability space (Â; �̂)
is called the reduced free product of the f(Ai; �i)gi2I, if the following hold:

1. For all i2I, there exist unital �-homomorphisms ji:Ai!Â, such that Â is generated
by the union of ji(Ai), i2 I as a C�-algebra.

2. �̂� ji= �i for all i2 I.

3. For k2N, if i(1); : : : ; i(k)2 I such that i(m)=/ i(m+1) for all m=1; : : : ; k¡ 1 and
aj 2Ai(j) with �i(j)(ai(j))=0 for all j=1; : : : ; k, then we have,

�̂(ji(1)(a1): : : ji(k)(ak))=0:
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4. The GNS representation of (Â; �̂) is faithful.

Voiculescu proved that for every family of C�-probability spaces f(Ai; �i)gi2I the
reduced free product exists and it is unique up to isomorphism. The proof can be found
in [...]. We will denote the reduced free product of f(Ai; �i)gi2I by �i2I(Ai; �i).

1.3 Joint Moments of Free Random Variables

Similarly with classical probability theory, the concept of freenes gives a rule in order
to compute joint moments of free random variables from the moments of the individual
random variables. Some simple properties of this computation procedure are given below.

Lemma 1.13. Let (A; �) be a non-commutative probability space with free unital subalge-
bras (Ai)i2I and let non-commutative random variables a1; : : : :; ak2A, such that aj2Ai(j)

for all j=1; : : : ; k, where i(1); : : : i(k)2 I. We assume the following:

1. There exists a m2f1; : : : ; kg such that i(m)=/ i(j) for all j=1; : : : ; k.

2. �(am)=0.

Then �(a1: : :ak)=0.

Proof. We assume that i(j)=/ i(j+1) for every j=1; : : : :; k¡ 1. Otherwise, we consider
the product of neighbouring random variables that belong to the same subalgebra, as a
single random variable. We will prove the claim by induction. Obviously for k=1 the claim
holds and we assume that it also holds for all l < k. From the freenes condition we have

�(a1: : :ak)= �[(a10+ �(a1)1): : :(ak
0+ �(ak)1)] =

X
�;�;n

�(a�(1)): : :�(a�(n))�(a�(1)
0 : : :a�(k¡n)

0 )

where we take the sum over all n=1;:::; k (we exclude the case n=0 because i(j)=/ i(j+1)
for all j=1; : : : :; k¡ 1 and the subalgebras (Ai)i2I are free) and all ff�(1)< � � �<�(n)g;
f�(1)< � � �<�(k¡n)gg partitions of f1; : : : ; kg. For such a partition ff�(1)< � � �<�(n)g;
f�(1)< � � � < �(k ¡ n)gg of f1; : : : ; kg, we assume that m 2 f�(1)< � � � < �(n)g. Then
�(a�(1)): : :�(a�(n))= 0 because the non-commutative random variable am has zero mean.
Otherwise, if m 2 f�(1)< � � � <�(k ¡ n)g, and we consider the product of neighbouring
random variables that belong to the same subalgebra as a single random variable, then
a�(1)
0 : : ::a�(k¡n)

0 can be writtten in the form b1: : ::bl where l < k and b1; : : : ; bl 2A are
non-commutative random variables that satisfy the conditions of the lemma. Hence, our
induction hypothesis guarantees that �(a�(1)

0 :::a�(k¡n)
0 )=0. Therefore, the claim holds. �

Corollary 1.14. Let (A; �) be a non-commutative probability space with free unital subal-
gebras (Ai)i2I and let non-commutative random variables a1;:::; ak2A such that aj2Ai(j)

for all j=1; : : : ; k, where i(1); : : : ; i(k)2 I. Assume that there exists a m2f1; : : : ; kg such
that i(m)=/ i(j) for all j=1; : : : ; k. Then we have,

�(a1: : :ak)= �(am)�(a1: : :am¡1am+1: : :ak):

10



Proof. By the previous lemma it arises that,

�(a1: : :ak)= �(a1: : :am¡1(am0 + �(am)1)am+1: : :ak)= �(am)�(a1: : :am¡1am+1: : :ak): �

We consider a1::::ak to be a product of non-commutative random variables, which satisfy
the conditions of the previous corollary. Also, let's assume that am is the unique random
variable among a1;:::;ak that belongs to the subalgebraAi(m), i.e. i(m)=/ i(l) for all l2f1;:::;
kgnfmg. Hence in order to compute �(a1:::ak), we have to compute �(a1:::am¡1am+1:::ak).
If every time that we remove some random variable from the product a1: : :ak we have
that the new product is a product of non-commutative random variables that satisfy
the conditions of the previous corollary (for example, for a1: : :am¡1am+1: : :ak this could
be done if i(m ¡ 1) = i(m+ 1) =/ i(l) for all l 2 f1; : : : ; kgnfm ¡ 1; m+ 1g, and in that
case the random variable am¡1am+1 could be removed), then we will get that

�(a1: : :ak)= �

0@ Y
j :i(j)=k1

!
aj

1A: : :�
0@ Y

j :i(j)=kn

!
aj

1A;
where we assume that fi(1); : : : ; i(k)g= fk1; : : : ; kng, ki=/ kj for all i=/ j and

Q!
denotes

the product of factors in the same order as they appear in the product a1: : :ak.

Thus, in that case the joint moments of free random variables can be computed as in
classical probability theory. In order to better understand what kind of products satisfy
these conditions, we introduce the notion of non-crossing partitions, which will be crucial
for the further development of the theory.

We will denote the set of all partitions of a finite totally ordered set S by P (S). For a
partition �= fV1; : : : ; Vrg of the set S, the elements V1; : : : ; Vr�S are called blocks of �.
For two elements p; q 2S we write,

ps� q if and only if p; q are in the same block of �:

Moreover, we denote by P2(S) the set of all 2-partitions of S, i.e. � 2P2(S) if each block
of � is an ordered set containing exactly two elements. Of course, when the set S has an
odd number of elements, then we have P2(S)= ;.

Definition 1.15. Let S be a finite totally ordered set and �=fV1;:::;Vrg2P (S) a partition
with blocks Vi�S:

1. The partition � is called crossing if there exist p1; q1; p2; q22S such that

� p1< q1< p2< q2,

� p1s� p2, q1s� q2 and p1�� q1.

2. If � is not a crossing partition, then it will be called non-crossing and we denote by
NC(S) the set of all non-crossing partitions of S.

We can depict crossing and non-crossing partitions in the following way: For a �2P (S),
if we build bridges in order to connect the points of S that belong to the same block, then
these bridges will not cross if and only if � 2NC(S).

11



Example 1.16. The partitions {(1,4),(2,3),(5),(6))} and {(1,6),(2,5),(3),(4)} are non-
crossing partitions of {1,2,3,4,5,6} and they correpond to the following pictures.

On the other hand, the partitions f(1; 4); (2; 5); (3; 6)g and f(1; 3); (2; 4); (5); (6)g are
crossing partitions. The respective pictures are

For a totally ordered set S we will freely identify P (S) with P (1;2; :::;#S), since only
the order of S matters. It is easy to note that every non-crossing partition � of the finite
set f1; : : : ; ng contains an interval block, i.e. a block V 2 � of the form

V = fk; k+1; : : : ; k+ rg� f1; : : : :; ng;

and that �nfV g is a non-crossing partition of f1; 2; : : : ; n¡#V g.

For example, �={(1,6,8),(2,3,4,5),(7)} is a non-crossing partition of {1,2,3,4,5,6,7,8}

and �nf(2; 3; 4; 5)g= f(1; 2; 4); (3)g is a non-crossing partition of {1,2,3,4}

Returning to the discussion about the computation rule of the joint moments of free
random variables, let's assume that (A; �) is a non-commutative probability space with
free unital subalgebras (Ai)i2I and non-commutative random variables a1; : : : ; ak2A such
that aj 2Ai(j) for all j=1; : : : ; k, where i(1); : : : ; i(k)2 I . Then, by the previous corollary
we see that the criterion for deciding if the calculation rule for the moments �(a1: : :ak) is
the same as in the classical case, is whether for two random variables an; am we have that
they belong to the same subalgebra or not, i.e. for which n;m2f1; : : : ; kg it is true that
i(n)= i(m). This is the reason that leads to the following definition.

12



Definition 1.17. Let I be a set, k2N and i=(i(1);:::; i(k)) be a k-tuple of elements of I .
For such an i we define its kernel ker(i)2P (1;:::; k), by demanding for all p; q2f1;:::; kg:

psker(i) q if and only if i(p)= i(q):

Example 1.18. For i=(10; 3; 4; 10; 10; 3; 4) we have that its kernel is given by

ker(i)= ff1; 4; 5g; f2; 6g; f3; 7gg2P (1; : : : ; 7)

which corresponds to the following picture

Note that for j=(9; 3; 7; 9; 9; 3; 7) we have ker(i)=ker(j).

Let (A; �) be a non-commutative probability space, with unital subalgebras (Ai)i2I and
non-commuatative random variables a1; : : : ; ak2A such that aj 2Ai(j) for all j=1; : : : ; k
where i(1);: ::; i(k)2 I . Then, taking into account the previous corollary in order to obtain
that the calculation rule for the joint moments �(a1: : :ak) is the same as in the classical
case, it is necessary every time that we remove an element from the product a1: : :ak to be
valid that in the new product there are some neighboring random variables that belong to
the same subalgebra and there is not other random variable, except of them, which belongs
to this subalgebra. It is easy to note, that this is true if and only if for i=(i(1); : : : ; i(k))
we have that ker(i)2NC(1;:::; k). Hence, we see that non-crossing partitions appear when
we want to deduce some properties of freenes with probabilistic flavour.

We present some lemmas, in order to better understand the calculation rule for the
joint moments of free random variables, when their product do not correspond in the case
that we described above.

Lemma 1.19. Let (A; �) be a non-commutative probability space, with free unital subal-
gebras (Ai)i2I and random variables a1; : : : ; ak2A such that aj 2Ai(j) for all j=1; : : : ; k;
where i(1); : : : ; i(k)2 I. We consider s :=#fi(1); : : : ; i(k)g. Then �(a1: : :ak) can be written
as a sum of products of elementary moments (i.e. moments of random variables that belong
to the same subalgebra) of the a1; : : : ; ak, where each summand contains at least s factors.

Proof. We prove the claim by induction. For k=1; 2 the claim holds and we also assume
that it holds for all l < k. It suffices to assume that i(j)=/ i(j+1) for all j=1; : : : ; k¡ 1;
because otherwise the induction hypothesis guarantees the claim. Similarly with the proof
of Lemma 1.13 we consider the factorization,

�(a1: : :ak)=
X
�;�;n

�(a�(1)): : :�(a�(n))�(a�(1)
0 : : :a�(k¡n)

0 )
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where the sum runs over all n=1; : : : ; k and over all ff�(1)< � � � <�(n)g; f�(1)< � � � <
�(k¡n)ggpartitions of f1; : : : ; kg. Hence, if ff�(1)< � � �<�(n)g;f�(1)< � � �<�(k¡n)gg
is a partition of f1; : : : ; kg; because #fi(1); : : : ; i(k)g= s, we will have that

s¡n�#fi(�(1)); : : : ; i(�(k¡n))g:

Therefore, by the induction hypothesis we deduce that �(a�(1)
0 : : :a�(k¡n)

0 ) can be written

as a sum of products of elementary moments of the a�(j)
0 , where each product contains

at least s¡ n factors. But the elementary moments of the a�(j)
0 are sums of products of

elementary moments of the aj and consequently, �(a�(1)
0 :::a�(k¡n)

0 ) is a sum of products of
elementary moments of the aj, where each product contains at least s¡n factors. Taking
into account that �(a�(1)

0 : : :a�(k¡n)
0 ) is multiplied by �(a�(1)): : :�(a�(n)), it emerges that

the claim holds. �

In the case where ker(i)2NC(1; : : : ; k), we saw that �(a1: : :ak) is the product of s
elementary moments. Using the previous lemma we deduce the following result for the case
where ker(i) is a crossing partition.

Lemma 1.20. Let (A; �) be a non-commutative probability space, with free unital subal-
gebras (Ai)i2I and random variables a1; : : : ; ak2A such that aj 2Ai(j) for all j=1; : : : ; k,
where i(1);:::; i(k)2I. We also assume that ker(i) is a crossing partition of f1;:::; kg and
we consider s :=#fi(1); : : : ; i(k)g. Then �(a1: : :ak) can be written as a sum of elementary
moments of the aj, where each summand contains at least s+1 factors.

Proof. We can assume that i(j) =/ i(j + 1) for all j = 1; : : : ; k ¡ 1. Otherwise, we just
consider the product of neighbouring random variables that belong to the same subalgebra
as a single random variable. Also, by Corollary 1.14 it suffices to assume that each i(j)
occures at least twice. We consider again the factorization,

�(a1: : :ak)=
X
�;�;n

�(a�(1)): : :�(a�(n))�(a�(1)
0 : : :a�(k¡n)

0 ):

Let ff�(1)< � � �<�(n)g; f�(1)< � � �<�(k¡n)gg a partition of f1; : : : ; kg. If we have that
#fi(�(1)); :: : ; i(�(n))g=n, then fi(�(1)); :: : ; i(�(n))g�fi(�(1)); :: : ; i(�(k¡n))g becauce
each i(j) occures at least twice by assumption. Hence, s=#fi(�(1)); : : : ; i(�(k ¡ n))g.
By Lemma 1.19 it emerges that the moments �(a�(1)

0 : : :a�(k¡n)
0 ) can be written as a

sum of products of elementary moments of the a�(j)
0 where each summand contains at

least #fi(�(1)); : : : ; i(�(k ¡ n))g= s factors. But, since the elementary moments of the
a�(j)
0 can be written as a sum of products of elementary moments of the aj, we see that
�(a�(1)): : :�(a�(n))�(a�(1)

0 : : :a�(k¡n)
0 ) is a sum of products of elementary moments of the

aj, where each summand contains at least s+ 1 factors. On the other hand, if we have
#fi(�(1));:::; i(�(n))g<n, i.e. there existm; j2f1;:::;ng such that i(�(m))= i(�(j)), then

s�#fi(�(1));:::; i(�(n))g+#fi(�(1));:::; i(�(k¡n))g�n¡1+#fi(�(1));:::; i(�(k¡n))g:
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Therefore, we will have #fi(�(1));:::; i(�(k¡n))g�s¡n+1. Taking into account Lemma
1.19, the moments �(a�(1)

0 :::a�(k¡n)
0 ) can be written as a sum of elementary moments of the

a�(j)
0 where each summand contains at least s¡n+1 factors. Hence, since the elementary

moments of the a�(j)
0 can be written as a sum of products of elementary moments of the

aj ;we deduce that �(a�(1)):::�(a�(n))�(a�(1)
0 :::a�(k¡n)

0 ) is a sum of products of elementary
moments of the aj, where each summand contains at least s+ 1 factors. Therefore, the
claim has been proven. �

1.4 Free Central Limit Theorem

In this subsection, we want to investigate if some standard notions and results of classical
probability can be generalized to the non-commutative setting. Our first attempt will be to
try to understand if there exists some analogue of the Gaussian distribution, in the context
of free probability. One of the reasons that makes Gaussian distribution important and
usefull is the fact that arises by the central limit theorem. The free central limit theorem
will be the main criterion which will make us decide which is the analog of Gaussian
distribution in the non-commutative case. Hence we will show that the normalized sum of
free random variables converges (in some sense) to a specific probability distribution.

Before we formulate and prove our limit theorem, we pause in order to introduce some
notation. Given a unital algebra A over C and X �A, we denote by alg(X ) the subalgebra
generated by X .

Theorem 1.21. Let (A; �) be a non-commutative probability space. For n2N fixed, we
consider n non-commutative random variables aM;N

1 ; : : : ; aM;N
n 2A, where M;N 2N. We

assume that for every N 2N, the unital subalgebras falg(1; aM;N
1 ; : : : ; aM;N

n )gM2N are free
and the non-commutative random variables f(aM;N

1 ; : : : ; aM;N
n )gM2N have the same joint

distribution, which means that for P 2ChX1; : : : ; Xni arbitrary we have

�[P (aM;N
1 ; : : : ; aM;N

n )]= �[P (aK;N
1 ; : : : ; aK;N

n )];

for all K;M 2N. For P 2ChX1; : : : ;Xni we define,

�[P (aN1 ; : : : ; aNn )] := �[P (aM;N
1 ; : : : ; aM;N

n )]:

If for all k 2N and i(1); : : : ; i(k)2f1; : : : ; ng the limit

Q(i(1); : : : ; i(k)) := lim
N!1

N � �
¡
aN
i(1)
: : :aN

i(k)�
exists, then we have for the sums

SN
m := a1;Nm + � � �+ aN;N

m

for all k 2N and i(1); : : : ; i(k)2f1; : : : ; ng:

lim
N!1

�
¡
SN
i(1)

: : :SN
i(k)�=X

p=1

k X
fV1; : : : ;Vpg2NC(1; : : : ;k)

Q(V1): : :Q(Vp);

where for V = fv1< � � �<vlg� f1; : : : ; kg, Q(V ) stands for Q(i(v1); : : : ; i(vl)).
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Proof. We consider k2N and i(1); : : : ; i(k)2f1; : : : ; ng to be fixed. Then, we have,

�
¡
SN
i(1)
: : :SN

i(k)� = �
�¡
a1;N
i(1)+ � � �+ aN;N

i(1) �
: : :
¡
a1;N
i(k)+ � � �+ aN;N

i(k) ��
=

X
j(1); : : : ;j(k)=1

N

�
¡
aj(1);N
i(1)

: : :aj(k);N
i(k) �

=
X
p=1

k X
fV1; : : : ;Vpg2P (1; : : : ;k)

X
j(1); : : : ;j(k)=1

ker(j)=V

N

�
¡
aj(1);N
i(1)

: : :aj(k);N
i(k) �

:

Let two k-tuples j =(j(1); : : : ; j(k)) and l=(l(1); : : : ; l(k)) such that ker(j) = ker(l), i.e.
j(a)= j(b) if and only if l(a)= l(b). Then, we have,

�
¡
aj(1);N
i(1)

: : :aj(k);N
i(k) �

= �
¡
al(1);N
i(1)

: : :al(k);N
i(k) �

:

This is true because for all r 2N and for all P1; : : : ; Pr2ChX1; : : : ;Xni we have,

�[P1(aj(1);N
1 ; : : : ; aj(1);N

n ): : :Pr(aj(r);N
1 ; : : : ; aj(r);N

n )]

=�[P1(al(1);N
1 ; : : : ; al(1);N

n ): : ::Pr(al(r);N
1 ; : : : al(r);N

n )]:

Ineed for r=1 the above equality holds because the non-commutative random variables
f(aM;N

1 ; : : : ; aM;N
n )gM2N have the same joint distribution. Also, because the unital subal-

gebras falg(1; aM;N
1 ; : : : ; aM;N

n )gM2N are freely independent, by induction we can see that
the above equality holds for all r 2N.

For V =fV1; : : : ; Vpg2P (1; : : : ; k), the number of k-tuples j=(j(1); : : : ; j(k)) such that
j(1); : : : ; j(k)2f1; : : : ;N g and ker(j)=V , is Ap;N :=N(N ¡ 1): : :(N ¡ p+1). For such a

j, because the expressions �
¡
aj(1);N
i(1)

: : :aj(k);N
i(k) �

do not depend on j, they will be denoted
by �(V1; : : : ; Vp;N). Therefore, we have,

�(SN
i(1)

: : ::SN
i(k))=

X
p=1

k

Ap;N
X

fV1; : : : ;Vpg2P(1; : : : ;k)
�(V1; : : : ; Vp;N):

We consider a crossing partition V =fV1; : : : ; Vpg2P (1; : : : ; k) and j=(j(1); : : : ; j(k)) such
that ker(j) = V . By definition, �(V1; : : : ; Vp;N) = �

¡
aj(1);N
i(1)

: : :aj(k);N
i(k) �

and since ker(j) is
crossing, by Lemma 1.20, we can write �(V1; : : : ; Vp;N) as a sum of products of elementary
moments of the aj(1);N

i(1)
; : : : ; aj(k);N

i(k) , where each product contains at least p+1 factors. The
existence of the limits Q(i(1); : : : ; i(r)), implies that,

lim
N!1

�(aN
i(1)

: : :aN
i(r))= 0;

for all r 2N and all i(1); : : : ; i(r) 2 f1; : : : ; ng. Therefore, for every crossing partition
V 2P (1; : : : ; k), we deduce that,

lim
N!1

Ap;N � �(V1; : : : ; Vp;N)= 0:

16



On the other hand, if V = fV1; : : : ; Vpg is a non-crossing partition, then using Corollary
1.14, we have �(V1; : : : ; Vp;N)= �(V1;N): : :�(Vp;N), which implies,

lim
N!1

Ap;N � �(V1; : : : ; Vp;N)=Q(V1): : :Q(Vp):

Therefore, the asserttion holds. �

In the previous theorem, a lot of conditions about the non-commutative random vari-
ables were necessary in order to prove the limit theorem. These conditions are satisfied,
if we adopt the following setting: We consider (A; �) to be a C*-probability space and
for each i2N let (Ai; �i) := (A; �). Let also (Â; �̂) = �i=11 (Ai; �i) to be the reduced free
product of the C*-probability spaces (Ai; �i), with the canonical embeddings ji:Ai!Â.
Given n 2N fixed, for each N 2N we consider n random variables bN1 ; : : : ; bNn 2 (A; �).
Then, if we define aM;N

k := jM(bNk ), it is clear that for N 2N fixed, the non-commutative
random variables aM;N

1 ; : : : ; aM;N
n 2 (Â; �̂) have the same joint distributions for all M 2N,

because the linear maps ji:Ai!Âi are �-homomorphisms, and �̂� ji= � for all i2N. The
free independence of the unital subalgebras falg(1; aM;N

1 ; : : : ; aM;N
n )gM2N is also satisfied

by the definition of the reduced free product.

Theorem 1.22. (free central limit theorem) Let (A; �) be a non-commutative prob-
ability space. For n 2N fixed, we consider non-commutative random variables aM

1 ; : : : ;

aM
n 2A, where M 2N. We assume that the unital subalgebras falg(1; aM1 ;: ::; aMn )gM2N are

free and the non-commutative random variables f(aM1 ; : : : ; aMn )gM2N have the same joint
distribution, which means that

�[P (aM1 ; : : : ; aMn )]= �[P (aK1 ; : : : ; aKn )];

for all P 2ChX1; : : : ; Xni and for all M;K 2N. For P 2ChX1; : : : ;Xni we define,

�[P (a1; : : : ; an)] := �[P (aM1 ; : : : ; aMn )]:

We also assume that �(am)= 0 for all m2f1; : : : ; ng. Then, if we consider the sums

SN
m := a1

m+ � � �+ aNm

N
p ;

for all k 2N and i(1); : : : ; i(k)2f1; : : : ; ng we have:

lim
N!1

�
¡
SN
i(1)
: : :SN

i(k)�=
8>>>>>>>><>>>>>>>>:
0; k odd

P
f(e1;z1); : : : ;(er;zr)g
2NC(1; : : : ;k)

�(ai(e1)ai(z1)): : :�(ai(er)ai(zr)); k=2r:

Proof. For m2f1; : : : ; ng and M;N 2N, we consider aM;N
m := 1

N
p aM

m. We want to show

that the non-commutative random variables aM;N
k satisfy the assumptions of Theorem

1.21 . Hence, it suffices to show that for all k2N and for all i(1);:::; i(k)2f1;:::;ng we have,

lim
N!1

N�(aM;N
i(1)

: : :aM;N
i(k) )=0:
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For k=1 we have,

lim
N!1

N�(aM;N
i(1) )= lim

N!1

1
N

p � �(ai(1))=0:

For k=2 we have,

lim
n!1

N�(aM;N
i(1) �aM;N

i(2) )= lim
N!1

�(ai(1)ai(2))= �(ai(1)ai(2)):

For k� 3 we see that,

lim
N!1

N�(aM;N
i(1)

: : :aM;N
i(k) )= lim

N!1

1

N
k

2
¡1
� �(ai(1): : :ai(k))= 0:

Therefore, by Theorem 1.21 the assertion holds. �

Following the setting of the previous theorem, for n=1 we have a sequence (aM)M2N of
free random variables such that �(aMk )= �(aNk ) for all k;M ;N 2N (identically distributed)
and �(aM) = 0 for all M 2N (zero mean). Hence, under the assumption �(aM2 ) = �2> 0
for all M 2N, by Theorem 1.22 is obtained that if

SN =
a1+ � � �+ aN

N
p

is the normalized sum of the free random variables, then

lim
N!1

�[(SN)k] =

8>><>>:
0; for k odd

#NC2(1; : : : ; k) ��k; for k even.

We recall that in the classical case, where A= L1¡(W; F ;P;R) and �(X) = E[X ], if
(Xi)i2N is a sequence of i.i.d. random variables with zero mean and variance �2, then by
the classical central limit theorem, for the normalized sum

SN =
X1+ � � �+XN

N
p

we have

lim
N!1

E[(SN)k]=
Z
R
tk(dt)=

8>><>>:
0; fork odd

#P2(1; : : : ; k) ��k; fork even

where  is the Gaussian measuse on R with mean 0 and variance �2.

Hence, we see another case where partitions of a finite set have to be replaced by non-
crossing partitions in order to obtain some results in the context of free probability theory,
which have a classical probabilistic flavour.

Definition 1.23. Let f(An; �n)gn2N as well as (A; �) be non-commutative probability
spaces. We consider (bn)n2N to be a sequence of non-commutative random variables with
bn2An for every n2N and let b2A. We say that bn converges in distribution to b, if and
only if,

lim
n!1

�n(bnk)= �(bk); for all k2N:
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Convergence in distribution will be denoted by bn!
distr

b.

According to the previous definition, the classical central limit theorem shows that in
the classical case, where (A; �)=(L1¡(
;F ;P;R);E), the random variable SN converges
in distribution to some Gaussian random variable X 2L1¡(W;F ;P;R): It is easy to note
that the free central limit theorem gives a similar outcome. This is due to the fact that the
number of non-crossing pairings of a finite set can be determined by a well know recurrence
relation.

Lemma 1.24. Let m 2N and Cm := #NC2(1; : : : ; 2m) be the number of non-crossing
pairings of the finite set f1; : : : ; 2mg. We also define C0 := 1. Then, for the sequence
(Cm)m2N we have for all m2N,

Cm=
X
k=1

m

Ck¡1Cm¡k:

Proof. For m2N, we consider �=f(e1; z1); : : : ; (em; zm)g2NC2(1; : : : ; 2m), where ei<zi
for all i=1; : : : ;m and 1= e1< � � �<em. Because � is a non-crossing partition, z1 must be
an even number. We consider j=1; : : : ;m such that ej 2f2; : : : ; z1¡ 1g. Then, since � is
non-crossing, we must have e1<ej<zj�z1¡1. Therefore, we will have that the restriction
of � to f2; :: : ; z1¡1g gives a non-crossing partition of f2; : :: ; z1¡1g. In the same way, the
fact that � is non-crossing implies that if z1<zj for some j=1; : : : ; m, then z1<ej<zj.
Hence, the restriction of � to fz1+1; : : : ; 2mg leads to the construction of a non-crossing
partition of the finite set fz1+1; : : : ; 2mg. The previous observations show that for some
non-crossing pair partition � of f1; : : : ; 2mg, with z1 fixed, the procedure of making the
pairs (e2; z2); : : : ; (em; zm) is equivalent to the construction of a non-crossing pair partition
of f2; : : : ; z1¡ 1g and of a non-crossing pair partition of fz1+1; : : : ; 2mg. Hence, we see
that for an even number 2 l2f2; : : : ; 2mg,

#ff(e1; z1;);:::; (em; zm)g2NC2(1;:::;2m) jz1=2 lg=#NC2(2;:::; l¡1) �#NC2(l+1;:::;2m)

=C2l¡2
2

�C2m¡2l
2

=Cl¡1 �Cm¡l:

Therefore, considering all the different possible values that z1 may have, we deduce that
the claim holds. �

The unique solution of the recursion equation of Lemma 1.24 is given by the sequence
(Cm)m2N, where

Cm=
1

m+1

�2m
m

�
;

is the the mth Catalan number.

Catalan numbers occur in various counting problems and for every m 2N they have
the following integral representations

Cm=
1
2�

Z
¡2

2

t2m 4¡ t2
p

dt:
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Therefore, we conclude that the free central limit theorem implies that

lim
n!1

�[(SN)k] =
Z
R
tks(dt);

where the probability measure s(dx)= f(x)dx, with density function,

f(x)= 1
2p�2

1[¡2�;2�](x) 4�2¡x2
p

is called semicircle distribution.

¡2� 2�

Definition 1.25. Let (A; �) be a �-probability space and � > 0. A self-adjoint random
variable a 2 A is called semicircular variable of variance �2, if it's moments have the
following form

�(sk)=

8>><>>:
0; for k odd;

�2mCm; for k=2m for some m2N:

A semicircular variable will be called standard or normalized if �2=1. The conclusion of
the free central limit theorem is that the sum SN converges in distribution to a semicircular
variable. In free probability, the semicircle distribution is the analogue of the Gaussian
distribution, since for a semicircular variable a2 (A; �) of variance �2> 0, we have

�(ak)= 1
2p�2

Z
¡2�

2�

tk 4�2¡ t2
p

dt; for all k 2N:

Theorem 1.26. (Poisson limit theorem) Let (A; �) be a non-commutative probability
space. For M;N 2N we consider non-commutative random variables aM;N 2A, such that
for every N 2N the unital subalgebras falg(1; aM;N)gM2N are freely independent and the
non-commutative random variables faM;NgM2N have the same distribution, which means
that for every k;M ;K 2N we have

�[(aM;N)k] = �[(aK;N)k]:

For k;N 2N we define �[(aN)k] := �[(aM;N)k]. We also assume that there exist � such that
for every k 2N

lim
N!1

N�[(aN)k] =�:
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Then we have for the sums

SN := a1;N + � � �+ aN;N

for all k 2N:

lim
N!1

�[(SN)k] =
X
p=1

k X
fV1; : : : ;Vpg2NC(1; : : : ;k)

�p:

Proof. Since for every k2N we have

lim
N!1

N�[(aN)k] =�;

the claim holds by Theorem 1.21 . �

We recall, that in the classical case the analogous theorem gives a limit theorem for the
Poisson distribution. Due to this analogy, it is reasonable to consider that the sequence
(SN)N2N of Theorem 1.26, converges in distribution to the free analogue of a Poisson
random variable. This is the reason that leads to the following defition.

Definition 1.27. Let (A; �) be a �-probability space and � > 0. A self-adjoint random
variable a 2A is called free Poisson variable with parameter �, if it's moments have the
following form

�(ak)=
X
p=1

k X
fV1; : : : ;Vpg2NC(1; : : : ;k)

�p; for every k 2N:

As we expected, in terms of their moments, the difference between Poisson random vari-
ables and free Poisson variables comes by replacing partitions with non-crossing partitions.

1.5 Semicircular variables

In the previous subsection we identified the free analogues of the Gaussian and Poisson
distribution. However, we do not know yet if non-commutative realizations of these distri-
butions exist. In this subsection we present an example of semicircular variables on some
non-commutative probability space. Examples of free Poisson variables will be presented
later. Throughout this subesction we consider a �-probability space (A; �) and a non-
commutative random variable a2A such that the following conditions hold,

� a� a=1=/ a a�.

� a gerenates A as a �-algebra.

� the elements fam(a�)njm;n� 0g are linearly independent.

� the linear functional �:A!C satisfies the following equation

�(am(a�)n)=

8<: 1; ifm=n=0

0; otherwise:
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Later on, we will present specific examples of non-commutative probability spaces (A; �)
where there exist a random variable a 2A such that the above conditions are satisfied.
By the previous conditions, it is easy to see that A= spanf(a)m(a�)n j m;n� 0g because,
due to the first assumption, we have that the family fam(a�)njm; n� 0g is closed under
multiplication. Obviously, it is also closed under �-operation. Hence it's linear span is a �-
subalgebra of A which contains a. Since a generates A as a �-algebra, we must have that
the two �-algebras are equal.

Such a �-algebra it is easy to be studied since it is closely related with the Toeplitz
algebra. We recall that on the Hilbert space l2 := l2(N[f0g;C) there is a standard ortho-
normal basis (en)n�0, where,

en=(0; : : : ; 0; 1; 0; 0; : : : );

with the 1 appearing on the nth component.

We consider the one-sided shift operator S 2B(l2), determined by the relation

Sen= en+1; for alln� 0: (1.1)

It is straightforward to verify that the adjoint operator S� is determined by

S�e0=0 and S�en= en¡1; for all n� 1 (1.2)

and the condition S�S =1B(l2)=/ SS� is satisfied. The Toeplitz algebra is the C�-algebra
generated by the one-sided shift operator S 2B(l2).

Since A= spanfam(a�)njm;n� 0g, we can define a linear map �:A!B(l2) such that

�(am(a�)n)=Sm(S�)n; for allm;n� 0

and extend by linearity. Note that since the elements fam(a�)n jm; n � 0g are linearly
independent, we have that the map � is well defined. Moreover, it is easily verified that �
is a unital �-homomorphism.

Proposition 1.28. The elements fSm(S�)n jm;n� 0g are linearly independent.

Proof. Let T 2 spanfSm(S�)n jm; n� 0g such that T =0. Then the operator T can be
written as a finite sum of operators a Sm(S�)n, where a 2C and m; n � 0. We consider
a1S

m1(S�)n;:::; akSmk(S�)n to be the summands of T such that n is minimal and mi=/ mj

for all i=/ j. Then we have

a1S
m1(S�)nen+ � � �+ akSmk(S�)nen = a1S

m1e0+ � � �+ akSmke0

= a1 em1+ � � �+ ak emk

and SM(S�)Nen=0 for all M 2N and N >n.

Therefore, the fact T en=0 implies that

a1 em1+ � � �+ ak emk=0:

Since mi=/ mj for all i=/ j, we deduce that a1= � � �= ak=0:

Continuing in this way, we see that if aSm(S�)n is a summand of T , then a=0. �
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Because the elements fSm(S�)n jm; n� 0g are linearly independent, the �-homomor-
phism � is injective. Therefore, the �-algebra A can be identified with an algebra of
bounded operators on l2. This identification allows us to compute moments of random
variables inA with respect to �, by computing moments of random variables on B(l2), with
respect to a suitable state. Indeed, we consider the vacuum state �0:B(l2)!C, determined
by

�0(T )= heo; T e0il2; for allT 2B(l2):

Then, by definition we have

�0(Sm(S�)n)= h(S�)me0; (S�)ne0il2=

8<: 1; form=n=0

0; otherwise

=�(am(a�)n):

Therefore, the triple (l2; �; e0) is a representation of (A; �), which means that

�(x)= he0; �(x)e0il2; for all x2A: (1.3)

We remind, that our purpose is to give non-commutative realizations of semicircular random
variables. In our example, the semicircular random variable will be an element of the algebra
A: Hence, from now on, we will focus on the computation of the moments �(a"(1): : :a"(k)),
where k2N and f"(1); : : : ; "(k)g2f1;�g. Up to now, we saw that we can reduce the study
of the moments �(a"(1):::a"(k)), to the study of the corresponding moments �0(S"(1):::S"(k)).
In order to understand how the k-tuple ("(1);:::; "(k)) affects the value of �0(S"(1):::S"(k)),
we introduce the notion of Dyck paths.

Definition 1.29. We define NE-SE paths, (where NE stands for North-East and SE
stands for South-East) to be paths in Z2 which starts at the origin and makes finitely many
steps either of the form (1;1) (North-East steps) or of the form (1;¡1) (South-East steps).

Remark 1.30. For k 2N, there is a bijection between the set of NE-SE paths with k
steps and the set f¡1;+1gk. More precisely, we can identify a NE-SE path with k steps,
with a k-tuple (�(1); : : : ; �(k))2f¡1;+1gk, where for j 2f1; : : : ; kg; �(j)= 1 means that
the j-th step was a NE step, while �(j)=¡1 means that the j-th step was a SE step.

We will distinguish some NE-SE paths, called Dyck paths.

Definition 1.31. A Dyck path is a NE-SE path which stays above the x-axis and ends
on the x-axis. This happens if the path visits only points of the form (i; j)2Z2 with j � 0
and the last point that it visits is of the form (k;0)2Z2, where k2N is the number of steps.

Remark 1.32. For k2N, we consider the identification of NE-SE paths with k steps and
f¡1; 1gk. Then it is obvious that a NE-SE path (�(1); : : : ; �(k))2f¡1; 1gk is a Dyck path
if and only if

�(1)+ � � �+�(j)� 0; for all j 2f1; : : : ; kg and �(1)+ � � �+�(k)=0: (1.4)
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The inequalities in (1.4) guarantee that the path never goes strictly below the x-axis, while
the equality in (1.4) guarantees that the path ends on the x-axis. Also, the same equality
implies that

k = #fj=1; : : : ; k j�(j)= 1g+#fj=1; : : : ; k j�(j)=¡1g
= 2#fj=1; : : : ; k j�(j)= 1g:

Therefore, a Dyck path makes even number of steps.

Example 1.33. The path (1; 1;¡1; 1;¡1;¡1)2f�1g6 is a Dyck path with 6 steps, but
the NE-SE path (1;¡1;¡1; 1; 1;¡1)2f�1g6 is not a Dyck path because at the third step
it goes strictly below the x-axis. We can visualize the previous paths in the following way

There are five Dyck paths with 6 steps:

(1;¡1; 1;¡1; 1;¡1)

(1; 1;¡1;¡1; 1;¡1)

(1;¡1; 1; 1;¡1;¡1)

(1; 1;¡1; 1;¡1;¡1)

(1; 1; 1;¡1;¡1;¡1)
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We recall that for an integer n2N, we defined the nth Catalan number

Cn :=
1

n+1

�2n
n

�
:

Proposition 1.34. For all p2N, the number of Dyck paths with 2p steps is equal to the
pth Catalan number.

Proof. Let p2N. In order to compute the number of Dyck paths with 2p steps, we will
compute the number of NE-SE paths with 2p steps and the number of NE-SE paths with 2p
steps, which are not Dyck paths. We consider a NE-SE path which makes u NE steps, and
v SE steps. Then, u+ v > 0, and the ending point of the path must be (u+ v; u¡ v)2Z2.
Note that for a point (m;n)2Z2, if there exist u; v2N[f0g such that u+v>0, m=u+v
and n= u¡ v, then we have m> 0, jnj �m and the integers m; n have the same parity.
On the other hand, for m;n2Z such that m> 0, jnj�m and m;n have the same parity,
there exist unique u= 1

2
(m+n)2N[f0g and v= 1

2
(m¡n)2N[f0g, such that u+ v >0,

m=u+v and n=u¡v. Therefore, we deduce that a pair (m;n)2Z2 is an ending point of
a NE-SE path, if and only if, m> 0, jnj �m and m;n have the same parity. In that case
the path makes 1

2
(m+n) NE-steps and 1

2
(m¡n) SE steps. Therefore, identifying the NE-

SE paths that make m steps with f¡1;1gm, we see that the number of NE-SE paths with
ending point (m; n)2Z2 is equal to

�
m

(m+n)/2

�
. Therefore, the number of NE-SE paths

arriving at (2p; 0) is
�
2p
p

�
.

Now, we want to compute the number of NE-SE paths arriving at (2p;0) which are not
Dyck paths. Let  be a NE-SE path arriving at (2p;0) which is not a Dyck path. Since the
ending point of  is on x-axis, we must have that after some steps  goes strictly below
the x-axis. Let j 2f1; : : : ;2p¡1g be the number of steps that  needs to do in order to go
under the x-axis for the first time. Of course, this automatically means that after the jth
step the path  will be in the position (j;¡1). Therefore, we can split  in two paths 1
and 2, where 1 goes from (0; 0) to (j;¡1), and 2 goes from (j ;¡1) to (2p; 0). In that
case, we will write = 1_ 2. We consider 3 to be the reflection of 2 in the horizontal
line of the equation y=¡1. This automatically means that 3 is a path from (j ;¡1) to
(2p;¡2). We define F () := 1_ 3 which is a NE-SE path arriving at (2p;¡2). In order
to better understand the construction of the path F (), we give a concrete example: Let
p=5 and =(1; 1;¡1;¡1;¡1;¡1; 1; 1; 1;¡1). In that case, j=5, 1 is a path from (0; 0)
to (5;¡1), 2 is a path from (5;¡1) to (10; 0), and 3 is a path from (5;¡1) to (10;¡2).
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Hence, we have constructed a map F from the set of NE-SE paths ending at (2p;0) and
which are not Dyck paths, to the set of NE-SE paths ending at (2p;¡2). From the definition
of F , it is clear that F is injective. Moreover, the map F is surjective. Indeed, let � be a
NE-SE path ending at (2p;¡2). Let i2f1;:: :;2p¡1g be the number of steps that � needs
to do in order to go under the x-axis for the first time. Like before, we can write �=�1_�2,
where �1 is a path from (0;0) to (i;¡1) and �2 is a path from (i;¡1) to (2p;¡2). Therefore,
if �3 is the reflection of �2 in the horizontal line y=¡1, then we have F (�1_ �3)= �.

As a consequence, the number of NE-SE paths ending at (2p;0) and which are not Dyck
paths is equal to the number of NE-SE paths ending at (2p;¡2), which is

�
2p
p¡ 1

�
. Finally,

we deduce that the number of Dyck paths with 2p steps is�2p
p

�
¡
� 2p
p¡ 1

�
=Cp : �

We now return to our discussion about semicircular variables. We recall that we con-
sider the non-commutative probability space (A; �) and a2A introduced at the beginning
of the current subsection. Dyck paths will give us a rule in order to compute the moments
�(a"(1): : :a"(k)), where k 2N and "(1); : : : ; "(k)2f1; �g.

Proposition 1.35. Let k 2N and "(1); : : : ; "(k)2f1; �g. For all j 2f1; : : : ; kg we define

�(j) :=

8<: 1 if "(j)= �

¡1 if "(j)=1:
(1.5)

Let  be the NE-SE path which corresponds to the k-tuple (�(1); : : : ; �(k))2f¡1;1gk.Then
we have that

�(a"(1): : :a"(k))=

8<: 1 if  is a Dyck path

0 otherwise :
(1.6)

Proof. From the relation (1.3) we will have that

�(a"(1): : :a"(k))= he0; S"(1): : :S"(k)e0il2= h(S"(k))�: : :(S"(1))�e0; e0il2:

Using the relations (1.1) and (1.2) we can see that the vector (S"(k))�: : :(S"(1))�e0 is equal
either to the zero-vector, or to an element of the orthonormal basis fenj n� 0g of l2. In
fact, by induction on j=1; : : : ; k, we have that

(S"(j))�: : :(S"(1))�e0=

8>><>>:
e�(1)+ � � �+�(j) if �(1)+ � � �+�(m)� 0; for all 1�m� j

0 otherwise:

Therefore, we obtain

�(a"(1): : :a"(k))=

8>><>>:
he0; e�(1)+ � � �+�(k)il2 if �(1)+ � � �+�(j)� 0; for all 1� j � k

0 otherwise:
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Since the vectors {engn�0 are orthonormal we will have that he0; e�(1)+ � � �+�(k)il2= 1, if
and only if �(1)+ � � �+�(k)=0, or equivalently, �(a"(1): : :a"(k))= 1; if and only if  is a
Dyck path. Finally, we deduce that

�(a"(1); : : : ; a"(k))=

8<: 1, if  is a Dyck path

0; otherwise:
�

The previous proposition provides a rule in order to decide whether the moments
�(a"(1): : :a"(k)) are equal either to one, or to zero. Using this rule we will conclude that
the self-adjoint random variable a+ a�2 (A; �) is semicircular.

Corollary 1.36. Let k be a positive integer. For the self-adjoint random variable a+a�2
(A; �) we have

�[(a+ a�)k] =

8>><>>:
0; for k odd

Cp; for k=2p:

Proof. We have that

�[(a+ a�)k] = �

 X
"(1); : : : ;"(k)2f1;�g

a"(1): : :a"(k)
!

=
X

"(1); : : : ;"(k)2f1;�g
�(a"(1): : :a"(k)):

Using the relation (1.5) we have that the set of k-tuples ("(1);:::; "(k))2f1;�gk is identified
with f¡1; 1gk. Moreover, taking into account the relation (1.6) and the identification
between the NE-SE paths with k steps and f¡1; 1gk, we deduce that

�[(a+ a�)k] =
X

Dyck paths with k steps

1=

(
0; for k odd
Ck/2; for k even: �

Remark 1.37. Up to now, we have seen only one example of a �-probability space such
that the conditions that we made at the beginning of the current subsection are satisfied.
We refer to the case where a is the one-sided shift operator on l2, and � is the vacuum
state on B(l2). Later on we will consider the case, where a is the creation operator on the
full Fock space F(H) of some Hilbert space H, and � is the vacuum state on B(F(H)).

The previous corollary shows that the operator S+S�2 (B(l2); �0) is a standard semi-
circular variable. Similarly, we can construct an unbounded operator, defined on a dense
subset of l2, which is a non-commutative standard Gaussian variable. To be more precise,
we define the linear operators S1; S1�: spanfen jn� 0g! spanfen jn� 0g by

S1
�e0 := 0; (1.7)

S1
�en := n

p
en¡1; for all n� 1
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and

S1en := n+1
p

en+1; for all n� 0:

It is easy to verify that the operators S1; S1� satisfy the relations

hS1��; �il2= h�; S1�il2; for all �; � 2 spanfen jn� 0g (1.8)

and

S1
�S1¡S1S1�=1: (1.9)

It has been noticed [ . . . ] that the relations (1.7), (1.8) and (1.9) imply that the non-
commutative random variable S1+S1� is a standard Gaussian variable, which means that

�0[(S1+S1�)k] = he0; (S1+S1�)ke0il2=
1
2p

p
Z
R
tk exp

�
¡t

2

2

�
dt; for all k 2N:

Notice that the operators S1;S1� do not differ a lot from the operators S;S� respectively. For
this reason, later on we will present an example of a non-commutative random variable in
(B(l2); �0), which gives an interpolation between standard Gaussian variables and standard
semicircular variables.
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2 Free Cumulants

In this section, we introduce the notion of free cumulants which is one of the main tools
for dealing with free independence. Free cumulants were introduced by R. Speicher around
1994. Cumulants are quantities related to some combinatorial notion of connectivity and
some probabilistic notion of independence. Similarly with the classical case, we can obtain
an equivalent characterization of free independence via free cumulants.

2.1 Basic combinatorics

In order to formulate and present the basic results about free cumulants, we first introduce
some useful combinatorial properties about the lattice of non-crossing partitions.

Definition 2.1. For n2N and �;�2NC(1;:::; n), we write ��� if and only if, for every
block of �, there exists (a unique) block of � which contains it.

Note that the pair (NC(1; : : : ; n);�) is a partially ordered set (poset).

Example 2.2. Consider the non-crossing partitions � = ff1; 2; 5; 6g; f3; 4g; f7; 8gg, and
�= ff1; 2g; f3; 4g; f5; 6g; f7g; f8gg. Then it is clear that � ��.

�

�

For n2N, the maximal element of NC(1; : : : ; n) is denoted by 1n :=ff1;2; : : : ;; ngg and
the minimal element of NC(1; : : : ; n) by 0n := ff1g; f2g; : : : ; fngg.

Definition 2.3. Let P be a finite poset and define P (2) := f(�; �)2P �P j � � �g. For
functions F ;G:P (2)!C we define their convolution F �G:P (2)!C by demanding

(F �G)(�; �) :=
X

�����
�2P

F (�; �)G(� ; �); for all (�; �)2P (2): (2.1)

Similarly, given two functions f :P!C, and G:P (2)!C, we define G � f ; f �G:P!C

by requiring

(f �G)(�) :=
X
���
�2P

f(�)G(� ; �); for all � 2P

and

(G � f)(�) :=
X
���
�2P

G(�; � )f(� ); for all � 2P :
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Remark 2.4. Let P be a finite poset.

1. Assume that P has a unique minimal element 0 (e.g. P =NC(1; : : : ; n)). Then, a
one-variable function f :P!C can be seen as the restriction of some two-variables
function F :P (2)!C with f(�)=F (0; �) for all � 2P :

2. The convolution � is associative, whichs means that for all F ;G;H:P (2)!C, we
have

(F �G) �H =F � (G �H):

3. Consider the function �:P (2)!C , defined by

�(�; �):=

8<: 1; if �=�

0; if � <�

for all (�; �)2P (2):

Note that � is the unit of the � operation, namely for all F :P (2)!C, we have

F � �= � �F :

Therefore, the set of all functions F :P (2)!C equipped with pointwise defined addi-
tion and with the convolution � as multiplication, is a unital (associative) algebra
over C.

For a finite poset P , we also define the function �:P (2)!C by requiring �(�; �) := 1
for all (�; �)2P (2).

In classical probability theory, moments of classical random variables can be written
as a sum over partitions of classical cumulants. We will see that a similar formula holds in
free probability except that partitions have to be non-crossing. In order to formulate this
relation between moments of non-commutative random variables and free cumulants, we
introduce the notion of Mobious function.

Proposition 2.5. Let P be a finite poset. It's � function is invertible, namely there exists
a function �:P (2)!C, called Mobious function, such that

� � � = �= � � �: (2.2)

Proof. For a function �:P (2)!C that satisfies the first equality of (2.2), we must have
for all (�; �)2P (2),

X
�����
�2P

�(�; �)=

8<: 1; if �=�

0; if � <�:
(2.3)

Since P is finite (2.3) can be solved recursively by defining �(�; �) := 1 for all � 2P and

�(�; �) :=¡
X

�����
�2P

�(�; � ); for all (�; �)2P (2):
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Therefore, there exists a function �:P (2)!C such that � � � = �. However, it is not sure
that for this function �:P (2)!C, the relation � � �= � is satisfied.

We make the following observation: We assume that P =fp1; : : : ; pmg and we consider
three functions F ;G;H :P (2)!C. Then, defining,

F (pi; pj) := 0; G(pi; pj) := 0 and H(pi; pj) := 0;

for all i; j 2f1; : : : ;mg such that pi� pj, we have constructed three m�m matrices F̂ , Ĝ,
Ĥ , with entries F̂i;j :=F (pi; pj), Ĝi;j :=G(pi; pj) and Ĥi;j :=H(pi; pj) for all i; j=1; : : : ;
m. By the relation (2.1), it is clear that F �G=H , if and only if F̂ � Ĝ= Ĥ . Note that �̂
is the identity matrix. Then, the relation �̂ � �̂ = �̂ implies that �̂ � �̂= �̂. As a consequence,
we have that �� � = �= � � �. �

Corollary 2.6. Let P be a finite poset. Then, for any f ; g:P !C we have

f = g � � if and only if g= f � �:

Proof. We assume that P =fp1;:::; pmg. For f ; g:P (2)!C, we consider the 1�mmatrices

f̂ : =( f(p1) : : : f(pm) ) and ĝ := ( g(p1) : : : g(pm) ):

Then, since the matrix �̂ is the inverse of �̂, we have that

f = g � �, f̂ = ĝ � �̂, ĝ= f̂ � �̂, g= f � �: �

From now on we will consider our finite poset to be the set NC(1; : : : ; n), for some
n2N. Before we give the definition of free cumulants, we need to racall a key property of
non-crossing partitions.

Proposition 2.7. For each n2N, the poset NC(1; : : : ; n) is a lattice. This means that:

1. Let f�igi=1k be a finite family of non-crossing partitions of f1; : : : ; ng. Then there
exist a greatest lower bound of f�igi=1k denoted by ^i=1k �i.

2. Let f�igi=1k be a finite family of non-crossing partitions of f1; : : : ; ng. Then there
exist a least upper bound of f�igi=1k denoted by _i=1k �i.

Proof. Let k; n2N and f�igi=1k be a family of non-crossing partitions of f1; : : : ; ng.

1. We define the partition ^i=1k �i in the following way: For p; q2f1;:::; ngwe demand,

ps^i=1k �i
q if and only if ps�j q for all j=1; : : : ; k:

It is a routine to check that ^i=1k �i is a non-crossing partition. By definition, for
every j 2f1; : : : ; kg we have

^i=1k �i� �j:
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It remains to show that the partition ^i=1k �i is a greatest lower bound of f�igi=1k .
Let � be a non-crossing partition of f1; : : : ; ng such that � ��j for all j=1; : : : ; k.
Then, for p; q 2f1; : : : ; ng such that ps� q, we have ps�j q for all j =1; : : : ; k, or
equivalently ps^i=1k �i

q. Therefore, we deduce that � �^i=1k �i.

2. The family f� 2NC(1; : : : ; n) j �j � � for all j = 1; : : : ; kg is non-empty since it
contains 1n. It is straightforward to verify that the partition

_i=1k �i :=^f� 2NC(1; : : : ; n) j�j � � for all j=1; : : : ; kg;

satisfies all the desired properties. �

Example 2.8. For �= ff1g; f2; 3; 4gg and �= ff1; 4g; f2; 3gg we have

� ^�= ff1g; f2; 3g; f4gg and �_ �=14:

2.2 Definition of free cumulants

Before we define free cumulants, we pause to introduce some notation. Define NC :=
[n�1NC(1; : : : ; n). Suppose we are given a sequence of multilinear functionals f�n:An!
Cgn2N on a fixed complex algebra A. Then we extend f�n:An!Cgn2N to a family f�� :
An!Cg�2NC in the following way: Let n 2N and let � be a non-crossing partition of
f1; : : : ; ng. We define the functional ��:An!C by requiring, for all (a1; : : : ; an)2An,

��(a1; : : : ; an) :=
Y
V 2�

�#V (a1; : : : ; anjV );

where for every block V = fl1< � � �<lmg2 �;

�#V (a1; : : : ; anjV ) := �m(al1; : : : ; alm):

It is straightforward to see that for all �2NC, ��:An!C is a multilinear functional. The
family (��)�2NC is called the multiplicative family of functionals on NC determined by
(�n)n2N.

Example 2.9. Let A be a complex algebra and let f�n:An!Cgn2N be a sequence of
multilinear functionlas on A.

1. Then, for the multiplicative family of functionals f��:An!Cgn2N, we have for all
n2N and for all (a1; : : : ; an)2An,

�1n(a1; : : : ; an)= �n(a1; : : : ; an) (2.4)

and

�0n(a1; : : : ; an)= �1(a1): : :�1(an):
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The relation (2.4) justifies thinking of (��)�2NC as �extending� the family (�n)n2N.

2. For �= ff1; 4g; f2; 3g; f5gg2NC(1; : : : ; 5) and a1; : : : ; a52A, we have

��(a1; : : : ; a5)= �2(a1; a4)�2(a2; a3)�1(a5):

Definition 2.10. Let (A; �) be a non-commutative probability space. Then, we define, for
every n2N, the multilinear functionals �n:An!C by

�n(a1; : : : ; an) := �(a1: : :an) for all (a1; : : : ; an)2An

and consider (��)�2NC to be the multiplicative family of functionals on NC determined by
(�n)n2N.

The corresponding free cumulants � := (��)�2NC are for each n2N,� 2NC(1; : : : ; n),
multilinear functionals

An ¡!�� C

(a1; : : : ; an) 7¡! ��(a1; : : : ; an)

which are defined by � := � � �, which means, by

��(a1; : : : ; an) :=
X
���

�2NC(1; : : : ;n)

��(a1; : : : ; an)�(�; �);

for all n2N; � 2NC(1; : : : ; n) and (a1; : : : ; an)2An.

Proposition 2.11. Let (A; �) be a non-commutative probability space with free cumulants
(��)�2NC and consider the multilinear functionals �n := �1n (n 2N). Then, the family
(��)�2NC is multiplicative, determined by the family (�n)n2N.

Proof. See in [ . . . ]. �

Remark 2.12. Let (A; �) be a non-commutative probability space with free cumulants
(��)�2NC. By Corollary 2.6, the definition � := �� � is equivalent to demanding �=�� �.
Then, our moment-cumulant formula can be written

��(a1; : : : ; an)=
X
���

�2NC(1; : : : ;n)

��(a1; : : : ; an);

for all n2N, � 2NC(1; : : : ; n) and (a1; : : : ; an)2An. More precisely, the free cumulants
are determined by the fact that (��)�2NC is a multiplicative family of functionals and that,
for all n2N, and (a1; : : : ; an)2An

�(a1: : :an)=
X

�2NC(1; : : : ;n)
��(a1; : : : ; an): (2.5)
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We give some examples in order to better understand how the free cumulants can be
comptuted using the relation (2.5).

Example 2.13. Let (A; �) be a non-commutative probability space with free cumulants
(��)�2NC. Using the relation (2.5) and the statement that � 7!�� is a multiplicative family
of functionals, we make the following computations:

1. Since NC(1)= ff1gg, for a12A we have

�(a1)= �1(a1)=�1(a1):

2. Let a1; a2 be in A. Taking into account that the elements of NC(1; 2) are the
partitions ff1; 2gg and ff1g; f2gg, it follows that

�(a1 a2) = �2(a1; a2)
= �2(a1; a2)+�1(a1)�1(a2)
= �2(a1; a2)+ �(a1)�(a2):

Hence, we deduce that �2(a1; a2)= �(a1 a2)¡ �(a1)�(a2).

3. Let s2A be a standard semicircular variable. Then, for all n2N,

�(sn)=

8<: 0; for n odd

#NC2(1; : : : ; n); for n even:

For every n2N, we consider

�n(s; : : : ; s)=

8<: 1; if n=2

0; otherwise:

Let (��(s;:::; s))�2NC be the family of multiplicative functionals on NC, determined
by (�n(s; : : : ; s))n2N, which means that for every n2N and � 2NC(1; : : : ; n),

��(s; : : : ; s)=
Y
V 2�

�#V (s; : : : ; s jV )=

8<: 1; for � 2NC2(1; : : : ; n)

0; otherwise:

As a consequence, for every n2N, we have

�(sn)=
X

�2NC(1; : : : ;n)
��(s; : : : ; s);

and by Remark 2.12, the expressions ��(s; : : : ; s) must be the free cumulants of s.

4. Let a2A be a free Poisson variable of parameter �> 0 and define

�n(a; : : : a) :=� (n2N):
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In the same way, let (��(a; : : : ; a))�2NC be the family of multiplicative functionals
on NC, determined by (�n(a; : : : ; a))n2N. Then, it follows that for all n2N,X

�2NC(1; : : : ;n)
��(a; : : : ; a)=

X
�2NC(1; : : : ;n)

Y
V 2�

�=
X

�2NC(1; : : : ;n)
�#�= �(an)

and by Remark 2.12, the expressions ��(a; : : : ; a) must be the free cumulants of a.

Let (A; �) be a non-commutative probability space with free cumulants (��)�2NC. As
mentioned earlier, for every n2N and � 2NC(1; : : : ; n), the functionals ��:An!C are
multilinear. We are interested in to understand how the algebra structure of A, affects the
cumulants. Note that the moment functionals are �associative�, e.g. for all a1; a2; a32A,

�2(a1a2; a3)= �[(a1a2)a3] = �[a1(a2 a3)]= �(a1; a2 a3):

Since, the functionals � and (��)�2NC are related through (2.5), it is natural to ask if �2
has a similar behavior with respect to the multiplicative structure of A.

Before we consider this question, we start by introducing some notation: Let (A; �)
be a non-commutative probability space and let m; n 2N such that m � n. Then, for
1� i(1)< � � �<i(m¡ 1)<i(m)=n and a1; : : : ; an2A, we define

A1 := a1: : :ai(1)

A2 := ai(1)+1: : :ai(2)

���
Am := ai(m¡1)+1: : :an:

Therefore we group the elements a1; : : : ; an2A, by taking into account their order in the
product a1: : :an.

We want to relate the free cumulants of (a1; : : : ; an) and (A1; : : : ; Am). First, we have
to understand for which partitions � 2NC(1; : : : ; n) and � 2NC(1; : : : ;m), we may have a
relation between ��(a1; : : : ; an) and ��(A1; : : : ; Am).

For �2NC(1;:::;m), we define a partition �̂2NC(1;:::; n), in the following way: Define
i(0) := 0. For j ; k2f1; : : : ; ng, we require js�̂ k if and only if there exist p; q2f1; : : : ;mg
such that

� j 2fi(p¡ 1)+1; : : : ; i(p)g, i.e. aj is a factor in Ap,

� k 2fi(q¡ 1)+1; : : : ; i(q)g, i.e. ak is a factor in Aq,

� ps� q.

Using that �2NC(1;:::;m), it is easy to observe that the new partition �̂ is a non-crossing
partition of f1; : : : ; ng. Also, we have 1̂m=1n, but is not true in general that 0̂m=0n:

Given n;m2N such that n<m and a1; : : : ; an2A, the construction of the variables
A1; : : : ; Am2A is equivalent to the construction of an interval partition (0̂m) of f1; : : : ; ng,
with m blocks. For every � 2NC(1; : : : ;m), it is easy to see that,

��(A1; : : : ; Am)= ��̂(a1; : : : ; an): (2.6)
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We give an example in order to illustrate the action of the map ^:NC(1;:::;m)!NC(1;:::;
n).

Example 2.14. Let m=5, n= 10, �= ff1; 4g; f2; 3g; f5gg and for a1; : : : ; a102A, define,

A1 := a1 a2 a3; A2 := a4 a5; A3 := a6; A4 := a7 a8; A5 := a9 a10 :

Then �̂ := ff1; 2; 3; 7; 8g; f4; 5; 6g; f9; 10gg, and 0̂5= ff1; 2; 3g; f4; 5g; f6g; f7; 8g; f9; 10gg:

�

�̂

0̂5

Remark 2.15. We want to mention some key properties of the map ^:NC(1; : : : ; m)!
NC(1; : : : ; n).

1. The map NC(1; : : : ;m)3 � 7! �̂ 2NC(1; : : : ; n) is injective and it's image is

NC(1; : : : ;m)= f� 2NC(1; : : : ; n) j 0̂m� � g:

More generally, for �; � 2NC(1; : : : ;m)(2) we have

f� 2NC(1; : : : ;m) j�� � ��g= f� 2NC(1; : : : ; n) j �̂� � � �̂g: (2.7)

Note also that � �� for �,� 2NC(1; : : : ;m) implies �̂ � �̂.

2. We have

�(�; �)= �(�̂ ; �̂); for all (�; �)2NC(1; : : : ;m)(2): (2.8)

Indeed, we define the function �~:NC(1; : : : ;m)(2)!C by demanding,

�~(�; �) := �(�̂ ; �̂); for all (�; �)2NC(1; : : : ;m)(2):

Then, for (�; �)2NC(1; : : : ;m)(2), we have

(� � �~)(�; �) =
X

�����
�2NC(1; : : : ;m)

�(�̂ ; �̂)

=
X

�̂����̂
�2NC(1; : : : ;n)

�(� ; �̂)

= (� � �)(�̂ ; �̂)= �(�̂ ; �̂)= �(�; �):
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Similarly, we can prove �~ � � = � and the relation (2.8) holds.

Proposition 2.16. Consider a non-commutative probability space (A; �) and let (��)�2NC
be the corresponding free cumulants. Let m;n be positive integers, such that m<n and let
i(0);: ::; i(m)2f1;: ::; ng, such that 0= i(0)<1� i(1)<i(2)< �� �<i(m)=n. For arbitrary
non-commutative random variables a1; : : : ; an2A, define

Ak := ai(k¡1)+1: : :ai(k); for all k=1; : : : ;m:

Then, for all � 2NC(1; : : : ;m) we have

��(A1; : : : ; Am)=
X

�_0̂m=�̂
�2NC(1; : : : ;n)

��(a1; : : : ; an) :

Proof. Using the relations (2.6),(2.7) and (2.8) we have

��(A1; : : : ; Am) =
X
���

�2NC(1; : : : ;m)

��(A1; : : : ; Am)�(� ; �)

=
X
���

�2NC(1; : : : ;m)

��̂(a1; : : : ; an)�(�̂ ; �̂)

=
X

0̂m�!��̂
!2NC(1; : : : ;n)

�!(a1; : : : ; an)�(!; �̂)

=
X

0̂m�!��̂
!2NC(1; : : : ;n)

X
��!

�2NC(1; : : : ;n)

��(a1; : : : ; an)�(!; �̂):

Since

f(!;�)2NC(1; : :: ; n)2j 0̂m�!� �̂; ��!g=f(!;�)2NC(1;: : : ; n)2j�� �̂; 0̂m_��!� �̂g

we have

��(A1; : : : ; Am) =
X
���̂

�2NC(1; : : : ;n)

X
0̂m_��!��̂
!2NC(1; : : : ;n)

��(a1; : : : ; an)�(!; �̂)

=
X
���̂

�2NC(1; : : : ;n)

0@ X
0̂m_��!��̂
!2NC(1; : : : ;n)

�(!; �̂)
1A��(a1; : : : ; an)

=
X
���̂

�2NC(1; : : : ;n)

�(0̂m_�; �̂)��(a1; : : : ; an):

By the definition of � function we conclude that the partitions � which satisfy the relation
0̂m_� � �̂, do not contribute to the sum. Hence,

��(A1; : : : ; Am)=
X

�_0̂m=�̂
�2NC(1; : : : ;n)

��(a1; : : : ; an): �
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2.3 Free cumulants and Free independence

We now turn to the description of the notion of free independence in terms of free cumu-
lants. We have mentioned several times that compared to classical probability, in free
probability the lattice of all partitions of a set is replaced by the lattice of non-crossing
partitions. In that spirit, we recall that in the theory of classical cumulants, which was
developed by Rota around 1964, the classical cumulants are defined in an analogous way,
as a multiplicative family of functionals on P :=[n�1P (1; : : : ; n). Moreover, in classical
probability theory we have a characterization of the notion of classical independence via
cumulants. Roughly speaking, classical random variables are independent if and only if
certain cumulants vanish. An analogous result holds in the case where cumulants and
independent random variables are replaced by free cumulants and free random variables.

Proposition 2.17. Consider a non-commutative probability space (A; �) with free cumu-
lants (��)�2NC. For n� 2 and a1; : : : ; an2A, we have �n(a1; : : : ; an)= 0, if there exist at
least one i2f1; : : : ; ng, such that ai=1.

Proof. For simplicity, we consider the case i=n. Therefore, we have to prove that �n(a1;:::;
an¡1; 1)=0, for n� 2. We give a proof by induction over n.

For n=2, we have shown that

�2(a1; 1)= �(a1 � 1)¡ �(a1)�(1)=0:

Now, we assume that for all k<n the assertion holds. Then, using that �=�� �, we have

�n(a1; : : : ; an¡1; 1)+
X
�<1n

�2NC(1; : : : ;n)

��(a1; : : : ; an¡1; 1) =
X

�2NC(1; : : : ;n)
��(a1; : : : ; an¡1; 1)

= �(a1: : :an¡1 � 1)
= �(a1: : :an¡1):

Taking into account that the family (��)�2NC is multiplicative and the induction hypoth-
esis, we see that for a non-crossing partition �<1n we may have ��(a1;:::; an¡1;1)=/ 0 only
if the set fng is a block of �. Therefore, in order to compute the sum on the left hand side,
it suffices to consider partitions � < 1n, such that �= � [ ffngg, for some � 2NC(1; : : : ;
n¡ 1). For such a partition, we have

��(a1; : : : ; an¡1; 1)=��(a1; : : : ; an¡1)�1(1)=��(a1; : : : ; an¡1):

Therefore, using again the relation �=� � �, we have

�n(a1; : : : ; an¡1; 1) = �(a1: : :an¡1)¡
X

�2NC(1; : : : ;n¡1)
��(a1; : : : ; an¡1)

= �(a1: : :an¡1)¡ �(a1: : :an¡1)
= 0

and the assertion holds. �
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Finally, we are ready to prove the main theorem of this subsection which gives a
characterization of free independence through free cumulants. The previous proposition is
a special case of the next theorem and it mainly holds because the random variable 12A
is free from every random variable in A.

Theorem 2.18. Let (A; �) be a non-commutative probability space, with free cumulants
(��)�2NC and let (Ai)i2I be a family of unital subalgebras of A. Then, the subalgebras
(Ai)i2I are independent in (A; �) if and only if for all n� 2 and for all aj 2Ai(j) with
i(1); : : : ; i(n)2 I, we have that �n(a1; : : : ; an)=0 whenever there exist l; k2f1; : : : ; ng such
that i(l)=/ i(k).

Proof. We assume that the free cumulants (�n)n�2 vanish when they are evaluated at
elements of different algebras. We want to prove that the subalgebras (Ai)i2I are free. Let
n be a positive integer and let i(1); : : : ; i(n)2 I such that i(j)=/ i(j+1) for every j=1; : : : ;
n¡ 1. We consider non-commutative random variables a1; : : : ; an2A such that aj 2Ai(j)

and �(aj)=0 for all j=1; : : : ; n. We want to prove that �(a1: : :an)=0. Using the relation
�=� � � and the fact that the family (��)�2NC is multiplicative, we have

�(a1: : :an) =
X

�2NC(1; : : : ;n)
��(a1; : : : ; an)

=
X

�2NC(1; : : : ;n)

Y
V 2�

�#V (a1; : : : ; anjV ):

As it has been mentioned, if � 2NC(1; : : : ; n), then it will have a block V of the form
V = fl; l+1; : : : ; l+ pg�f1; : : : ; ng. For such a block V , if p=0, then

�#V (a1; : : : ; anjV )=�1(al)= �(al)=0;

because it is assumed that the non-commutative random variables a1; : : : ; an2A have zero
mean. Otherwise, for p> 0 we will have #V = p+1� 2, and

�#V (a1; : : : ; anjV )=�p+1(al; : : : ; al+p)=0;

by our assumption of vanishing of cumulants, because al2Ai(l), al+12Ai(l+1) and i(l) =/
i(l+1). As a consequence, we deduce that �(a1: : :an)=0, and the subalgebras (Ai)i2I are
free.

We continue with the proof of the inverse direction. Let (Ai)i2I be a family of unital
subalgebras of A such that (Ai)i2I are freely independent in (A; �). For n � 2, indices
i(1); : : : ; i(n)2 I such that #fi(1); : : : ; i(n)g�2, and aj 2Ai(j) for all j=1; : : : ; n, we have
to prove that �n(a1; : : : ; an) = 0. Assume first that neighboring elements in a1: : :an are
from different subalgebras, i.e. that i(j)=/ i(j+1) for all j=1; : : : ; n¡ 1. Also, note that
by the previous proposition we have

�n(a1; : : : ; an)=�n(a10; : : : ; an0):

Therefore, it suffices to show that �n(a10; : : : ; an0)=0. By definition, we have

�n(a10; : : : ; an0) =
X

�2NC(1; : : : ;n)
��(a10; : : : ; an0)�(�; 1n)

=
X

�2NC(1; : : : ;n)
�(�; 1n)

Y
V 2�

�#V (a10; : : : ; an0jV ):
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As before, for � 2NC(1; : : : ; n), choosing an interval partition V 2�, we have �#V (a10; : : : ;
an
0jV ) = 0. Indeed, this is true if #V =1 because the non-commutative random variables
a1
0; :: :; an

0 2A have zero mean, but it is also true if #V >1 because the subalgebras (Ai)i2I
are freely independent in (A; �). Hence we have �n(a10; : : : ; an0)= 0.

Now, we treat the more general case where fi(1); : : : ; i(n)g is a set of more than one
element, but not necessarily i(j)=/ i(j+1) for all j=1;:::; n¡1. We proceed by induction
on n� 2. Obviously, for n=2 the assertion holds and we also assume that it holds for all
2� r<n. After combining neighbouring elements from the same subalgebra, we have that
a1: : :an=A1: : :Am, where Aj2Al(j) for all j=1; : : : ;m and l(j)=/ l(j+1) for all j=1; : : : ;
m¡ 1. Since, #fi(1); : : : ; i(n)g� 2, we have that m� 2. Thus, from the above we have
�m(A1; : : : ; Am)= 0: Moreover, by Proposition 2.16 it follows that

0=�m(A1; : : : ; Am) =
X

�_0̂m=1n
�2NC(1; : : : ;n)

��(a1; : : : ; an)

= �1n(a1; : : : ; an)+
X

�_0̂m=1n and �=/ 1n
�2NC(1; : : : ;n)

��(a1; : : : ; an)

= �n(a1; : : : ; an)+
X

�_0̂m=1n and �=/ 1n
�2NC(1; : : : ;n)

��(a1; : : : ; an):

We will show that the sum on the right hand side is equal to zero. Let � 2NC(1; : : : ; n)
such that �=/ 1n and �_ 0̂m=1n. For a block V =fp1< ���<prg2�, we have r<n because
�=/ 1n. Assume that#fi(p1);:::; i(pr)g�2. Then, our induction hypothesis guarantees that

�#V (a1; : : : ; anjV )=�r(ap1; : : : ; apr)=0;

which implies that ��(a1;::: ; an)=0. Hence, for such a �2NC(1; :::; n), we have ��(a1;: ::;
an)=/ 0, only if i(p)= i(q) for every p; q2f1; : : : ; ng such that ps� q. Therefore, it follows
that X

�_0̂m=1n and �=/ 1n
�2NC(1; : : : ;n)

��(a1; : : : ; an)=
X

�_0̂m=1n; �=/ 1n and ker(i)��
�2NC(1; : : : ;n)

��(a1; : : : ; an):

Note that ker(i)� 0̂m. Hence, for � 2 NC(1; : : : ; n) such that � _ 0̂m= 1n, � =/ 1n and
ker(i)� �, we have ker(i) = 1n, saying that #fi(1); : : : ; i(n)g=1. Thus, by contradiction
we deduce that

�n(a1; : : : ; an)=�m(A1; : : : ; Am)=0: �
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3 Non-commutative Stochastic Processes
In this section we focus on non-commutative stochastic processes. In the context of classical
probability, stochastic processes with stationary and independent increments, form one
of the best studied and important classes of stochastic processes. The understanding of
their structure was crucial for many developments in classical probability theory. We will
present the natural non-commutative analogues of some of the most celebrated examples
(e.g. Brownian motion and Poisson process) of such stochastic processes, in the context
of free probability theory. Therefore, in our case we are interested in stochastic processes
with �free increments�.

3.1 Definition and Combinatorics of Free Levy Process
We recall that in the classical case, a stochastic process (Xt)t�0, on some probability
space (
;F ;P), with values in Cn, is called an independent increment process, if for any
0� t1<t2< ���<tn<1, the random variables Xt1; Xt2¡Xt1;:::;Xtn¡Xtn¡1, are mutually
independent. Also, the process (Xt)t�0 is called a stationary increments process, if for
every s< t, the random variable Xt¡Xs is equal in distribution to Xt¡s .

Now, we start by defining such a stochastic process, in the context of free probability
and studying the behaviour of it's moments.

In the following, let R be the ring generated by all semiclosed intervals I �R, of the
form I = [s; t), for s< t. Also, we denote by �, the Lebesgue measure on R.

Definition 3.1. A n-dimensional free Levy process (C ; �; (cI1; : : : ; cIn)I2R) consists of

1. a unital C�-algebra C,

2. a state � on C,

3. a finitely additive mapping R!Cn, I 7! (cI1; : : : ; cIn),

such that if CI :=C�(1; cI1; : : : ; cIn) is the C�-algebra generated by 1; cI1; : : : ; cIn2C, then the
following conditions are satisfied:

1. The C�-subalgebras CI1; : : : ; CIr are freely independent in (C ; �) for all r2N and for
all I1; : : : ; Ir2R disjoint.

2. The joint distribution of the non-commutative random variables cI
1;:::;cI

n with respect
to � depends only on �(I). This means that for every I ;J 2R such that �(I)=�(J),
we have for all r 2N and for all k(1); : : : ; k(r)2f1; : : : ; ng;

�
¡
ĉI
k(1)

: : : ĉI
k(r)�= �(ĉJ

k(1)
: : : ĉJ

k(r));

where ĉ stands for c2C or it's adjoint c�2C.

Remark 3.2. In order to compare our definition of free white noise with the analogous
definition in the classical case, we can think of a 1-dimensional free white noise, as

Xt := c[0;t); for every t� 0:

Then, for 0� t1<t2< � ��<tn<1, the fact that the map R!C, I 7! cI is finitely additive,
implies that for every k=2; : : : ; n,

Xtk¡Xtk¡1= c[0;tk)¡ c[0;tk¡1)= c[tk¡1;tk):
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Therefore, since the C�-subalgebras C[0;t1);C[t1;t2);:::;C[tn¡1;tn) are freely independent in (C ;
�), this implies that the non-commutative random variables Xt1;Xt2¡Xt1; : : : ;Xtn¡Xtn¡1

are free.

Finally, since the distribution of cI 2 C, depends only on �(I) and Xt¡Xs= c[s;t);

Xt¡s= c[0;t¡s), for s< t, we deduce that the non-commutative random variables Xt¡Xs,
Xt¡s have the same distribution, with respect to �.

In the next theorem, we see that for certain n-dimensional free Levy processes, it suffices
to know their moments at time t0=1, in order to determine their moments at every time
t2R>0.

Theorem 3.3. Consider a n-dimensional free Levy process (C ; �; (cI1; : : : ; cIn)I2R), and
define ct

k := c[0;t)
k for all k=1;:::;n. Assume that for all r2N and all k(1);:::; k(r)2f1;:::;

ng, we have

lim
t!0

�
¡
ct
k(1)

: : :ct
k(r)�=0:

Then, for every t� 0, there exist a map Qt:[m�1f1; : : : ; ngm!C, called generator, such
that for all r 2N, and all k(1); : : : ; k(r)2f1; : : : ; ng we have

�
¡
ct
k(1)

: : :ct
k(r)�=X

p=1

r X
fV1; : : : ;Vpg2NC(1; : : : ;r)

Qt(V1): : :Qt(Vp);

where we define Qt(V ) :=Qt(k(v1);:::; k(vm)), for V =fv1< ���<vmg�f1;:::; rg. Moreover,
for every t� 0, we have

Qt= t �Q1:

Proof. Let r be a positive integer and let k(1); : : : ; k(r)2 f1; : : : ; ng. By induction, we

see that the continuity of the map t 7! �(ct
k(1)

: : :ct
k(r)) at t0= 0, implies that the map is

continuous at every t. We will only treat the cases r= 1; 2, because it saves us a lot of
indices and illustrates the procedure sufficiently. For r=1, and t > t0, we have

�(ct
k(1))= �(ct0

k(1))+ �(c[t0;t)
k(1) )= �(ct0

k(1))+ �(ct¡t0
k(1) );

which implies that �(ct
k(1))! �(ct0

k(1)), as t#t0. For r=2, we have

�
¡
ct
k(1)

ct
k(2)�= �

�¡
ct0
k(1)+ c[t0;t)

k(1) �¡
ct0
k(2)+ c[t0;t)

k(2) ��
=�
¡
ct0
k(1)

ct0
k(2)�+ �

¡
ct0
k(1)�

�
¡
c[t0;t)
k(2) �+ �

¡
c[t0;t)
k(1) �

�
¡
ct0
k(2)�+ �

¡
c[t0;t)
k(1)

c[t0;t)
k(2) �

=�(ct0
k(1)

ct0
k(2))+ �

¡
ct0
k(1)�

�
¡
ct¡t0
k(2) �+ �

¡
ct¡t0
k(1) �

�
¡
ct0
k(2)�+ �

¡
ct¡t0
k(1)

ct¡t0
k(2) �

where in the second equality we used that the C�-algebras C[0;t0); C[t0;t) are freely indepen-
dent and in the third equality we used that the joint distribution of cI

1; : : : ; cI
n, depends

only on �(I). Therefore, we have that �(ct
k(1)

ct
k(2))! �(ct0

k(1)
ct0
k(2)), as t#t0, and similar

arguments for t < t0, show that

lim
t#t0

�(ct
k(1)

: : :ct
k(r))= �(ct0

k(1)
: : :ct0

k(r))= lim
t"t0

�(ct
k(1)

: : :ct
k(r)) :
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The fact that the map I 7! (cI1; : : : ; cIn) is finitely additive, implies that for all k 2N and
t� 0, we have

ct
k=

X
M=0

N¡1

cIM
k where IM = [Mt/N; (M +1) t/N) : (3.1)

Since, (C ; �; (cI1; : : : ; cIn)I2R) is a n-dimensional free Levy process, by the relation (3.1) it
follows that ctk, can be written as a sum SN

k of Theorem 1.21 if we identify cIM
k with aM;N

k .
Since, for every M =0; : : : ; N ¡ 1,

�
¡
cIM
k(1)

: : :cIM
k(r)�= �

¡
ct/N
k(1)

: : :ct/N
k(r)�

;

from Theorem 1.21 follows that if the limit

Qt(k(1); : : : ; k(r)) := lim
N!1

N � �(ct/N
k(1)

: : :ct/N
k(r)); (3.2)

exists, then the first assertion holds. We will prove the existence of the limit stated in (3.2),
by induction on r 2N. Again, in order to avoid extremely lengthy computations, we only
treat the cases r=1 and r= 2, since they illustrate the procedure sufficiently. For r= 1
we have

�
¡
ct
k(1)�= X

M=0

N¡1

�
¡
cIM
k(1)�=N�¡ct/Nk(1)�;

which implies that Qt(k(1))= �(ct
k(1)): For r=2, we have

�
¡
ct
k(1)

ct
k(2)� =

X
l;m=0

N¡1

�
¡
c[l�t/N;(l+1)�t/N)
k(1)

c[m�t/N;(m+1)�t/N)
k(2) �

=
X
l;m=0
l=m

N¡1

�
¡
ct/N
k(1)

ct/N
k(2)�+ X

l;m=0
l=/m

N¡1

�
¡
ct/N
k(1)�

�
¡
ct/N
k(2)�

= N�
¡
ct/N
k(1)

ct/N
k(2)�+N(N ¡ 1) �¡ct/Nk(1)��¡ct/Nk(2)� :

Thus, Qt(k(1); k(2))= �
¡
ct
k(1)

ct
k(2)�¡Qt(k(1))Qt(k(2)) :

In order to finish the proof it remains to show that Qt= t � Q1, for every t � 0. Let
r2N, and k(1); : : : ; k(r)2f1; : : : ; ng. Since the function t 7! �

¡
ct
k(1)

: : :ct
k(r)� is continuous,

it is easy to see that the function t 7!Qt(k(1); : : : ; k(r)) is also continuous. Therefore, it
suffices to show that Qt+s=Qt+Qs, for every t; s� 0. As above, we only treat the cases
r=1 and r=2 since they indicate sufficiently why the cases r >3 hold. For r=1, we have

Qt+s(k(1)) = lim
N!1

N�
¡
c(t+s)/N
k(1) �

= lim
N!1

N�
¡
ct/N
k(1)�+ lim

N!1
N�
¡
c[t/N;(t+s)/N)
k(1) �

= Qt(k(1))+ lim
N!1

N�
¡
cs/N
k(1)�

= Qt(k(1))+Qs(k(1)):
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For the case r=2, we have

Qt+s(k(1); k(2))= lim
N!1

N�
�¡
ct/N
k(1)+ c[t/N;(t+s)/N)

k(1) �¡
ct/N
k(2)+ c[t/N;(t+s)/N)

k(2) ��
=Qt(k(1); k(2))+ lim

n!1
N
�
�
¡
ct/N
k(1)�

�
¡
cs/N
k(2)�+ �

¡
cs/N
k(1)�

�
¡
ct/N
k(2)��+Qs(k(1); k(2))

=Qt(k(1); k(2))+Qs(k(1); k(2)): �

The special examples of free Levy process that we are interested in are the free ana-
logues of Brownian motion and Poisson process.

Definition 3.4. Let (C ; �; (cI)I2R) be a 1-dimensional free Levy process.

1. The triple (C ; �; (cI)I2R) is called a free Brownian motion if for every I 2R with
�(I)> 0, the element cI 2C is a semicircular variable of variance �(I).

2. The triple (C ; �; (cI)I2R) is called a free Poisson process if for every I 2R with
�(I)> 0, the element cI 2C is a free Poisson variable with parameter �(I).

Remark 3.5. Let (C ; �; (cI)I2R) be a free Brownian motion. For 0<s< t we have

�(ct cs)= �(cs cs)+ �(c[s;t))�(cs)= s

and

�(cs ct)= �(cs cs)+ �(cs)�(c[s;t))= s:

Therefore, similarly to the classical case, for s; t > 0 the �covariance� of cs and ct is

�(ct cs)= s^ t= �(cs ct);

where s^ t stands for the minimum of s; t .

We recall, that for a classical Brownian motion (
;F ;P; (Xt)t�0), we can compute
it's moments E[Xt1: : :Xtn] explicitly, using it's Gaussian structure. More precisely, from
Wick's formula we have that for every t1; : : : ; tn� 0,

E[Xt1: : :Xtn]=

8>>>><>>>>:
0; forn oddP
�2P2(1; : : : ;n)

Q
fi;jg2�

ti^ tj ; for n even.

A similar formula holds for the moments �(ct1: : :ctn) of free Brownian motion except that
partitions have to be non-crossing.
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Theorem 3.6. (free Wick formula) Let (C ; �; (cI)I2R) be a free Brownian motion. For
every n2N, and t1; : : : ; tn� 0, we have

�(ct1: : :ctn)=

8>>>><>>>>:
0; for n oddP
�2NC2(1; : : : ;n)

Q
fi;jg2�

ti^ tj ; for n even:
(3.3)

Proof. Let n be a positive integer, let t1; : : : ; tn> 0 and consider 0<s1< � � � <sm, such
that ft1;:::; tng=fs1;:::; smg. We will compute the moments �(ct1:::ctn) using the relation
�=� � �, where �=(��)�2NC are the free cumulants of (C ; �). We have that

�(ct1: : :ctn)=
X

�2NC(1; : : : ;n)
��(ct1; : : : ; ctn):

Since the map I 7! cI is finitely additive, it follows that the non-commutative random
variables cs1; : : : ; csm can be written in the form

cs1=X1; cs2=X1+X2; � � � ; csm=X1+X2+ � � �+Xm; (3.4)

where X1; : : : ; Xm2 C, are free semicircular variables. Let � 2NC(1; : : : ; n), and assume
that there exists V 2�, such that #V =1: Using that (��)�2NC is a multiplicative family
of functionals and �1(cti) = �(cti) = 0 for every i= 1; : : : ; n, we deduce that ��(ct1; : : : ;
ctn) = 0. Now, let � 2NC(1; : : : ; n) such that there exist V 2 � with #V � 3. Using the
equalities stated in (3.4) and the fact that the cumulants are multilinear, we see that
�#V (ct1; : : : ; ctn j V ) can be written as a sum of free cumulants �#V (Xi(1); : : : ; Xi(#V )),
where i(1); : : : ; i(#V )2f1; : : : ;mg. We claim that �l(Xi(1); : : : ; Xi(l))= 0 for all l� 3 and
all i(1); : : : ; i(l)2f1; : : : ;mg. Indeed, let l� 3 and i(1); : : : ; i(l)2f1; : : : ;mg. If there exist
a; b2 f1; : : : ; lg such that i(a) =/ i(b), then it follows that �l(Xi(1); : : : ; Xi(l)) = 0, because
l � 3 and the random variables Xi(a); Xi(b) are freely independent. On the other hand, if
i(1)= i(2)= � � �= i(l), then we have,

�l(Xi(1); : : : ;Xi(l)) = �l(Xi(1); : : : ;Xi(1))

= [�(Xi(1)
2 )]l/2�l

0@ Xi(1)

�(Xi(1)
2 )

q ; : : : ;
Xi(1)

�(Xi(1)
2 )

q 1A
= 0;

because the element [�(Xi(1)
2 )]¡1/2Xi(1)2C is a standard semicircular variable. Therefore

the claim holds.

From the above, we deduce that ��(ct1; : : : ; ctn) =/ 0, only if � 2NC2(1; : : : ; n). Then,
we have �(ct1: : :ctn)= 0 for n odd and

�(ct1: : :ctn) =
X

�2NC2(1; : : : ;n)
��(ct1; : : : ; ctn)

=
X

�2NC2(1; : : : ;n)

Y
fi;jg2�

�2(cti; ctj)

=
X

�2NC2(1; : : : ;n)

Y
fi;jg2�

ti^ tj, for n even:

Hence, the relation (3.3) has been proven. �
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3.2 Free Levy Processes on the Full Fock Space

In this section, we realize free Brownian motion and free Poisson process as processes on
the full Fock space of L2(R). In that case, our C�-algebra A will be the algebra of bounded
operators on the full Fock space of L2(R), and our state � will be the corresponding vacuum
state.

Let (H; h�; �i) be a Hilbert space. The full Fock space of H is the Hilbert space

F(H) :=C�
M
n=1

1

H
n

with scalar product

hf1
 � � � 
 fn; g1
 � � � 
 gmi= �n;mhf1; g1i� � �hfn; gni

h
; f1
 � � � 
 fni=0

h
;
i=1;

where n;m2N, and f1; : : : ; fn; g1; : : : ; gm2H . By 
= (1; 0; 0; : : : ) we denote the vacuum
and by Flin the set of finite linear combinations of product vectors.

On the C�-algebra B(F(H)) of bounded operators on F(H), we consider the vacuum
state �:B(F(H))!C, which is given by

�(X)= h
;X
i for every X 2B(F(H)):

For f 2H, we define the left annihilation operator l¡(f) and the left creation operator
l+(f) by

l¡(f)
 :=0;

l¡(f)f1
 � � � 
 fn := hf ; f1if2
 � � � 
 fn

and

l+(f)
 := f ;

l+(f) := f 
 f1
 � � � 
 fn;

where n2N and f1; : : : ; fn2H .

Furthermore, given T 2B(H), we define the gauge operator p(T ) by

p(T )
 :=0

p(T )f1
 � � � 
 fn := (T (f1))
 f2
 � � � 
 fn;

where n2N and f1; : : : ; fn2H .

Creation operators, annihilation operators and gauge operators are extended by lin-
earity to Flin. Therefore, the above operators have been defined on the dense subset Flin

of the full Fock space F(H). However, the operators l¡(f); l+(f); p(T ) can be extended
on the full Fock space.
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Proposition 3.7. Let (H; h�; �i) be a Hilbert space. Then, for f 2H and T 2B(H), we
have that the operators l+(f); l¡(f); p(T ) are bounded and have the norms

kl+(f)k= kl¡(f)k= kf k;

kp(T )k= kT k:

Also, we have (l+(f))�= l¡(f), which means that the operators l¡(f) and l+(f) are mutu-
ally adjoint.

Proof. Let f 2H and �; �2Flin. Then by the definition of l+(f), l¡(f), it is easy to note
that

l¡(f)l+(f)�= hf ; f i� and hl+(f)�; �i= h�; l¡(f)�i:

Therefore, we have that

hl+(f)�; l+(f)�i= h�; l¡(f)l+(f)�i= hf ; f ih�; �i

and we deduce that the operator l+(f) is bounded, with norm kl+(f)k = kf k. Since
hl+(f)�; �i= h�; l¡(f)�i for every �; � 2Flin, we deduce that l¡(f) = (l+(f))� and con-
sequently we have kl¡(f)k= kl+(f)k= kf k.

It remains to show that kp(T )k=kT k. Let n2N and x1;:::; xn2H. Then, we consider
the n�n Hermitian matrices A=(ai;j)2Mn(C) and B=(bi;j)2Mn(C), with entries

ai;j= hT (xi); T (xj)i and bi;j= hxi; xji; for every i; j 2f1; : : : ; ng:

Then, for �2Cn�1, we have

��A� =
X
i;j=1

n

�i��jhT (xi); T (xj)i

=

*
T

 X
i=1

n

�ixi

!
; T

 X
i=1

n

�ixi

!+

� kTk2
*X
i=1

n

�ixi;
X
i=1

n

�i xi

+
:

Since

��B�=

*X
i=1

n

�ixi;
X
i=1

n

�ixi

+
;

we deduce that �� (kT k2B¡A)��0, which implies that kT k2B¡A�0. Therefore, there
exists a matrix C 2Mn(C), such that kT k2B ¡A=CC�. Without loss of generality, we
assume that kT k=1. Let d2N and xi

j 2H, where i2f1; : : : ; ng and j 2f1; : : : ; dg. From
the above (if we identify xi with x1i) we have that there exist ci;j 2C, such that for every
i; j 2f1; : : : ; ng,

hx1i ; x1
ji= hT (x1i); T (x1

j)i+
X
k=1

n

ci;kcj ;k : (3.5)
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Then, multiplying both sides of the relation (3.5) by hx2i 
 �� � 
xni ; x2
j
 �� � 
xn

j i, we have

hx1i 
 � � � 
xni ; x1
j
 � � � 
xn

ji=

=hT (x1i)
x2i 
 � � � 
xni ; T (x1
j)
x2

j
 � � � 
xn
ji+

X
k=1

n

ci;kcj ;khx2i 
 � � � 
xni ; x2
j
 � � � 
xn

j i:

Therefore, it follows thatX
i=1

d

x1
i 
 � � � 
xni


2

=
X
i;j=1

d

hx1i 
 � � � 
xni ; x1
j
 � � � 
xn

ji

=

X
i=1

d

T (x1i)
x2i 
 � � � 
xni

2

+
X
k=1

n
X
i=1

d

(ci;kx2i)
x3i 
 � � � 
xni

2

:

As a consequence, we deduce thatp(T )
 X

i=1

d

x1
i 
 � � � 
xni

!�
X
i=1

d

x1
i 
 � � � 
xni

;
or equivalently kp(T )k� 1. Since,

1= kT k= sup
kf k=1

kT (f)k= sup
kf k=1

kp(T )f k�kp(T )k;

we have that kp(T )k=1.

For T 2B(H) arbitrary, since p(T )=kT k p(kT k¡1T ), we deduce that p(T )=kT k. �

In addition, for �; �2C, f ; g 2H , and T ; T1; T22B(H), we have the following prop-
erties:

l+(� f + �g)=� l+(f)+ � l+(g) (3.6)

l¡(f)l+(g)= hf ; gi1 (3.7)

(l¡(f))�= l+(f) (3.8)

p(T �)= p(T )�

p(�T1+ �T2)=�p(T1)+ � p(T2)

p(T1T2)= p(T1) p(T2)

l¡(f) p(T )= l¡(T �f)

p(T ) l+(f)= l+(Tf)

l¡(f)p(T )l+(g)= hf ; T (g)i1:
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As we already mentioned, for f ; g2H , the operator l¡(f)l+(g) is trivial, due to the relation
(3.7). On the other hand, the operator l+(f)l¡(g) can be expressed as a gauge operator.
More precisely, if we define Tf ;g 2B(H) by demanding Tf ;g(h):=hg; hif for every h2H,
then l+(f)l¡(g)= p(Tf ;g).

For f 2H , taking into account the relations (3.7) and (3.8), we see that the unital �-
subalgebra of B(F(H)) generated by l+(f) is equal to spanf(l+(f))m(l¡(f))n jm;n� 0g.
Furthermore, by the definition of l+(f) and l¡(f), we have that

�((l+(f))m(l¡(f))n)= h
; (l+(f))m(l¡(f))n
i=

8<: 1; m=n=0

0; otherwise :

Therefore, we see that if the elements f(l+(f))m(l¡(f))n jm;n� 0g are linearly indepen-
dent and hf ; f i= 1, then the triple (l+(f); spanf(l+(f))m(l¡(f))njm; n� 0g; �) can be
identified with the triple (a;A; �) that we studied in subsection 1.5. In that case we have
that the operator l+(f)+ l¡(f)2B(F(H)) is a standard semicircular variable with respect
to �.

Proposition 3.8. Let (H; h�; �i) be a Hilbert space and let f be a non-zero vector of H.
Then, the operator l+(f) + l¡(f)2B(F(H)) is a semicircular variable of variance kf k2,
with respect to �.

Proof. First, we consider f 2H , with kf k= 1. As we mentioned above, the assertion
holds if the elements f(l+(f))m(l¡(f))nj m; n � 0g are linearly independent. Let T 2
spanf(l+(f))m(l¡(f))n jm;n� 0 g, such that T =0. Then, the operator T can be written
as a finite sum of operators a (l+(f))m(l¡(f))n, where a 2C and m; n� 0. We consider
a1(l+(f))m1(l¡(f))n; : : : ; ak(l+(f))mk(l¡(f))n; to be the summands of T such that n is
minimal and mi=/ mj for all i=/ j. Then we have,

a1(l+(f))m1(l¡(f))nf
n+ � � �+ ak(l+(f))mk(l¡(f))nf
n

=a1hf ; f inf
m1+ � � �+ akhf ; f inf
mk

and (l+(f))M(l¡(f))Nf
n=0 for all M 2N and N >n.

Therefore, the fact T f
n=0 implies that,

a1f

m1+ � � �+ akf
mk=0

and because the vectors f
m1; : : : ; f
mk2F(H) are linearly independent, we deduce that
a1= a2= � � �= ak=0.

Continuing in this way, we see that if a (l+(f))m(l¡(f))n is a summand of T , then
a=0. Therefore, the assertion holds for f 2H with kf k=1.

For a non-zero vector f 2H , since the operator l+(kf k¡1f) + l¡(kf k¡1f) is a stan-
dard semicircular variable, we have that the operator l+(f) + l¡(f) = kf k(l¡(kf k¡1f) +
l+(kf k¡1f)) is a semicircular variable of variance kf k2. �
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As we saw in Example 2.13 semicircular variables and free Poisson variables can be
characterized by their free cumulants. The free cumulants of creation, annihilation and
gauge operators on a full Fock space, can be computed explicitly.

Proposition 3.9. Let (H; h�; �i) be a Hilbert space and consider the C�-probability space
(B(F (H)); �). Then, for f ; g 2H and T 2B(H), the cumulants of the non-commutative
random variables l+(f); l¡(g); p(T )2B(F (H)) are of the following form. We have

�n(l¡(f); p(T1); : : : ; p(Tn¡2); l+(g))= hf ; T1: : :Tn¡2 gi;

for all n� 2, f ; g 2H and T1; : : : ; Tn¡22B(H). All the other free cumulants of the form
�n(a1; : : : ; an), where a1; : : : ; an2fl+(f) j f 2Hg[fl¡(g) j g2H g[fp(T ) jT 2B(H)g, are
equal to zero.

Proof. See in [ . . . ] �

Remark 3.10. Let f 2H with kf k=1 and �> 0. We consider the operator

x(f ; �)= l+(f)l¡(f)+ �
p

(l+(f)+ l¡(f))+� � 1= p(Tf ;f)+ �
p

(l+(f)+ l¡(f))+ �
p

� 1:

Note that �1(x(f ; �))= �(x(f ; �))=� and

�2(x(f ; �); x(f ; �))=��(l¡(f)l+(f))=�:

By Proposition 3.9 we also have

�n(x(f ; �); : : : ; x(f ; �)) = �n( �
p

l¡(f); p(Tf ;f); : : : ; p(Tf ;f); �
p

l+(f))
= � hf ; (Tf ;f)n¡2f i
= � hf ; f i
= �:

Therefore, we deduce that the operator l+(f)l¡(f)+ �
p

(l+(f)+ l¡(f))+� �12B(F (H))
is a free Poisson variable of parameter �. Since �0(Sm(S�)n)= �((l+(f))m(l¡(f))n) for all
m; n� 0, we also have that the operator S S�+ �

p
(S + S�) + � � 12B(l2(N[ f0g)) is a

free Poisson variable of parameter �.

Notice that up to now we have not seen any example of freely independent subalgebras
on some non-commutative probability space. As we will see in the next proposition, the
creation and annihilation operators on the full Fock space are connected with the notion
of free independence because the orthogonality of vectors translates into free independence
of the corresponding creation and annihilation operators. Actually, we can even say more.

Proposition 3.11. We consider the C�-probability space (B(F(H)); �), where (H; h�; �i)
is a Hilbert space. We also consider H1; : : : ;Hk to be linear subspaces of H and we assume
that for every i; j 2 f1; : : : ; kg such that i=/ j, the subspaces Hi; Hj �H are orthogonal.
For every i 2 f1; : : : ; kg, let Ai be the unital C�-subalgebra of B(F(H)) generated by the
elements fl¡(f) j f 2Hi g[fp(T ) jT 2B(H); T (Hi)�Hi and T vanishes on Hj for every
j=/ ig, then the C�-subalgebras A1; : : : ;Ak are freely independent in (B(F(H)); �).
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Proof. For simplicity, we will only prove that the C�-subalgebras generated by the ele-
ments fl¡(f) j f 2Hig are freely independent. For every i= 1; : : : ; k, let Ai be the C�-
subalgebra generated by fl¡(f) j f 2Hig and let Bi be the �-subalgebra generated by
fl¡(f) j f 2Hig. Note that since � is continuous, the subalgebras A1; : : : ;Ak are freely
independent if and only if the subalgebras B1; : : : ;Bk are freely independent. Therefore,
we will show that B1; : : : ;Bk are freely independent. Using the relations (3.6) and (3.7) we
see that for every i=1; : : : ; k, the elements of Bi can be written in the form:

T = a 1+
X
j=1

p

l+(fj;1): : :l+(fj ;n(j))l¡(gj ;1): : :l¡(gj ;m(j));

where a2C, p2N and for every j 2f1; : : : ; pg we have (m(j); n(j))=/ (0; 0) and fj ;1; : : : ;
fj ;n(j); gj;1; : : : ;; gj;m(j) 2Hi. In order to apply the definition of free independence, we
need to know which elements T 2Bi have zero mean with respect to �, i.e. �(T )= 0. For
j=1; : : : ; p, using that (m(j); n(j))=/ (0; 0), we have

�(l+(fj ;1): : :l+(fj;n(j))l¡(gj ;1): : :l¡(gj ;m(j)))
=hl¡(fj ;n(j)): : :l¡(fj ;1)
; l¡(gj,1): : :l¡(gj ;m(j))
i=0;

because l¡(f)
=0, for every f 2H . Therefore, due to the linearity of �, we have �(T )=0
if and only if a=0. As a consequence, for every i=1; : : : ; k, if we denote Bi0 := fT 2Bi j
�(T )= 0g, then we have

Bi0= spanfl+(f1): : :l+(fn)l¡(g1): : :l¡(gm) j (m;n)=/ (0; 0) and f1; : : : ; fn; g1; : : : ; gm2Hig:

Now, we are ready to check (using the definition of free independence) if the �-subalgebras
B1;:::;Bk are freely independent. In order to do so, we consider l2N and k1;:::; kl2f1;:::;
kg such that kj=/ kj+1 for every j 2f1; : : : ; l¡ 1g. We also consider T1; : : : ; Tl2B(F(H)),
such that Tj 2Bkj

0 for every j=1; : : : ; l. Our goal is to show that �(T1: : :Tl)=0.

Using the linearity of �, for every j=1;:::; l it suffices to consider operatots Tj of the form

Tj= l+(fj;1): : :l+(fj ;n(j))l¡(gj ;1): : :l¡(gj ;m(j));

where (m(j); n(j))=/ (0;0) and fj;1; : : : ; fj ;n(j); gj,1; : : : ; gj ;m(j)2Hkj. It is easy to note that
in certain cases the orthogonality of Hi;Hj�H , for i=/ j, in combination with the relation
(3.7) implies that T1: : :Tl=0. Indeed, we assume that there exists j 2 f1; : : : ; l¡ 1g such
that m(j)=/ 0 and n(j+1)=/ 0. By definition, the operator T1: : :Tl is a product of creation
and annihilation operators. But, due to our assumption, the operator l¡(gj ;m(j))l+(fj+1;1)
is a factor of the product. Using that gj;m(j)2Hkj, fj+1;12Hkj+1 and kj=/ kj+1, we have
that l¡(gj ;m(j))l+(fj+1;1) = hgj ;m(j); fj+1;1i1 = 0. Therefore, we deduce that T1: : :Tl= 0,
which implies that �(T1: : :Tl)=0.

On the other hand, let's assume that for every j2f1;:::; l¡1g we havem(j)n(j+1)=0.
By contradiction, we will show that �(T1: : :Tl) = 0. If �(T1: : :Tl) =/ 0, then since l+(f) =
(l¡(f))� and l¡(f)
= 0 for every f 2H , we must have n(1) = 0. Then, because (m(1);
n(1)) =/ (0; 0) and m(1) n(2) = 0, we must have m(1)> 0 and n(2) = 0. But, taking into
account that (m(2); n(2))=/ (0; 0) and m(2)n(3)=0, we must have m(2)> 0 and n(3)=0.
Continuing in that way, we must have

m(j)> 0 and n(j)=0; for every j 2f1; : : : ; lg:
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Then

T1: : :Tl= l¡(g1;1): : :l¡(g1;m(1)): : :l¡(gl;1): : :l¡(gl;m(l))

and �(T1: : :Tl)= 0, which cannot be true by our assumption. Therefore, by contradiction
we deduce that the claim holds. �

We recall that our goal is to realize free Brownian motion and free Poisson process
as processes on the full Fock space of L2(R). From now on we consider H =L2(R). For
h2L1(R), we define the multiplication operator Th :L2(R)!L2(R) by Th(f) := hf , for
every f 2L2(R). We also define p(h) := p(Th).

For every I 2R, let us denote by 1I the indicator function of I. By Proposition 3.8
we have that the operator l+(1I) + l¡(1I) is a semicircular variable of variance �(I), for
every I 2R with �(I)>0. Moreover, for I 2R let CI be the unital C�-algebra generated by
l+(1I)+ l¡(1I)2B(F (L2(R))). Then, by Proposition 3.11 we have that the C�-subalgebras
CI1; : : : ; CIr are freely independent in (B(F (L2(R))); �) for all r 2N and disjoint I1; : : : ;
Ir2R. Now we can summarize our result.

Theorem 3.12. The triple (B(F(L2(R))); �; (l+(1I) + l¡(1I))I2R) is a free Brownian
motion.

Now, we turn our attention to the realization of free Poisson process. For every I 2R
we consider the self-adjoint operator p(1I)+ l¡(1I)+ l+(1I)+�(I) 12B(F (L2(R))). It is
easy to note that the distribution of this operator with respect to � depends only on �(I).
Given I1; : : : ; Ir2R disjoint, we consider the subspaces of L2(R)

Hi= ff 2L2(R) j f(x)= 0; for every x2/ Iig; for every i2f1; : : : ; rg:

Obviously, 1Ii2Hi for every i2 f1; : : : ; rg and the subspaces H1; : : : ; Hr are orthogonal.
Then, for i; j 2 f1; : : : ; rg such that i=/ j, by definition it is clear that T1Ii(Hi)�Hi, and
T1Ii(f) = 0, for every f 2Hj. For I 2 R let C~I be the unital C�-algebra generated by
p(1I) + l¡(1I) + l+(1I) + �(I) 12B(F (L2(R))). Then, by Proposition 3.11 we have that
the C�-subalgebras C~I1; : : : ; C~Ir are freely independent in (B(F (L2(R))); �).

Theorem 3.13. The triple (B(F (L2(R))); �; (p(1I) + l¡(1I) + l+(1I) + �(I) 1)I2R) is a
free Poisson process.

Proof. Let ct := p(1[0;t)) + l¡(1[0;t)) + l+(1[0;t)) + t 1, where t > 0. In order to prove the
assertion, it suffices to show that for every r 2N and t > 0, we have

�[(ct)r]=
X
p=1

r X
fV1; : : : ;Vpg2NC(1; : : : ;r)

tp:

Using that

ct=
X
M=0

N¡1

cIM where IM = [Mt/N; (M +1) t/N);
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we see ct can be written as a sum SN of Theorem 1.26, if we identify cIM with aM;N.
Therefore, by Theorem 1.26 the assertion holds, if for every r 2N we have

lim
N!1

N�[(ct/N)r]= t: (3.9)

Because �(ct/N) = t/N and �(ct/N ct/N) = (t/N)2+ t/N , we see that the relation (3.9)
is satisfied for r=1; 2. For r� 3, we have that �[(ct/N)r] can be written as a sum of joint
moments of the operators l+(1[0;t/N)), l¡(1[0;t/N)), p(1[0;t/N)) and

t

N
1. Using that T1I

2 =T1I
for every I 2R, we see that

�[l¡(1[0;t/N))[p(1[0;t/N))]r¡2l+(1[0;t/N))] = �[l¡(1[0;t/N))p(1[0;t/N))l+(1[0;t/N))]= t/N:

Moreover, it is easy to note that the other summands are equal to 0 or (t/N)n, for some
n� 2. For these reasons, the claim holds. �
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4 The generalized Brownian motion

In this section we present an example of a non-commutative stochastic process which
provides an interpolation between fermionic, free and bosonic Brownian motion. This non-
commutative process gives an example of a generalized Brownian motion. The notion of
generalized Brownian motion was introduced by Boz_ejko and Speicher around 1990, who
established the existence of such a non-commutative stochastic process.

4.1 Motivation

In the previous sections we presented some of the basic results of free probability theory
(free central limt theorem, free cumulants, free Levy processes) and we concentrated on
their combinatorial structure. As we stressed out multiple times, our goal was to show that
free probability is related to the lattice of non-crossing partitions of the finite set f1; : : : ;
ng in the same way in which classical probability is related to the lattice of all partitions
of that set. A concrete example that we examined was the Wick formula. More precisely
for a classical Brownian motion (
;F ;P; (Wt)t�0), for every t1; : : : ; t2n+1>0 it's moments
are determined by the relations

E(Wt1: : :Wt2n)=
X

�2P2(1; : : : ;2n)

Y
fi;jg2�

ti^ tj and E(Wt1: : :Wt2n+1)=0 : (4.1)

On the other hand, for a free Brownian motion (C ; �; (cI)I2R), for every t1; : : : ; t2n+1> 0
it's moments are determined by the relations

�(c[0;t1): : :c[0;t2n))=
X

�2NC2(1; : : : ;2n)

Y
fi;jg2�

ti^ tj and �(c[0;t1): : :c[0;t2n+1))=0 : (4.2)

Using this analogy, we will present an example of a non-commutative stochastic process
which depends on a parameter � 2 [¡1; 1] and gives an interpolation between classical
and free Brownian motion, in the sense that in terms of it's moments, for �=0 the non-
commutative stochastic process coincides with the free Brownian motion, while for �! 1
we obtain the dynamics of the classical Brownian motion.

We want to introduce our framework for the construction of such a non-commutative
stochastic process. In the previous section, we introduced non-commutative stochastic
processes (cI)I2R, on C�-probability spaces (C ; �). Now, for our purpose we have to replace
the C�-algebraic framework with a �-algebraic framework. The main reason is that we are
interested in (�= 1) self-adjoint random variables a on some �-probability space (C ; �),
where their non-commutative distribution is determined by a Gaussian measure  on R

(with mean 0). This means that for every k 2N,

�(ak)=
Z
R
tk(dt):

Therefore, if C is a C�-algebra and � is a state, using that j�(ak)j � kakk� kakk, we will
have for every k2N Z

R
tk(dt)�kakk;
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which is impossible for a Gaussian measure  on R (with mean 0). Therefore, we are
interested in (n-dimensional) non-commutative stochastic processes (C ; �; ((cI1; cI1�);:::; (cIn;
cI
n�))I2R), where C is a unital �-algebra, � is a state and for every I1; I22R disjoint we have

cI1[I2
i = cI1

i + cI2
i for all i=1; : : : ; n:

Of course, the element cIi� denotes the adjoint of cIi. For I 2R, we consider CI �C to be
the unital �-subalgebra generated by cI

1; : : : ; cI
n.

Such an n-dimensional stochastic process will be a generalized Brownian motion if for
I1; : : : ; Ir 2R disjoint we have some notion of independence for the subalgebras CI1; : : : ;
CIr (independent increments). We will use the following notion of independence which
was given by Ku�mmerer [ . . . ]. This allows us to obtain a calculation rule for certain joint
moments with respect to �. More precisely, we demand that pyramidally ordered products
factorize, i.e.

�(a1: : :ar br: : :b1)= �(a1 b1): : :�(ar br);

if ai; bi2CIi and I1< � � �<Ir, where J1<J2 means that for all t12J1 and t22 J2 we have
t1<t2.

Example 4.1. Let a2CI1 and b2CI2 with I1<I2. Then, for the products aabb=aa �1 �bb �1
and a b b a2C we have

�(aabb)= �(abba)= �(aa)�(bb) :

Note that we do not have any rule in order to compute �(abab):

We will now give the definition of generalized Brownian motion which is due to Boz_ejko
and Speicher [ . . . ].

Definition 4.2. (Boz_ejko-Speicher 1991) Let (C ; �) be a �-probability space and let
(cI1;:::; cIn)I2R be a family of non-commutative random variables such that the map R!Cn,
I 7! (cI1; : : : ; cIn) is finitely additive. Then, the triple (C ; �; ((cI1; cI1�); : : : ; (cIn; cIn�))I2R) is
called an n-dimensional generalized Brownian motion if,

1. pyramidally ordered moments factorize (independent increments).

2. If ĉ stands for c or c� and I+ t :=fs+ t j s2 Ig, then the moments �
¡
ĉI1+t
k(1)

: : :ĉIr+t
k(r) �

are independent of t2R for all r2N, k(1); : : : ; k(r)2f1; : : : ; ng and I1; : : : ; Ir2R
(stationarity).

3. For every r2N, k(1); : : : ; k(r)2f1; : : : ; ng and I 2R we have

�
¡
ĉI
k(1)

: : : ĉI
k(r)�=

8>>>><>>>>:
0; r odd

�(I)r/2�
¡
ĉ[0;1]
k(1)

: : : ĉ[0;1]
k(r)�

; r even

(Gaussianity of the distribution).
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In the case that we have an 1-dimensional generalized Brownian motion (C ; �; (cI ;
cI
�)I2R), in contrast with the classical or free case, we do not assume that cI has a specific
non-commutative distribution with respect to �. This is because our goal is to construct, for
every �2 [¡1;1], an 1-dimensional generalized Brownian motion (C�; ��; (cI ; cI�)I2R) which
gives an interpolation between classical and free Brownian motion, as far as moments are
concerned. Therefore, for different �2 [¡1; 1] the values ��

¡
ĉI
k(1)

: : :ĉI
k(r)� should differ. In

order to motivate the construction of the example that we will give in the next subsection,
we recall a few facts about the non-commutative realization of the classical Brownian
motion on the bosonic Fock space of L2(R).

Let (H; h�; �i) be a Hilbert space. For h1; : : : ; hn2H we define the symmetric tensor
product

h1 � � � � �hn :=
1
n!

X
�2Sn

h�(1)
 � � � 
h�(n);

which is the orthogonal projection of h1
 � � � 
 hn2H
n to the subspace of symmetric
tensors.

The closed subspace of H
n generated by h1 � � � � � hn is denoted by H�n and it is
called the n-fold symmetric tensor product of H. Then, the bosonic Fock space of H is
the Hilbert space

Fs(H) :=C�
M
n=1

1
H�n

with scalar product

hf1 � � � � � fn; g1 � � � � � gmi�= �n;m
X
�2Sn

Y
i=1

n

hfi; g�(i)i

h
; f1 � � � � � fni�=0

h
;
i�=1;

where n;m2N and f1; : : : ; fn; g1; : : : ; gm2H.

For f 2H , we define the bosonic annihilation operator a¡(f) and the bosonic creation
operator a+(f) by

a¡(f)
 :=0;

a¡(f)f1 � � � � � fn :=
X
i=1

n

hf ; fiif1 � � � � � f�i � � � � � fn

and

a+(f)
 := f ;

a+(f)f1 � � � � � fn := f � f1 � � � � � fn :

The symbol f�i means that fi has to be deleted in the product. The above operators extend
to the set of finite linear combinations of symmetric product vectors. Moreover, it is easy
to note that the operators a¡(f) and a+(g) satisfy the C.C.R:.
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For H=L2(R), if we consider at :=a¡(1[0;t))+a+(1[0;t)), then for t1;:::; tn�0 the joint
moments of at1;:::; atn with respect to the vacuum ��(�) := h
; �
i� are given by the formula

��(at1: : :atn)=

8>>>><>>>>:
0; for n oddP
�2P2(1; : : : ;n)

Q
fi;jg2�

ti^ tj ; for n even:
(4.3)

Therefore, in terms of it's moments, (at)t�0 is a non-commutative realization of the classical
Brownian motion.

An anti-commuting analogue of Brownian motion is obtained by replacing the bosonic
Fock space of L2(R) by the fermionic Fock space of L2(R). To be more precise, let H be
a Hilbert space. For f1; : : : ; fn2H we define the antisymmetric tensor product

f1^ � � � ^ fn :=
1
n!

X
�2Sn

"� f�(1)
 � � � 
 f�(n);

where "� is the signature of the permutation �2Sn. The closed subspace of H
n generated
by f1^ �� � ^ fn is denoted by H^n and it is called the n-fold antisymmetric tensor product
of H . Then, the fermionic Fock space of H is the Hilbert space

Fa(H) :=C�
M
n=1

1
H^n

with scalar product

hf1^ � � � ^ fn; g1^ � � � ^ gmi^= �n;m det[(hfi; gji)1�i;j�n]

h
; f1^ � � � ^ fni^=0

h
;
i^=1;

where n;m2N and f1; : : : ; fn; g1; : : : ; gm2H.

For f 2H , we define the fermionic annihilation operator b¡(f) and the fermionic
creation operator b+(f) by

b¡(f)
 :=0;

b¡(f)f1^ � � � ^ fn :=
X
i=1

n

(¡1)ihf ; fiif1^ � � � ^ f�i^ � � � ^ fn

and

b+(f)
 := f ;

b+(f)f1^ � � � ^ fn := f ^ f1^ � � � ^ fn :

The operators b+(f) and b¡(f) are bounded and they extend to the space Fa(H). Further-
more, it is easy to note that the operators b+(f) and b¡(g) satisfy the C.A.R.. Therefore,
for H =L2(R), the non-commutative process (b+(1[0;t))+ b¡(1[0;t)))t�0 can be considered
as an anti-commuting analogue of Brownian motion. Putting bt := b+(1[0;t)) + b¡(1[0;t))
for all t� 0, note that the joint moments of bt1; : : : ; btn with respect to the vacuum state
�^(�) := h
; �
i^ are not equal to the left hand side of (4.3). Thus, the connection with
classical Brownian motion is now only formal.
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In the context of non-commutative probability theory, except of free independence,
there are other notions of stochastic independence, which lead to Brownian motions (at)t�0
(bosonic Brownian motion) and (bt)t�0 (fermionic Brownian motion).

Definition 4.3. Let (A; �) be �-probability space. A family of sub-�-algebras fAkgk2N
of the �-algebra A is independent in the sense of the Bose independence if the algebras Ak

commute with each other (i.e. ak al= al ak if ak2Ak; al2Al and k=/ l) and

�(a1: : :am)= �(a1): : :�(am);

whenever ai2Aki and i=/ j implies ki=/ kj.

We omit the definition of Fermi independence [. . . ]. As we saw in Proposition 3.11, the
free independence appears in the full Fock space. Similarly, we can prove that the Bose
independence appears in the bosonic Fock space and the Fermi independence appears in
the fermionic Fock space.

In the following, we will construct generalized Brownian motions which are interpola-
tions between fermionic, free and bosonic Brownian motion. We recall that the proof of
(4.3) is based on the relations

ha+(f)�; �i�= h�; a¡(f)�i�, for every �; � in the domain of a+(f); a¡(f)

and

a¡(f)a+(g)¡ a+(g)a¡(f)= hf ; gi1; a¡(f)
=0:

On the other hand, for the creation and annihilation operators on the full Fock space of
H , the relations (3.7) and (3.8) were crucial in order to prove that the self-adjoint operator
l+(f)+ l¡(f) (f 2H with f =/ 0) is a semicircular variable. These observations will be our
main motivation in order to define the �-Fock space and the corresponding creation and
annihilation operators.

4.2 The �-Fock space

Our goal is to construct generalized Brownian motions which are interpolations between
fermionic, free and bosonic Brownian motion. In this context, taking into account our
observations in the previous subsection, our aim is to consider operators c¡(f); c+(g) and
a vacuum vector 
 such that c¡(f)
=0 for every f 2L2(R) and

c¡(f)c+(g)¡ �c+(g)c¡(f)= hf ; gi1 for all f ; g 2L2(R) (4.4)

with ¡1� �� 1. We refer to the relations (4.4) as generalized commutation relations.

Our main goal in this section is to show that there exist operators on some Hilbert space
and a corresponding vacuum vector in this Hilbert space which fulfill the above relations.
In this direction, let (H; h�; �i) be a Hilbert space and consider the full Fock space of H
F(H). As before, by 
= (1; 0; 0; : : : :) we denote the vacuum vector and by Flin the set
of finite linear combinations of product vectors. For each f 2H we define the �-creation
operator c+(f) and the �-annihilation operator c¡(f) by

c+(f)
 := f ;

c+(f)f1
 � � � 
 fn := f 
 f1
 � � � 
 fn
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and

c¡(f)
 :=0;

c¡(f)f1
 � � � 
 fn :=
X
k=1

n

�k¡1hf ; fkif1
 � � � 
 f�k
 � � � 
 fn :

The operators c+(f); c¡(f) are extended by linearity to Flin. Note that for �=0 we have
that c+(f)= l+(f) and c¡(f)= l¡(f), for every f 2H.

Lemma 4.4. Let (H; h�; �i) be a Hilbert space. For every f ; g 2H, the operators c¡(f);
c+(g) satisfy on Flin the relation

c¡(f)c+(g)¡ � c+(g)c¡(f)= hf ; gi1: (4.5)

Proof. For f ; g; f1; : : : ; fn2H, using the definition of c+(g) we have

c¡(f)c+(g)f1
 � � � 
 fn= c¡(f)g
 f1
 � � � 
 fn:

But, by definition,

c¡(f)g
 f1
 � � � 
 fn= hf ; gif1
 � � � 
 fn+ � g
 [c¡(f)f1
 � � � 
 fn]:

Therefore, we deduce that

c¡(f)c+(g)f1
 � � � 
 fn= [hf ; gi1+ � c+(g)c¡(f)]f1
 � � � 
 fn

and by the linearity of c¡(f); c+(g), the claim holds. �

Therefore, we have found operators on Flin that satisfy the generalized commutation
relations. It remains to find a suitable scalar product h�; �i� such that for every f 2H and
�; � 2Flin the relation hc+(f)�; �i�= h�; c¡(f)�i� will be satisfied.

We define the symmetric bilinear form h�; �i� on Flin which is determined by

hf1
 � � � 
 fn; g1
 � � � 
 gmi� := 0 for n=/ m

and otherwise recursively by

hf1
 � � � 
 fn; g1
 � � � 
 gni� := hf2
 � � � 
 fn; c¡(f1)g1
 � � � 
 gni�

=
X
k=1

n

�k¡1hf1; gkihf2
 � � � 
 fn; g1
 � � � 
 g�k
 � � � 
 gni� :

Lemma 4.5. Let (H; h�; �i) be a Hilbert space. For every f 2H and �; � 2Flin we have

hc+(f)�; �i�= h�; c¡(f)�i� : (4.6)

Proof. For n;m2N and f ; f1; : : : ; fn; g1; : : : ; gm2H by definition we have

hc+(f)f1
 � � � 
 fn; g1
 � � � 
 gmi�= hf1
 � � � 
 fn; c¡(f)g1
 � � � 
 gn+1i�;
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if m=n+1, and otherwise

hc+(f)f1
 � � � 
 fn; g1
 � � � 
 gmi�=0= hf1
 � � � 
 fn; c¡(f)g1
 � � � 
 gmi�:

Therefore, by linearity the assertion holds. �

As a consequence, we have for every f1; : : : ; fn; g1; : : : ; gn2H ,

hf1
 � � � 
 fn; g1
 � � � 
 gni� = hc+(f1): : :c+(fn)
; g1
 � � � 
 gni�
= h
; c¡(fn): : :c¡(f1)g1
 � � � 
 gni:

In order to prove that the bilinear form h�; �i� is a scalar product, the hardest part is to
prove that it is positive definite. For this purpose, for � 2 [¡1; 1] we want to consider a
map P�:Flin!Flin, such that h�; �i�= h�;P��i for evey �; � 2Flin, where we denote with
h�; �i the usual scalar product on the full Fock space of H . In that case, we are interested
in whether P� is a (strictly) positive operator. We consider

P�=
M
n=0

1

P�
(n) with P�

(n):H
n!H
n:

In order to define P�
(n)
; we consider for every n2N and �2Sn, the operator U�:H
n!H
n

such that

U�f1
 � � � 
 fn := f�(1)
 � � � 
 f�(n) for all f1; : : : ; fn2H:

For � 2Sn, we define i(�) to be the number of inversions of �, which means that

i(�) :=#f(i; j)2f1; : : : ; ng2 j i< j and �(i)>�(j)g :

Then, we define

P�
(n) :=

X
�2Sn

�i(�)U� :

Since i(�¡1)= i(�) and (U�)�=U�¡1 for all � 2Sn, we have

¡
P�
(n)��= X

�2Sn

�i(�)U�¡1=P�
(n)
; for all n2N:

Lemma 4.6. Let (H; h�; �i) be a Hilbert space. For all �; � 2Flin, we have

h�; �i�= h�; P��i :

Proof. By the definition of h�; �i� and due to linearity, it suffices to show that for every
n2N and f1; : : : ; fn; g1; : : : ; gn2H we have

hf1
 � � � 
 fn; g1
 � � � 
 gni� =


f1
 � � � 
 fn; P�

(n)
g1
 � � � 
 gn

�
=

X
�2Sn

�i(�)hf1; g�(1)i: : :hfn; g�(n)i:
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This can be proved by induction on n. For n=1 we have nothing to prove and we assume
that the claim holds for n¡1. We consider Sn¡1

(k) to be the set of all bijections from f2; : : : ;
ng to f1; : : : ; k�; : : : ; ng. Then, for every � 2 Sn there exist unique k 2 f1; : : : ; ng and

� 2Sn¡1
(k) such that �(1)= k and �(l)=�(l) for all l=2; : : : ; n. Similarly, we can define for

� 2Sn¡1
(k) the number of inversions, i.e. the number of (i; j)2f2; : : : ; ng2, such that i < j

and �(i)>�(j). Therefore, for such � 2Sn, k 2N and � 2Sn¡1
(k) , we have

i(�) = i(�)+#fj=2; : : : ; n j�(1)>�(j)g
= i(�)+#fj=2; : : : ; n j k >�(j)g
= i(�)+ k¡ 1:

By the definition of h�; �i� we have,

hf1
 � � � 
 fn; g1
 � � � 
 gni�=
X
k=1

n

�k¡1hf1; gkihf2
 � � � 
 fn; g1
 � � � 
 g�k
 � � � 
 gni�

and for k=1; : : : ; n our induction hypothesis guarantees that

hf2
 � � � 
 fn; g1
 � � � 
 g�k
 � � � 
 gni�=
X

�2Sn¡1
(k)

�i(�)hf2; g�(2)i: : :hfn; g�(n)i:

Therefore, taking into acount that

i(�)= i(�)+ k¡ 1 and
X
�2Sn

=
X
k=1

n X
�2Sn¡1

(k)

,

we deduce that

hf1
 � � � 
 fn; g1
 � � � 
 gni�=
X
�2Sn

�i(�)hf1; g�(1)i� � �hfn; g�(n)i: �

Remark 4.7. It is obvious that for every n2N the operator P�
(n):H
n!H
n is bounded

(as a finite sum of bounded operators). On the other hand, for f 2H such that hf ; f i=1,
we have that

hf
n; f
ni�=(1+ �+ � � �+ �n¡1)hf
(n¡1); f
(n¡1)i�:

Therefore, for every n2N, we deduce that

hf
n; P�f
ni= hf
n; f
ni�=
Y
i=0

n¡1

(1+ �+ � � �+ �i)

and the operator P� is unbounded for �> 0.

4.3 Positive definite kernels

Before we prove that the map P� is positive, we pause in order to introduce the notion of
positive definite kernel which appears in (non-commutative) probability theory [...] and
other areas of Mathematics. A positive definite kernel is a generalization of a positive
definite function.
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Definition 4.8. Let X be an arbitrary set. A complex valued function K:X �X!C is
called a Hermitian kernel if K(x; y) =K(y; x) for all x; y 2X. A Hermitian kernel K is
called positive definite kernel on X if, for every n2N, x1; : : : ; xn2X and a1; : : : ; an2C,
we have X

i;j=1

n

ai aj�K(xi; xj)� 0: (4.7)

A Hermitian kernel K is said to be strictly positive definite if for every n2N;x1;:::; xn2X
and a1; : : : ; an2C,

X
i;j=1

n

ai aj�K(xi; xj)= 0 if and only if a1= � � �= an=0 :

Remark 4.9. Let X be any set and let fKmgm2N be a family of positive definite kernels

on X. Given a1; : : : ; an� 0, the map
Pn
i=1

aiKi is a positive definite kernel on X. Moreover,

if the sequence fKmgm2N converges pointwise, we will also have that lim
m!1

Km is a positive
definite kernel on X.

Example 4.10. Let X be any set, let (H; h�; �i) be a complex Hilbert space and consider a
map �:X!H . Then, we define the mapK:X�X!C by requiring, for all (x; y)2X�X,
K(x; y) := h�(x); �(y)i. Note that K is a positive definite kernel on X since, for every
n2N, x1; : : : ; xn2X and a1; : : : ; an2C, we have

X
i;j=1

n

aiaj�K(xi; xj)=

X
i=1

n

ai �(xi)


2

� 0:

Conversely, we have that every positive definite kernel can be written in this form.

Theorem 4.11. Let X be an arbitrary set and let K:X �X!C be a positive definite
kernel on X. Then, there exists a complex Hilbert space (H; h�; �i) and a map � :X!H

such that, for every x; y 2X,

K(x; y)= h�(x); �(y)i :

Proof. Let n be a positive integer and let x1; : : : ; xn2X. Since K is a positive definite
kernel on X, by definition we have that the Hermitian matrix (K(xi; xj))i;j=1; : : : ;n is
positive definite. Therefore, there exists a Gaussian measure �x1; : : : ;xn on Cn with zero
mean and covariance matrix (K(xi; xj))i;j=1; : : : ;n. It is clear that the family of probability
measures �x1; : : : ;xn is consistent. We consider X to be the set of all functions from X to
C and A to be the �-algebra generated by the projections �y :X !C, f 7! f(y). Then,
by Kolmogorov's extension theorem we have that there exists a probability measure � on
(X ;A) such that, for every n2N, x1; : : : ; xn2X and A�Cn Borel subset we have

�(ff 2X j (f(x1); : : : ; f(xn))2Ag)= �x1; : : : ;xn(A) :

We consider the Hilbert space H =L2(�) and for every x2X we define �(x):X !C, by
demanding, for all f 2X , �(x)(f) := f(x). Then �(x)2L2(�) for every x2X, becauseZ

X
jf(x)j2�(df)=

Z
C
jz j2�x(dz)=K(x; x):
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Therefore, for x; y 2X we deduce that

h�(x); �(y)iL2(�)=
Z
X
f(x)f(y)�(df)=

Z
C�C

zw��x;y(dzdw)=K(x; y) : �

Corollary 4.12. Let X be an arbitrary set and let K;L be two complex valued functions
on X �X. If the maps K;L:X �X!C are (strictly) positive definite kernels on X, then
the pointwise product K �L:X �X!C is a (strictly) positive definite kernel on X.

Proof. First, we assume that the maps K;L:X �X!C are positive definite kernels on
X. By the previous theorem there exist Hilbert spaces (H1; h�; �i1); (H2; h�; �i2) and maps
�1:X!H1, �2:X!H2 such that for every x; y 2X the relations

K(x; y)= h�1(x); �1(y)i1 and L(x; y)= h�2(x); �2(y)i2;

hold. Then, for n2N, a1; : : : ; an2C and x1; : : : ; xn2X we have

X
i;j=1

n

aia�j(K �L)(xi; xj) =
X
i;j=1

n

aia�jh�1(xi); �1(xj)i1h�2(xi); �2(xj)i2

=

X
i=1

n

ai �1(xi)
 �2(xi)


2

� 0;

and we deduce that K �L:X �X!C is a positive definite kernel.

Now, we assume that the maps K; L are strictly positive definite kernels on X. Let,
n be a positive integer and let x1; : : : ; xn2X. Without loss of generality, we assume that
�1(xi)=/ 0 for all i=1; : : : ; n and �2(xi)=/ 0 for all i=1; : : : ; n. Since K is a strictly positive
kernel on X, we have that the elements �1(x1); : : : ; �1(xn)2H1 are linearly independent.
Similarly, we also have that the elements �2(x1); : : : ; �2(xn)2H2 are linearly independent.
Then, it is easy to note that the vectors f�1(xi)
 �2(xj) j i; j = 1; : : : ; ng �H1
H2 are
linearly independent, which implies that K �L is a strictly positive definite kernel on X. �

Now, we are ready to tackle the problem of the positive definiteness of h�; �i�.

Proposition 4.13. Let (H; h�; �i) be a complex separable Hilbert space. The operator P�:
Flin!Flin is positive for all �2 [¡1; 1] and strictly positive for all �2 (¡1; 1).

Proof. It suffices to show that the corresponding assertions hold for the operators P�
(n),

for every n 2N. For � 2 [¡1; 1], we will first prove that the map K� : Sn� Sn!C, (�;
�) 7! �i(�

¡1�) is a positive definite kernel on Sn, i.e. for any r:Sn!C we haveX
�;�2Sn

r(�)r(�)�i(�
¡1�)� 0 :

In order to do so we have to find a nice formula for �i(�
¡1�).
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We define

� := f(i; j)2f1; : : : ; ng2 j i=/ jg;
�+ := f(i; j)2� j i< jg:

For � 2Sn and A��, we also define

�(A) := f(�(i); �(j)) j (i; j)2Ag��:

Since the map A3 (i; j) 7! (�(i); �(j))2 �(A) is a bijection, we have that #A=#�(A).
Moreover, since the elements of the set �(�+)n�+ are of the form (�(i); �(j)) where i< j

and �(i)>�(j), taking into account that i(�) =#fi; j =1; : : : ; n j i < j; �(i)>�(j)g, we
see that the relation i(�)=#�(�+)n�+ holds. Using the fact that the map

f(i; j)2f1; : : : ; ng2 j i < j; �(i)>�(j)g ¡! f(i; j)2f1; : : : ; ng2 j i < j; �¡1(i)>�¡1(j)g
(i; j) 7¡! (�(j); �(i))

is a bijection, we deduce that i(�) = i(�¡1) and the map K is a Hermitian kernel on Sn.
From the above we have that i(�)= i(�¡1)=#�¡1(�+)n�+. But, taking into account that
the map

�¡1(�+)n�+ ¡! �+n�(�+)
(�¡1(i); �¡1(j)) 7¡! (i; j)

is a bijection, we have #�¡1(�+)n�+=#�+n�(�+), which implies that

2i(�)= i(�)+ i(�¡1)=#�(�+)n�++#�+n�(�+)=#�(�+)M�+;

where for two sets A;B we denote by AMB the symmetric difference (AnB)[ (BnA) of A
and B. For every �; � 2Sn, using that the map

f(i; j)2f1; : : : ; ng2 j i < j; �¡1�(i)>�¡1�(j)g ¡! �(�+)n�(�+)
(i; j) 7¡! (�(i); �(j))

is a bijection, we deduce that

2i(�¡1�)= i(�¡1�)+ i(�¡1�)=#�(�+)n�(�+)+#�(�+)n�(�+)=�(�+)M�(�+) :

But, for A;B �� we can write

#AMB=
X
x2�

j1A(x)¡1B(x)j=
X
x2�

j1A(x)¡1B(x)j2:

In order to show that K� (¡1� ��1) is a positive definite kernel on Sn, we will consider
two separate cases. First, we consider the case 0<�� 1. Then, we can write �= e¡�, for
some �� 0. Hence, we have

�i(�
¡1�) = exp(¡�i(�¡1�))

= exp
�
¡�
2
�#�(�+)M�(�+)

�
=

Y
x2�

exp
�
¡�
2
j1�(�+)(x)¡1�(�+)(x)j2

�
:
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Therefore, taking into account that the product of positive definite kernels is a positive
definite kernel, we see that in order to prove that K� is a positive definite kernel on Sn,
it suffices to show that, for every x2�, the maps Sn�Sn3 (�; �) 7! exp

�
¡�

2
j1�(�+)(x)¡

1�(�+)(x)j2
�
are positive definite kernels on Sn, i.e.X

�;�2Sn

exp
�
¡�
2
j1�(�+)(x)¡1�(�+)(x)j2

�
r(�)r(�)� 0:

Let x2�. Note that defining y0 := 0, y1 := 1 and

r(y0) :=
X
�2Sn
x2/�(�+)

r(�); r(y1) :=
X
�2Sn
x2�(�+)

r(�);

we haveX
�;�2Sn

exp
�
¡�
2
j1�(�+)(x)¡1�(�+)(x)j2

�
r(�)r(�) =

X
i;j=0

1

exp
�
¡�
2
jyi¡ yj j2

�
r(yi)r(yj)

� 0 ;

because the function R3x 7! exp
�
¡�

2
�x2
�
is the Fourier transform of a Gaussian measure

on R, which means that is a positive definite function, by Bochner's theorem. Hence, the
map K� is a positive definite kernel on Sn, for every 0< �� 1.

For the case ¡1� �< 0, we first notice that K¡1 is a positive definite kernel on Sn.
Indeed, using that the signature function Sn3� 7! (¡1)i(�) is a character on Sn, we see thatX
�;�2Sn

(¡1)i(�¡1�)r(�)r(�)=
X

�;�2Sn

(¡1)i(�)(¡1)i(�)r(�)r(�)=
���������� X�2Sn (¡1)i(�)r(�)

����������
2

� 0:

For ¡1� � < 0 we have K�=K¡1 �K¡�. Therefore, using that the product of positive
definite kernels is again a positive definite kernel, we deduce that K� is a positive definite
kernel on Sn.

For �=0, since K0(�;�)=1 for �=� and K0(�;�)=0 for �=/ �, it is obvious that K0

is a positive definite kernel on Sn.

Now, we are ready to show that for every n 2N, P�
(n) is a positive operator, i.e. we

have


�;P�

(n)
�
�
�0, for all �2H
n. We consider feig to be a CONS of H
n. Then, we have

�; P�

(n)
�
�
=

X
�2Sn

�i(�)h�;U��i

= 1
n!

X
�;�2Sn

�i(�
¡1�)h�;U�¡1��i

= 1
n!

X
�;�2Sn

�i(�
¡1�)hU��;U��i

= 1
n!

X
�;�2Sn

X
feig

�i(�
¡1�)hU��; eiihei; U��i

= 1
n!

X
feig

( X
�;�2Sn

�i(�
¡1�)hei; U��ihei; U��i

)
� 0;
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where the third equality holds because for every �; � 2Sn, U�U�=U�� and U�¡1=(U�)�,
the fourth equality holds because feig is a CONS of H
n and the last inequality holds
because K� is a positive definite kernel on Sn.

In order to conclude the proof it remains to show that for every �2 (¡1;1) and n2N,
the operator P�

(n) is strictly positive. Note that it is sufficient to show that K� is a strictly
positive definite kernel on Sn. We will only consider the case � 2 (0; 1) since the case
�2 (¡1; 0) can be proved in a completely similar manner. The case �=0 is trivial.

We assume that there exist � 2 (0; 1) such that K� is not a strictly positive definite
kernel on Sn. Then, since K�=K �

p �K �
p and the product of strictly positive definite

kernels is a strictly positive definite kernel, we deduce that K �
p is not a strictly positive

definite kernel on Sn. Because �
p

=/ �, we get in this way infinitely many positive definite
kernels K�i, i2N, which are not strictly positive definite kernels. But the fact that K� is
not a strictly positive definite kernel, implies that det(A)=0, where A := (�i(�

¡1�))�;�2Sn.
Since det(A) is a non-constant polynomial in � we deduce that the polynomial equation
det(A) = 0 has finitely many solutions and this fact leads to a contradiction. Therefore,
for every �2 (0; 1) we have that K� is a strictly positive definite kernel on Sn. �

From now on, we will denote by F�(H) the completion of Flin with respect to the scalar
product h�; �i�. In the cases �=1 and �=¡1 we first have to divide the kernel of P�, thus
leading to the bosonic and fermionic Fock space, respectively.

4.4 Interpolation between fermionic, free and bosonic Brownian
motions

Lemma 4.14. Let (H; h�; �i) be a Hilbert space. For every �2 [¡1; 1) the operator c+(f)
on F�(H) is bounded and has the norm

kc+(f)k� = 1
1¡ �

p kf k for �2 [0; 1); (4.8)

kc+(f)k� = kf k for �2 [¡1; 0] : (4.9)

Proof. We will first treat the case �2 [¡1;0]. Using the generalized commutation relations
stated in (4.5), for f 2H and � 2Flin, we have

hc+(f)�; c+(f)�i� = h�; c¡(f)c+(f)�i�
= hf ; f ih�; �i�+ �hc¡(f)�; c¡(f)�i�
� hf ; f ih�; �i�;

because ��0. Therefore, we have kc+(f)k��kf k. Using that kf k=kc+(f)
k��kc+(f)k�,
we deduce that the relation (4.8) holds.

Now, we turn to the case � 2 [0; 1). For every i < n, we consider �i 2 Sn to be the
transpositions of the symmetric group, i.e. �i interchanges i and i+1 and keeps all the other
elements fixed. We recall that the symmetric group Sn is generated by the transpositions
�1; : : : ; �n¡1. Moreover, the maps �1; : : : ; �n¡1 satisfy the relations:

�i �i+1�i=�i+1�i �i+1; for all i=1; : : : ; n¡ 2

�i�j=�j�i; for all i; j=1; : : : ; n¡ 1 with ji¡ j j� 2;

�i=�i
¡1; for all i=1; : : : ; n¡ 1:
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Using the above relations, we can easily see that each permutation � of the symmetric
group can be written uniquely in the form �k(1)�k(1)+1:::�k(1)+r(1):::�k(i)�k(i)+1:::�k(i)+r(i)
with i� 0, r(i)� 0 and k(1)>k(2)> � � � >k(i). Furthermore, for such a permutation its
number of inversions is equal to (r(1)+1)+(r(2)+1)+ � � �+(r(i)+1). From these facts,

it follows that the bounded operator P�
(n+1) can be written in the form:

P�
(n+1)=

¡
1
P�

(n)�(1+ �U�1+ �2U�1U�2+ � � �+ �nU�1U�2: : :U�n):

Since, U�U�=U�� and (U�)�=U�¡1 for all �; � 2Sn, it follows that,

P�
(n+1)

P�
(n+1)=P�

(n+1)¡
P�
(n+1)��

=
¡
1
P�

(n)�(1+ �U�1+ � � �+ �nU�1: : :�n)(1+ �U�1+ � � �+ �nU�n: : :�1)
¡
1
P�

(n)��:
Therefore, using that U��kU�k1=1 for all � 2Sn, we have,

(1+ �U�1+ � � �+ �nU�1: : :�n)(1+ �U�1+ � � �+ �nU�n: : :�1)

�(1+ � � 1+ � � �+ �n � 1)(1+ � � 1+ � � �+ �n � 1):

This implies

P�
(n+1)

P�
(n+1)�

¡
1
P�

(n)�(1+ � � 1+ � � �+ �n � 1)(1+ � � 1+ � � �+ �n � 1)
¡
1
P�

(n)�
:

Finally, we deduce that

P�
(n+1)= P�

(n+1)
P�
(n+1)

q
�

¡
1
P�

(n)�(1+ � � 1+ � � �+ �n � 1)(1+ � � 1+ � � �+ �n � 1)
¡
1
P�

(n)�q
=(1+ �+ � � �+ �n)1
P�

(n)� 1
1¡ � 1
P�

(n)
:

Now, for f 2H and � 2H
n, we get

hf 
 �; f 
 �i� =


f 
 �; P�

(n+1)
f 
 �

�
� 1

1¡ �


f 
 �;

¡
1
P�

(n)�(f 
 �)�
= 1

1¡ �hf ; f i


�; P�

(n)
�
�
:

This shows that kc+(f)k � (1¡ �)¡1/2kf k. That the norm of c+(f) is equal to (1 ¡
�)¡1/2kf k can be seen from c+(f)f
n= f
(n+1) and

hf
(n+1); f
(n+1)i�=(1+ �+ � � �+ �n)hf ; f ihf
n; f
ni�: �

The previous lemma implies that for every f 2H and �2 [¡1;1), the operators c+(f);
c¡(f) can be extended on F�(H). Moreover, the relations (4.6) and (4.5) hold on F�(H).
On the other hand, for �=1 our operators are unbounded and they can be defined only
on the dense domain Flin of F�(H).

67



Now, we are ready to consider our concrete example of a generalized Brownian motion.
For this purpose, we chooseH=L2(R) and fix a �2 [¡1;1]. We consider C� to be the unital
�-algebra generated by all c¡(1I) for I 2R and ��(�) := h
; �
i� to be the vacuum state on
C�. We claim that the triple (C�; ��; (c¡(1I); c+(1I))I2R) is an 1-dimensional generalized
Brownian motion. By induction, it is easy to note the factorizing of pyramidally ordered
moments. Therefore, in order to prove the claim it remains to show the stationarity and
the Gaussianity of the corresponding distribution. This is a consequence of the fact that all
(joint) moments of our operators, with respect to ��, are determined in a specific way by
the second (joint) moments. In order to describe this connection between the moments we
have to define the number of inversions i(V ) of a 2-partition V . The number of inversions
counts the number of crossing points that we have if we build bridges that connect the
points which belong to the same block of the 2-partition V . More precisely, for r even and
a 2-partition V = f(e1; z1); : : : ; (er/2; zr/2)g 2 P2(1; : : : ; r), where ei< ej for all i < j and
ei<zi for all i=1; : : : ; r/2, the number of inversions is defined as

i(V ) :=#f(i; j)2f1; : : : ; r/2g2 j ei<ej<zi<zjg:

Example 4.15. For the partitions V1=f(1;6); (2;5); (3;4)g, V2=f(1;4); (2;5); (3;6)g and
V3= f(1; 3); (2; 4); (5; 6)g we have i(V1) = 0, i(V2) = 3, i(V3) = 1 and the above partitions
can be depicted in the following way

V1 V2

V3

Remark 4.16. Let V be a 2-partition of the set f1; : : : ; rg. Since i(V ) counts the number
of crossing points, we have that i(V )= 0 if and only if V is a non-crossing partition.

Let (H; h�; �i) be a Hilbert space. For f 2H , let c¡1(f) := c¡(f) and c1(f) := c+(f).
Our first task is to compute expressions of the form ��(ck(1)(f1): : :ck(r)(fr)), where r 2N

and k(1); : : : ; k(r)2f¡1; 1g. For k(1); : : : ; k(r)2f¡1; 1g, we define

�r = k(r);
�r¡1 = k(r¡ 1)+ k(r);

���
�2 = k(2)+ � � �+ k(r);
�1 = k(1)+ k(2)+ � � �+ k(r):

A straightforward induction shows that if �r; �r¡1; : : : ; �l�0, then ck(l)(fl): : :ck(r)(fr)
2
H
�l and otherwise ck(l)(fl): : :ck(r)(fr)
=0. Therefore, by the definition of �� we deduce
that ��(ck(1)(f1): : :ck(r)(fr))=/ 0 only if (k(r); k(r¡1); : : : ; k(1))2f¡1;1gr is a Dyck path.
Hence, we have ��(ck(1)(f1): : :ck(r)(fr))= 0, for r odd.
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Proposition 4.17. Let (H; h�; �i) be a Hilbert space. For n2N, k(1); : : : ; k(2n)2f¡1; 1g
and f1; : : : ; f2n2H we have

��(ck(1)(f1): : :ck(2n)(f2n))=
X

V =f(e1;z1); : : : ;(en;zn)g
2P2(1; : : : ;2n)

�i(V )
Y
i=1

n

��(ck(ei)(fei) c
k(zi)(fzi)) : (4.10)

Proof. First, we show that the above formula is valid for products of the form
c¡(f1) : : : c¡(fm)c+(fm+1)c+(fm+2) : : : c+(f2n). For m =/ n, taking into account that
��(ck(1)(f1): : :ck(2n)(f2n)) =/ 0 only if (k(2n); k(2n ¡ 1); : : : ; k(1)) 2 f¡1; 1g2n is a Dyck
path and ��(ck(f)cl(g)) =/ 0 only if (k; l) = (¡1; 1), we see that both sides of the above
formula vanish. Now, we assume that m=n, i.e. k(1)= ���=k(n)=¡1 and k(n+1)= ���=
k(2n)=1. We have

��(ck(1)(f1): : :ck(2n)(f2n)) = hc+(fn): : :c+(f1)
; c+(fn+1): : :c+(f2n)
i�
= hfn
 � � � 
 f1; fn+1
 � � � 
 f2ni�
=


fn
 � � � 
 f1; P�

(n)
fn+1
 � � � 
 f2n

�
=

X
�2Sn

hfn; fn+�(1)i� � �hf1; fn+�(n)i�i(�):

In order to compute the left hand side of (4.10), we see that for V =f(e1; z1);:::; (en; zn)g we
have ��(ck(e1)(fe1) c

k(z1)(fz1)):::��(c
k(en)(fen) c

k(zn)(fzn))=/ 0 only if k(e1)= ���=k(en)=¡1
and k(z1)= � � �= k(zn)= 1, i.e. only if ei= i for all i=1; : : : ; n and z1; : : : ; zn2fn+1; : : : ;
2ng. Then, we have

X
V =f(e1;z1); : : : ;(en;zn)g

2P2(1; : : : ;2n)

�i(V )
Y
i=1

n

��(ck(ei)(fei)c
k(zi)(fzi))=

X
V =f(1;z1); : : : ;(n;zn)g

2P2(1; : : : ;2n)

�i(V )
Y
i=1

n

hfi; fzii:

But, every partition V =f(1; z1);:::; (n; zn)g2P2(1;:::;2n) corresponds to a unique �2Sn,
by defining �(i)= zn+1¡i¡n, for all i=1; : : : ; n. Then, for these �; V using that me map

f(i; j)2f1; : : : ; ng2 j i < j; �(i)>�(j)g ¡! f(i; j)2f1; : : : ; ng2 j i < j <zi<zjg
(i; j) 7¡! (n+1¡ j ; n+1¡ i)

is a bijection, we deduce that i(�)= i(V ). Therefore, we have

X
V =f(1;z1); : : : ;(n;zn)g

2P2(1; : : : ;2n)

�i(V )
Y
i=1

n

hfi; fzii =
X
�2Sn

�i(�)
Y
i=1

n

hfi; fn+�(n+1¡i)i

=
X
�2Sn

hfn; fn+�(1)i: : :hf1; fn+�(n)i�i(�)

= ��(ck(1)(f1): : :ck(2n)(f2n)) :

Hence, the formula is valid for products of the form c¡(f1): : :c¡(fm)c+(fm+1): : :c+(f2n).

The assertion has been proven because it is not hard to note that both sides of the
formula stated in (4.10) change in the same way if we replace in ck(1)(f1): : :ck(2n)(f2n) a
factor c¡(f)c+(g) by c+(g)c¡(f), using the generalized commutation relations. �
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If we return to the caseH=L2(R), for every I2R we denote cI
¡1 :=c¡1(1I), cI1 :=c1(1I).

The Gaussianity and the stationarity of the distribution of the process (C�; ��; (cI¡1; cI1)I2R)
emerges from the previous proposition, and the relation 

��(cI
¡1cJ

¡1) ��(cI
¡1cJ

1)

��(cI1cJ
¡1) ��(cI1cJ1)

!
=
�
0 �(I \J)
0 0

�
:

Therefore, for every �2 [¡1;1] the triple (C�; ��; (cI¡1; cI1)I2R) is an 1-dimensional general-
ized Brownian motion. The importance of this specific example of a generalized Brownian
motion comes from the fact that it gives an interpolation between fermionic, bosonic and
free Brownian motion. More precisely, for t1; : : : ; t2n+1� 0, we have

��[(c[0;t1)
¡1 + c[0;t1)

1 ): : :(c[0;t2n)
¡1 + c[0;t2n)

1 )] =
X

k(1); : : : ;k(2n)2f¡1;1g
��
¡
c[0;t1)
k(1)

: : :c[0;t2n)
k(2n) �

and using the relation (4.10) and the fact ��(ck(f)cl(g))=/ 0 only if (k; l)=(¡1;1), we have

��[(c[0;t1)
¡1 + c[0;t1)

1 ): : :(c[0;t2n)
¡1 + c[0;t2n)

1 )] =
X

V =f(e1;z1); : : : ;(en;zn)g
2P2(1; : : : ;2n)

�i(V )
Y
i=1

n

��
¡
c[0;tei)
¡1 c[0;tzi)

1
�

=
X

V 2P2(1; : : : ;2n)
�i(V )

Y
fi;jg2V

ti^ tj

and

��[(c[0;t1)
¡1 + c[0;t1)

1 ): : :(c[0;t2n+1)
¡1 + c[0;t2n+1)

1 )]= 0:

Therefore, the joint moments ��[(c[0;t1)
¡1 + c[0;t1)

1 ): : :(c[0;tr)
¡1 + c[0;tr)

1 )] coincide with the corre-
sponding joint moments of a fermionic, free and bosonic Brownian motion, for the cases
�=¡1, �=0 and �=1, respectively.

4.5 Another representation of the generalized commutation rela-
tions

In the previous subsection, we saw that the generalized commutation relations

c¡(f)c+(g)¡ � c+(g)c¡(f)= hf ; gi1 (f ; g 2L2(R));

were crucial in order to construct an example of a generalized Brownian motion, which
gives an interpolation between fermionic, free and bosonic Brownian motion. For f 2L2(R)
fixed, in order to construct the operators c+(f), c¡(f), we considered c+(f)= l+(f) and we
defined c¡(f) in such a way that the generalized commutation relations are satisfied. By the
definition of c¡(f), we have c¡(f)= l¡(f) for �=0. Now, we will give another example of
a pair of operators (d¡(f); d+(g)) that satisfy the generalized commutation relations. For
f 2L2(R) fixed, in order to define d+(f), d¡(f), we will do the inverse procedure than the
one that we did in order to define c+(f) and c¡(f). Namely, we consider d¡(f) = l¡(f)
and we will define d+(f) in such a way that the generalized commutation relations are
satisfied. For �=0, we will have d+(f)= l+(f).

Let (H; h�; �i) be a (complex) Hilbert space. For each f 2H, we define the operators
d+(f); d¡(f) by

d¡(f) := l¡(f) (4.11)
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and

d+(f)
 := f ;

d+(f)f1
 � � � 
 fn := f 
 f1
 � � � 
 fn+ �f1
 f 
 f2
 � � � 
 fn+ � � �+
+�n¡1f1
 � � � 
 fn¡1
 f 
 fn+ �nf1
 � � � 
 fn
 f:

The operator d+(f) is extended by linearity to Flin. Note that, for �= 0, we have that
d+(f)= l+(f).

Lemma 4.18. Let (H; h�; �i) be a Hilbert space. The operators d¡(f); d+(g) on Flin fulfill,
for all f ; g 2H, the relations

d¡(f)d+(g)¡ �d+(g)d¡(f)= hf ; gi1:

Proof. Let n be a positive integer and let f1; : : : ; fn+1; g; g1; : : : ; gn2H. Then, for every
k 2f1; : : : ; ng we have,

hf1
 � � � 
 fn+1; g1
 � � � 
 gk¡1
 g
 gk
 � � � 
 gni
=hhg; fkif1
 � � � 
 fk� 
 � � � 
 fn+1; g1
 � � � 
 gni:

Then, if we multiply both sides by �k¡1 and take the sum over all k=1; : : : ; n+1, we have

hf1
 � � � 
 fn+1; d+(g)g1
 � � � 
 gni= hc¡(g)f1
 � � � 
 fn+1; g1
 � � � 
 gni;

which implies that

h�; d+(g)�i= hc¡(g)�; �i; for all �; � 2Flin: (4.12)

Then, for �; � 2Flin and f ; g 2H we have

h�; d¡(f)d+(g)�i = hl+(f)�; d+(g)�i
= hc¡(g)c+(f)�; �i
= h� c+(f)c¡(g)�+ hg; f i�; �i
= h�; � d+(g)d¡(f)�+ hf ; gi�i;

where we have used that d¡(f) = l¡(f), c+(f) = l+(f) and l+(f) = (l¡(f))�. Hence, the
assertion holds. �

Let �2 (¡1; 1) be fixed in the following. In order to show that the operators d+(f);
d¡(f) behave exactly as the operators c+(f); c¡(f), we have to introduce a scalar product
which makes d+(f) and d¡(f) adjoints of one another. To work in this direction, we choose
a scalar product h�; �i� using P�

¡1. More precisely, we define h�; �i� := h�; P�¡1�i; for every
�; � 2Flin. Note that P�

¡1 exists, i.e. P�
¡1(Flin)=Flin.

Lemma 4.19. Let (H; h�; �i) be a Hilbert space. For all f 2H and �; � 2Flin we have

h�; d+(f)�i�= hd¡(f)�; �i�:
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Proof. Using the relation (4.12), for all �; � 2Flin we have

h�; P� c+(f)�i= h�; c+(f)�i� = hc¡(f)�; �i�
= hc¡(f)�; P��i
= h�; d+(f)P��i:

Therefore, we have P� c+(f)= d+(f)P�, which implies c+(f)P�
¡1=P�

¡1d+(f). Hence, by
the definition of h�; �i� we deduce that

h�; d+(f)�i� = h�; P�¡1d+(f)�i
= h�; c+(f)P�¡1�i
= hd¡(f)�; P�¡1� i
= hd¡1(f)�; �i�;

where in the third equality we used that c+(f)= l+(f) and (l+(f))�= l¡(f)= d¡(f). �

We now denote by F �(H) the completion of Flin with respect to h�; �i�.

Lemma 4.20. Let (H; h�; �i) be a Hilbert space. For f 2H, the operator d+(f) is bounded
on F�(H) and has the same norm as c+(f) on F�(H).

Proof. First, for � 2Flin and �=P�
¡1� we see that

h�; �i�= h�; P��i= hP�¡1�; �i= h�; �i�:

Furthermore, using that �=P�� we have

hd+(f)�; d+(f)�i� = hd+(f)P��; P�¡1d+(f)P��i
= hP�c+(f)�; P�¡1P�c+(f)�i
= hP�c+(f)�; c+(f)�i
= hc+(f)�; c+(f)�i�;

where, in the second equality we used that d+(f)P�=P�c+(f). Therefore, we deduce that
the claim holds. �

The previous lemma implies that Lemmata 4.18 and 4.19, which were proved only on
the dense domain Flin, remain valid also on F�(H).

Given a Hilbert space (H; h�; �i), we consider the vacuum state ��(�) := h
; �
i� on
B(F�(H)). Let d1(f) :=d+(f), d¡1(f) :=d¡(f), for every f 2H. Then, the joint moments
of the non-commutative random variables d¡1(f) with respect to �� are equal to the cor-
responding joint moments of the non-commutative random variables c¡1(f) with respect
to ��.

Proposition 4.21. Let (H; h�; �i) be a Hilbert space. For every r2N, k(1);:::; k(r)2f¡1;
1g and f1; : : : ; fr2H, we have

��
¡
d
k(1)(f1): : :d

k(r)(fr)
�
= ��(ck(1)(f1): : :ck(r)(fr)): (4.13)
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Proof. It suffices to prove the weaker condition: for all n;m2N and g1; : : : ; gm; h1; : : : ;

hn2H we have

��(d¡1(g1): : :d¡1(gm)d1(h1): : :d1(hn))= ��(c¡1(g1): : :c¡1(gm)c1(h1): : :c1(hn)):

Indeed, this is so because using the generalized commutation relations and the linearity of
��; �� we see that both sides of the formula stated in (4.13) change in the same way if we
replace in dk(1)(f1): : :dk(r)(fr) a factor d¡1(f)d1(g) by d1(g)d¡1(f) and respectively if we
replace in ck(1)(f1): : :ck(r)(fr) the factor c¡1(f)c1(g) by c1(g)c¡1(f). Therefore, we have

��(d¡1(g1): : :d¡1(gm)d1(h1): : :d1(hn)) = hd1(gm): : :d1(g1)
; d1(h1): : :d1(hn)
i�

= hd1(gm): : :d1(g1)
; P�¡1d1(h1): : :d1(hn)
i:

But, since d+(f)P�= P�c
+(f), for every f 2H , we have d1(gm) = P�c

1(gm)P�
¡1, which

implies

d1(gm): : :d1(g1)
=P�c1(gm)P�
¡1d1(gm¡1): : :d1(g1)
:

Using that P�
¡1d+(f)= c+(f)P�

¡1 for every f 2H and P�
=
, we have

d1(gm): : :d1(g1)
=P�c1(gm): : :c1(g1)


and similarly

d1(h1): : :d1(hn)
=P�c1(h1): : :c1(hn)
:

Therefore, we deduce that

��(d¡1(g1): : :d¡1(gm)d1(h1): : :d1(hn)) = hP�c1(gm): : :c1(g1)
; c1(h1): : :c1(hn)
i
= hc1(gm): : :c1(g1)
; P�c1(h1): : :c1(hn)
i
= hc1(gm): : :c1(g1)
; c1(h1): : :c1(hn)
i�
= ��(c¡1(g1): : :c¡1(gm)c1(h1): : :c1(hn))

and the assertion holds. �

Taking into account that, for �2 [¡1;1], the triple (C�; ��; (cI¡1; cI)I2R) is a generalized
Brownian motion, by the previous proposition we deduce that, for �2 (¡1; 1), the triple
(D�; ��; (dI¡1; dI1)I2R) is a generalized Brownian motion, where we consider D� to be the
unital �-algebra generated by all dI

¡1, for I 2R.
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5 A non-commutative central limit theorem
In this section we continue the investigation of the non-commutative stochastic process
(C�; ��; (cI¡1; cI1)I2R). We will show that the 1-dimensional generalized Brownian motion
(C�; ��; (cI¡1; cI1)I2R) arises via some non-commutative central limit theorem relying on the
notion of Ku�mmerer independence [ . . . ]. In order to determine the Gaussian distribution
corresponding to this process we introduce the �-Hermite polynomials. In full proportion
with the above, we also introduce the �-Poisson distribution and the �-analogues of Char-
lier-Poisson polynomials.

5.1 Overview
In the previous section we introduced generalized Brownian motion and we gave an example
of an 1-dimensional generalized Brownian motion which gives an interpolation between
fermionic, free and bosonic Brownian motion. More precisely, for the non-commutative
stochastic process (C�; ��;(c+(1I)+c¡(1I))I2R) we have seen that the interpolation is given
by the relations

��[(c+(1[0;t1))+ c
¡(1[0;t1))): : :(c

+(1[0;t2n))+ c
¡(1[0;t2n)))]=

X
V 2P2(1; : : : ;2n)

�i(V )
Y

fi;jg2V
ti^ tj

and

��[(c+(1[0;t1))+ c
¡(1[0;t1))): : :(c

+(1[0;t2n+1))+ c
¡(1[0;t2n+1)))] = 0;

for every �2 [¡1; 1] and for every t1; : : : ; t2n+1� 0.
In this section we want to understand if the Gaussian distribution, which correspods

to this process, can be emerged from a central limit theorem and whether this can be
generalized to an invariance principle yielding the process itself. By Gaussian distribution
corresponding to this process, we mean the probability measure �� on R which determines
the non-commutative distribution of the self-adjoint variable c+(f) + c¡(f) for kf k= 1
(f 2L2(R)), in the sense that

��[(c+(f)+ c¡(f))k]=
Z
R
tk ��(dt);

for every k2N. We have seen that the moments of c¡(f); c+(f) with respect to �� depend
only on kf k and �. Therefore the measure �� does not depend on f 2L2(R). Of course,
the cases �=0 and �=1 correspond to the semicircle and normal distribution respectively.
For �2 (¡1;1), since c+(f)+ c¡(f) is a bounded and self-adjoint operator on F�(L2(R)),
the existence of such a probability measure �� can be derived from the functional calculus
for c+(f) + c¡(f) and Riesz's theorem. For the fermionic case, �=¡1, it is not hard to
note that the corresponding measure �¡1 is given by

�¡1(dx)=
1
2
(�¡1(dx)+ �1(dx)):

Since our goal is to obtain �� via a central limit theorem, we are interested in finding
appropriate �-probability spaces (A; �) and non-commutative random variables ai2A for
every i2N, such that for the sum

SN =
a1+ � � �+ aN

N
p ;
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we have that SN 2 (A; �) converges in distribution to c¡(f) 2 (C�; ��) as N !1. By
convergence in distribution we mean that all moments of SN ;SN� with respect to � converge
to the corresponding moments of c¡(f); c+(f) with respect to ��. In that case, for every
k 2N, we will have

lim
N!1

�[(SN +SN� )k] = ��[(c¡(f)+ c+(f))k] =
Z
R
tk ��(dt):

As usual, in order to formulate and prove the non-commutative central limit theorem, the
non-commutative random variables ai will be considered in some sense as independent and
as identically distributed. Form now on, we shall call a sequence (ai)i2N of non-commuta-
tive random variables on some �-probability space (A; �) independent with respect to �,
if � of naturally ordered products factorizes in the following sense: If Ai is the unital �-
algebra generated by ai, then we demand

�(a~i(1): : :a~i(r))= �(a~i(1)): : :�(a~i(r));

for every r 2N, a~i(k)2Ai(k) and i(1)< � � �< i(r).

This notion of independence was introduced by Ku�mmerer and it is called Ku�mmerer
independence. The important examples of Ku�mmerer independence are free independence,
Bose independence and Fermi independence.

5.2 Central limit theorem

We shall now formulate and prove the non-commutative central limit theorem. In order
to do so, we consider the following framework: Let (A; �) be a �-probability space and
let (ai)i2N be a sequence of non-commutative random variables such that � of naturally
ordered products factorizes. We define ai

¡1 :=ai and ai1 :=ai�, for every i2N. For i=/ j and
k; l 2f¡1; 1g we assume that the non-commutative random variables aik and ajl commute
or anticommute, meaning that

ai
kaj

l = s(i; j)ajl aik; (5.1)

where s(i; j) 2 f¡1; 1g. For concreteness we may also define s(i; i) := 0. Note that by
definition s(i; j) = s(j ; i), for every i; j 2N and for i=/ j the relation (5.1) implies that if
ai
1 and aj1 commute (or anticommute) then the variables ai

¡1 and aj1 will also commute (or
anticommute).

To formulate the central limit theorem some assumptions have to be done for the infinite
symmetric matrix s=(s(i; j))i;j=11 . Before we present these assumptions let us introduce
some notation: For an arbitrary partition V = fV1; : : : ; Vng 2 P2(1; : : : ; 2n) we will write
Vi= (ei; zi) with ei<zi, for all i=1; : : : ; n. We can also assume e1< � � � <en. For such a
partition, we define the set of inversions of V by

I(V ) := f(i; j)2f1; : : : ; ng2 j ei<ej<zi<zjg:

We recall that we denote the number of inversions of V by i(V ) =#I(V ) and we have
I(V )= ; if and only if V is a non-crossing partition.
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Our assumption on s will be the convergence of specific sums where each of them
corresponds to a 2-set partition. More precisely for V 2P2(1; : : : ; 2n)nNC2(1; : : : ; 2n) we
assume the existence of

t(V ) := lim
N!1

1
Nn

X
i(e1); : : : ;i(en)=1
i(ej)=/ i(em) for j=/m

N Y
(k;l)2I(V )

s(i(ek); i(el)): (5.2)

For V 2NC2(1; : : : ; 2n) (i.e. I(V )= ;) we define t(V ) := 1.

If s(i; j)= 1 for every i; j 2N, the limit exists and we have

t(V )= lim
N!1

N(N ¡ 1): : :(N ¡n+1)
Nn =1

Similarly t(V )= (¡1)i(V ) if s(i; j)=¡1 for every i; j 2N.

Example 5.1. For the partitions V = f(1; 3); (2; 4); (5; 6)g and W = f(1; 4); (2; 5); (3; 6)g,
we have I(V )= f(1; 2)g and I(W )= f(1; 2); (1; 3); (2; 3)g. This implies that

t(V )= lim
N!1

1
N3

X
i(1);i(2);i(3)=1

i(1)=/ i(2)=/ i(3)=/ i(1)

N

s(i(1); i(2))= lim
N!1

1
N2

X
i(1);i(2)=1
i(1)=/ i(2)

N

s(i(1); i(2))

and

t(W )= lim
N!1

1
N3

X
i(1);i(2);i(3)=1
i(1)=/ i(2)=/ i(3)=/ i(1)

N

s(i(1); i(2))s(i(1); i(3))s(i(2); i(3)):

Now we are ready to prove the non-commutative central limit theorem under the
assumption of the convergence of t(V ) for all n2N and for all V 2 P2(1; : : : ; 2n). Later
on, we shall see that under some probabilistic assumptions about s we can compute t(V )
for almost all infinite symmetric matrices s. The computation of t(V ) will show that
the measure �� (where � 2 [¡1; 1] will be specified from our probabilistic assumptions)
arises from the non-commutative central limit theorem as a non-commutative analogue
of the Gaussian distribution.

Theorem 5.2. (non-commutative central limit theorem) Let (A; �) be a �-proba-
bility space and let (ai)i2N be a sequence of non-commutative random variables such that �
of naturally ordered products factorizes. We consider, for every i2N, ai

¡1 :=ai and ai1 :=ai�

and we assume, for every i2N and k; l2f¡1;1g, that �(aik)=0 and the covariance �(aikail)
is independent of i. We define �(akal) := �(aikail). Assume further that for all i; j 2N with
i=/ j and k; l2f¡1; 1g,

ai
kaj

l = s(i; j)ajl aik; with s(i; j)2f¡1; 1g; (5.3)

and that for all n2N and V 2P2(1; : : : ; 2n) the limit t(V ) exists. Then, if we consider the
sums

SN
¡1 :=SN =

a1+ � � �+ aN
N

p and SN
1 :=SN� =

a1
�+ � � �+ aN�

N
p ;

76



we have for all r 2N and k(1); : : : ; k(r)2f¡1; 1g,

lim
N!1

�
¡
SN
k(1)

:::SN
k(r)�=

8>>>>>><>>>>>>:
0; for r odd

P
V =f(e1;z1); : : : ;(en;zn)g2P2(1; : : : ;2n)

t(V )
Qn
i=1

�(ak(ei)ak(zi)); for r=2n:

Proof. Let r be a positive integer and let k(1); : : : ; k(r)2f¡1; 1g. In order to show that
the assertion holds we have to calculate the expression

MN := �
¡
SN
k(1)

: : :SN
k(r)� = �

" 
a1
k(1)+ � � �+ aN

k(1)

N
p

!
: : :

 
a1
k(r)+ � � �+ aN

k(r)

N
p

!#

= 1
N r/2

X
i(1); : : : ;i(r)=1

N

�
¡
ai(1)
k(1)

: : :ai(r)
k(r)�

:

For every r-tuple i=(i(1);:::; i(r))2f1;:::;N gr there exists a unique partition V 2P (1;:::;
r) such that ker(i)=V , since, by definition, for p; q 2f1; : : : ; rg we have psker(i) q if and
only if i(p)= i(q). Therefore we have,

MN =
X

V 2P (1; : : : ;r)

1
N r/2

X
i(1); : : : ;i(r)=1

ker(i)=V

N

�
¡
ai(1)
k(1)

: : :ai(r)
k(r)�

: (5.4)

Since the set P (1; : : : ; r) is finite and independent of N and we focus on the computation
of MN , as N!1, we will concentrate to the last sum of the right hand side of (5.4),
separetely for all V 2P (1; : : : ; r).

Let V = fV1; : : : ; Vpg 2 P (1; : : : ; r) such that #Vi= 1 for some i 2 f1; : : : ; pg. Then,
since �(aik)=0, for every i2N and k2f¡1; 1g, using the relations stated in (5.3) and our

assumption that � of naturally ordered products factorizes, we will have �
¡
ai(1)
k(1)

:::ai(r)
k(r)�=0,

for all i(1); : : : ; i(r)2f1; : : : ; N g such that ker(i)=V . Hence, in order to compute MN it
suffices to take the sum over all V = fV1; : : : ; Vpg 2 P (1; : : : ; r) such that #Vi � 2 for all
i=1; : : : ; p. For such a partition V we have

2p�
X
i=1

p

#Vi= r:

By our assumptions, for V =fV1; : : : ; Vpg2P (1; : : : ; r) the expression
�����¡ai(1)k(1)

: : :ai(r)
k(r)����� has

the same value mV , for all i(1); : : : ; i(r)2f1; : : : ;N g such that ker(i)=V . Also, choosing
an r-tuple i= (i(1); : : : ; i(r)) of elements of f1; : : : ; N g such that ker(i)= V is equivalent
to choosing p distinct numbers from the set f1; : : : ;N g. This is true, because for such an
i, it's values at two points of f1; : : : ; rg are the same if and only if these points belong to
the same block of V . Therefore by the triangle inequality we deduce that,��������������

1
N r/2

X
i(1); : : : ;i(r)=1

ker(i)=V

N

�
¡
ai(1)
k(1)

: : :ai(r)
k(r)����������������

1
N r/2

X
i(1); : : : ;i(r)=1

ker(i)=V

N

mV =mV
Ap;N

N r/2
;
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where Ap;N :=N(N ¡ 1): : :(N ¡ p+1). Since,

lim
N!1

Ap:N

N r/2
=0; for p<

r
2
;

the partitions V = fV1; : : : ; Vpg 2P (1; : : : ; r), with p < r/2, do not contribute to the sum
as N!1. Hence, only the partitions V of f1; : : : ; rg, with #V = r/2, may contribute to
the sum as N!1 (if they exist). This means that MN! 0 as N!1, for r odd and

lim
N!1

MN =
X

V =f(e1;z1); : : : ;(en;zn)g
2P2(1; : : : ;2n)

lim
N!1

0BB@ 1
N r/2

X
i(1); : : : ;i(2n)=1

ker(i)=V

N

�
¡
ai(1)
k(1)

: : :ai(2n)
k(2n)�1CCA; (5.5)

for r=2n.

Let V =f(e1; z1); : : : ; (en; zn)g2NC2(1; : : : ; 2n). Then, there exist a m2f1; : : : ; ng such
that zm=em+1. Hence, for i(1); ::: ; i(2n)2f1; ::: ;N g with ker(i)=V , since i(em)= i(zm)
the relations stated in (5.3) imply that the element ai(em)

k(em)ai(zm)
k(zm) commutes with everything.

Since V is a non-crossing partition, V n(em; zm) can be identified with a non-crossing
partition of f1; : : : ; 2n ¡ 2g and as a consequence it will also have an interval block.
Therefore, using that � of naturally ordered products factorizes, by induction we have that

�
¡
ai(1)
k(1)

: : :ai(2n)
k(2n)�= �(ak(e1)ak(z1)): : :�(ak(en)ak(zn));

which is independent of N . Taking into account that

lim
N!1

AN ;r/2

N r/2
=1, for r=2n,

and t(V )=1 for V 2NC2(1;:::;2n), we see that for non-crossing partitions the corresponding
limit stated in the right hand side of (5.5) is equal to the expression that we claimed.

It remains to compute the corresponding limit for crossing partitions V =f(e1; z1); : : : ;
(en; zn)g2P2(1; : : : ; 2n). We consider such a V and i(1); : : : ; i(2n)2f1; : : : ;N g such that
ker(i) = V . Then, using that ai(em)

k(em)ai(zm)
k(zm) commutes with everything and applying the

relations aikajl = s(i; j)ajl aik in order to bring the factors ai(ep)
k(ep); ai(zp)

k(zp) (p 2 f1; : : : ; ng) in
neighbouring positions in case where there exist q 2 f1; : : : ; ng with (min fp; qg;max fp;
qg)2 I(V ), we have

ai(1)
k(1)

: : :ai(2n)
k(2n)= ai(e1)

k(e1)ai(z1)
k(z1): : :ai(en)

k(en)ai(zn)
k(zn)

Y
(k;l)2I(V )

s(i(ek); i(el)):

Since � of naturally ordered products factorizes we have

�
¡
ai(1)
k(1)

: : :ai(2n)
k(2n)�=Y

j=1

n

�(ak(ej)ak(zj))
Y

(k;l)2I(V )
s(i(ek); i(el))

which implies

lim
N!1

1
Nn

X
i(1); : : : ;i(2n)=1

ker(i)=V

N

�
¡
ai(1)
k(1)

: : :ai(2n)
k(2n)�= �(ak(e1)ak(z1)): : :�(ak(en)ak(zn))t(V ):
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Therefore, the assertion holds. �

In the context of the previous theorem, we make the additional assumption 
�(a¡1a¡1) �(a¡1a1)
� (a1a¡1) �(a1a1)

!
=
�
0 C
0 0

�
, for some C � 0:

Consider f 2L2(R) with norm kf k2=C. Then, the relation

t(V )=

(
1; if s(i; j)=1 for all i; j 2N

(¡1)i(V ); if s(i; j)=¡1 for all i; j 2N

implies that, for all r 2N and all k(1); : : : ; k(r)2f¡1; 1g,

lim
N!1

�
¡
SN
k(1)

: : :SN
k(r)�=

8>><>>:
�1(ck(1)(f): : :ck(r)(f)), if s(i; j)= 1 for all i; j 2N

�¡1(ck(1)(f): : :ck(r)(f)), if s(i; j)=¡1 for all i; j 2N:

We shall now examine the computation of t(V ), in order to verify whether under appro-
priate conditions for the signs s(i; j), the distribution that arises from the non-commutative
central limit theorem is equal to the distribution of c¡1(f)2 (C�; ��), for some ¡1<�<1.
As we will see, a possibility is to interpolate stochastically, in the sense that, for every i;
j 2N, with i< j and s(i; j)2f¡1;1g, we choose in a probabilistic way if s(i; j)=1 or s(i;
j)=¡1.

We recall that s=(s(i; j))i;j=11 is said an infinite symmetric matrix if s(i; j)= s(j ; i)
and s(i; i)= 0, for all i; j 2N.

Lemma 5.3. Let S be the set of infinite symmetric matrices and let F be the �-algebra on
S, generated by the functions S 3 (s(k; l))k;l=11 = s 7! s(i; j), for i; j 2N. Moreover, let P

be a probability measure on (S ;F) such that for i> j, the random variables S 3s 7! s(i; j)
are independent, with probability distribution

P(fs2S j s(i; j)= 1g)= p; P(fs2S j s(i; j)=¡1g)= q := 1¡ p:

Then, for almost all s, we have for all n2N and all V 2P2(1; : : : ; 2n),

t(V )= (p¡ q)i(V ):

Proof. Let n be a positive integer and let V = f(e1; z1); : : : ; (en; zn)g2P2(1; : : : ; 2n) with
e1< � � � <en and ek<zk for all k= 1; : : : ; n. For N 2N, we define the random variables
XN:S!R, by demanding for all s2S that,

XN(s) :=
1
Nn

X
i(e1); : : : ;i(en)=1
i(ej)=/ i(em) for j=/m

N Y
(k;l)2I(V )

s(i(ek); i(el)):
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For i> j, the assumptions about the probability distriburion of S 3s 7! s(i; j) imply thatR
Ss(i; j)P(ds) = p¡ q. Therefore, using our assumption about the independence of the

random variables S 3 s 7! s(i; j) (i; j 2N; i > j), we have,

E[XN] = 1
Nn

X
i(e1); : : : ;i(en)=1
i(ej)=/ i(em) for j=/m

N Z
S

Y
(k;l)2I(V )

s(i(ek); i(el))P(ds)

= 1
Nn

X
i(e1); : : : ;i(en)=1
i(ej)=/ i(em) for j=/m

N Y
(k;l)2I(V )

Z
S
s(i(ek); i(el))P(ds)

= N(N ¡ 1): : :(N ¡n+1)
Nn (p¡ q)i(V )

!(p¡ q)i(V ); as N!1:

Hence, it suffices to show that lim
N!1

XN = lim
N!1

E[XN], for almost all s. We will prove the
strongest condition

lim
N!1

P
��

sup
M�N

jXM ¡E[XM]j ��
��

=0; for all �> 0:

For �> 0, we have

P
��

sup
M�N

jXM ¡E[XM]j ��
��

� P

 [
M=N

1 n
jXM ¡E[XM]j�

�
2

o!

�
X
M=N

1
P
�n
jXM ¡E[XM]j�

a

2

o�
� 4

a2

X
M=N

1

Var[XM];

where in the last inequality we used Chebyshev's inequality. Now, using the formula
Var[XM] =E[XM2 ]¡ (E[XM])2, we get

Var[XM] =
1

M2n

X
i(e1); : : : ;i(en)=1
i(ej)=/ i(em) for j=/m

M X
j(e1); : : : ;j(en)=1
j(ei)=/ j(em) for i=/m

M

�
(Z

S

Y
(k;l)2I(V )

s(i(ek); i(el))s(j(ek); j(el))P(ds)¡ (p¡ q)2i(V )
)
:

Let (i(e1); : : : ; i(en)) and (j(e1); : : : ; j(en)) be allowed indices. Since the random variables
S 3s 7! s(i; j) (i; j2N; i> j) are independent and s(k; l)2f¡1;1g, almost surely for k=/ l,
we get that the corresponding integral is equal to (p¡ q)r, for some r 2 f0; : : : ; 2i(V )g.
Therefore, it has finitely many possible values which does not depend on M: If r=2i(V ),
then such indices do not contribute to the sum. By the independence condition, r <2i(V )
only if there exist (k; l); (k�; l�)2 I(V ) (which may be equal) such that (i(ek); i(el))=(j(ek�);
j(el�)) or (i(ek); i(el)) = (j(el�); j(ek�)). The number of such (i(e1); : : : ; i(en)); (j(e1); : : : ;
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j(en)) is of order M2n¡2. Hence, from the above, we deduce that there exist C > 0 such
that Var[XM]�C /M2, which implies,

lim
N!1

P
��

sup
M�N

jXM ¡E[XM]j ��
��

� lim
N!1

4
�2

X
M=N

1
C

M2
=0;

because
P1
M=1

1

M2 <+1. �

The non-commutative distribution that arises from the non-commutative central limit
theorem under the additional assumptions t(V )= (p¡ q)i(V ) and �(a¡1a¡1)= �(a1a¡1)=
�(a1a1)=0, �(a¡1a1)=C (C �0), is exactly the non-commutative distribution of c¡(f)2
(C�; ��), in the case � = p ¡ q and f 2 L2(R) with kf k2 = C. Therefore, Lemma 5.4
shows that our stochastic interpolation gives that the non-commutative distribution of
c¡(f)2 (C�; ��) can be derived from a central limit theorem.

A possible choice of a �-probability space and of a sequence of non-commutative random
variables, such that the assumptions of Theorem 5.2 are satisfied, are the following: Consider

the �-probability space (A; �) =
 N1
j=1

M2(C);
N1
j=1

trw

!
, where for w 2 [0; 1], trw:M2(C)!

C is the state given by the density matrix W :=
�
w 0
0 1¡w

�
, i.e. trw(A) := tr(W � A).

We also consider the non-commutative random variables ai2
NN
j=1

M2(C)�
N1
j=1

M2(C), where

ai=12�2
 � � � 
 12�2
 a
i-th

 12�2
 � � � 
 12�2; with a=

�
0 1
0 0

�
and 12�2=

�
1 0
0 1

�
:

Because a �12�2=12�2 �a, a� �12�2=12�2 �a�, we have that aik and ajl commute for i=/ j, k;
l2f1; �g and it is also easy to note that � of naturally ordered products factorizes. Since
�(ai ai)= �(ai�ai)= �(ai�ai�)=0, �(ai ai�)=1, for w=1, Theorem 5.2 implies that the sum

N¡1/2(a1+ � � � + aN)2

 N1
j=1

M2(C);
N1
j=1

tr1

!
converges in distribution to c¡(f)2 (C1; �1),

for f 2L2(R) with kf k=1.

For the anti-commuting case, we can consider the non-commutative random variables

bi2

 N1
j=1

M2(C);
N1
j=1

trw

!
, where

bi=�3
 � � � 
�3
 a
i-th

 12�2
 � � � 
 12�2; with �3=

�
1 0
0 ¡1

�
.

Because a � �3=¡�3 � a, a� � �3=¡�3 � a�, we have that bik and bj
l anticommute for i=/ j

and k; l 2 f1; �g. Similarly with the above example, we have that � of naturally ordered
products factorizes and �(bi bi) = �(bi�bi) = �(bi�bi�) = 0, �(bi bi�) = 1, for w=1. Therefore,

Theorem 5.3 implies that the sum N¡1/2(b1+ � � � + bN)2

 N1
j=1

M2(C);
N1
j=1

tr1

!
converges

in distribution to c¡(f)2 (C¡1; �¡1), for f 2L2(R) with kf k=1.
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The Lemma 5.3 shows that if we interpolate stochastically, in the sense that we consider

ci2

 N1
j=1

M2(C);
N
j=1

1
tr1

!
, where

ci= c
 � � � 
 c
 a
 12�2
 � � � 
 12�2;

and we randomly choose c=12�2 with probability p or c=�3 with probability q := 1¡ p,

then we have that almost surely, the sum N¡1/2(c1+ � � � + cN) 2
 N1
j=1

M2(C);
N1
j=1

tr1

!
converges in distribution to c¡(f)2 (C�; ��), for f 2L2(R), with kf k=1 and �=(p¡ q)i(V ).

5.3 �-Gaussian and �-Poisson distribution

Now, we consider �2 (¡1; 1) and we want to find the probability measure �� on R (with
compact support) which characterizes the non-commutative distribution of c+(f)+c¡(f)2
(C�; ��), where f 2L2(R) with kf k=1.

Definition 5.4. Let (A; �) be a �-probability space. A self-adjoint random variable a2A
is called standard �-Gaussian variable if it's moments are of the form

�(ak)= ��[(c+(f)+ c¡(f))k] =

8>>>>>><>>>>>>:
0, if k is odd

P
V 2P2(1; : : : ;2n)

�i(V ); if k=2n:

Our attention concentrates on finding the measure �� which characterizes the non-
commutative distribution of standard �-Gaussian variables. We recall that in classical
probability theory, a standard Gaussian measure  can be characterized by the Hermite
polynomials Hk, where

Hk(x) := (¡1)kexp
�
x2

2

�
dk

dxk
exp
�
¡x

2

2

�
; k� 0:

For the sequence fHkgk=01 we have,Z
R
Hn(x)Hm(x)(dx)=n! �n;m; for all n;m� 0 (5.6)

and for n � 1 they satisfy the recurrence relations Hn+1(x) = xHn(x)¡ nHn¡1(x) [ . . . ].
Note that the relation stated in (5.6) allows us to compute explicitly all moments of .
Similarly, in order to find �� we will rely on �-analogues of Hermite polynomials.

Before we define �-Hermite polynomials, we first introduce some notation. For n 2
N[f0g we put

[n]� :=
1¡ �n
1¡ � =1+ �+ � � �+ �n¡1; for n> 0

and [0]� := 0: Then, we define the �-factorial

[n]� :=

8>><>>:
[1]�: : :[n]�; for n> 0

0; for n=0:
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We also define the �-binomial coefficient�
n
k

�
�
:=

[n]�!
[k]�! [n¡ k]�!

=
Y
i=1

n¡k
1¡ �k+i
1¡ �i :

The importance of the above definitions comes from the fact that for indeterminates x; y
such that xy= q y x, we have the �-binomial formula,

(x+ y)n=
X
k=0

n �
n
k

�
�
ykxn¡k; for all n2N: (5.7)

The equality stated in (5.7) can be easily verified by induction and by the easily checked
equality �

n
k

�
�
+ �k

�
n

k+1

�
�
=
�
n+1
k+1

�
�
:

Since bosonic relations are connected with the Gaussian distribution, taking into account
the �-binomial formula and the fact that the operators c¡(f); c+(g) (f ; g2L2(R)) satisfy
the generalized commutation relations, we define �-Hermite polynomials in a similar way.

Definition 5.5. For �2 (¡1; 1), we define the �-Hermite polynomials
�
Hn
(�)	

n=0
1 to be

the one variable polynomials which are determined by

H0
(�)(x)=1; H1

(�)(x)=x;

and

Hn+1
(�) (x)=xHn

(�)(x)¡ [n]�Hn¡1
(�) (x); for all n� 1: (5.8)

As we will see, similarly with the classical case, the �-Hermite polynomials
�
Hn
(�)	

n=0
1

are orthogonal elements of L2(��).

Remark 5.6. For the fermionic case (�=¡1) where it is valid

�¡1(dx)=
1
2
(�¡1(dx)+ �1(dx));

we see that the corresponding sequence of (¡1)-Hermite polynomials is essentialy finite,

H0
(¡1)(x)=1 and H1

(¡1)(x)=x:

Lemma 5.7. Let f 2L2(R) with kf k=1. Then, for all n� 0 we have,

Hn
(�)(c+(f)+ c¡(f))
= f
n:

Proof. We will show the claim by induction on n2N. For n= 0; 1 we have nothing to
prove. Let n� 2 and we assume that the assertion holds for every k <n. Since kf k=1,
by the definition of c¡(f) we have c¡(f)f
m=[m]�f
(m¡1) for every m2N. Hence, our
induction hypothesis and the relations (5.8) imply that

Hn
(�)(c+(f)+ c¡(f))
 = (c+(f)+ c¡(f))f
(n¡1)¡ [n¡ 1]�f
(n¡2)

= f
n+ c¡(f)f
(n¡1)¡ [n¡ 1]�f
(n¡2)

= f
n:
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Therefore, the assertion holds. �

Let f 2L2(R) with kf k=1. Then, the previous lemma implies that for the self-adjoint
operator x= c+(f)+ c¡(f) we have,

��
¡
Hn
(�)(x)Hm

(�)(x)
�
=



;Hn

(�)(x)Hm
(�)(x)


�
� =



Hn
(�)(x)
; Hm

(�)(x)

�
�

= hf
n; f
mi�
= [n]�! �n;m;

which implies that Z
R
Hn
(�)(t)Hm

(�)(t)��(dt)= [n]�! �n;m:

Therefore, by the above formula, the moments of �� can be calculated and it arises [...]
that �� is the measure on the interval [¡2/ 1¡ �

p
; 2/ 1¡ �

p
] given by

��(dt)=
1¡ �

p

p
sin�

Y
n=1

1

(1¡ �n)j1¡ �ne2i� j2dt;

where

t= 2
1¡ �

p cos� with �2 [0; p]:

In the first section we saw that the sum of the one-sided shift operator on l2(N[f0g) with
it's adjoint gives a standard semicircular variable (i.e. a standard 0-Gaussian variable).
More generally, we can obtain standard �-Gaussian variables by considering the sum
of a weighted shift operator on l2(N[ f0g) with it's adjoint. If fengn�0 is the standard
orthonormal basis on l2(N[f0g), the weighted shift operator S� is determined by

S�en= [n+1]�
p

en+1 (n� 0):

The adjoint operator S�� of S� is determined by

S�
�en=

8>><>>:
[n]�

p
en¡1; for n� 1

0; for n=0:

The operator S� is a bounded operator with norm

kS�k=
1
1¡ �

p ; for �2 [0; 1) and kS�k=1; for �2 (¡1; 0]:

Moreover, the operators S�; S�� satisfy the generalized commutation relations, i.e. we have
S�
�S�¡ �S�S��=1.

Lemma 5.8. The operator S�+ S�
� 2B(l2(N[ f0g)) is a standard �-Gaussian variable

with respect to the vacuum state �0(�)= he0; �e0il2.

Proof. First, we will show that for all n� 0 we have,

Hn
(�)(S�+S��)e0= [n]�!

p
en:
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For n=0; 1 we have nothing to prove. Let n� 2 and we assume that the claim holds for
all k <n. Then, our induction hypothesis and the relations (5.8) imply that,

Hn
(�)(S�+S��)en = [n¡ 1]�!

p
(S�+S��)en¡1¡ [n¡ 1]� [n¡ 2]�!

p
en¡2

= [n¡ 1]�!
p

[n]�
p

en+ [n¡ 1]�
p

[n¡ 1]�!
p

en¡2

¡[n¡ 1]� [n¡ 2]�!
p

en¡2

= [n]�!
p

en:

Therefore, for the self-adjoint operator x=S�+S�� we have,

�0
¡
Hn
(�)(x)Hm

(�)(x)
�
=


e0; Hn

(�)(x)Hm
(�)(x)e0

�
l2 =



Hn
(�)(x)e0; Hm

(�)(x)e0
�
l2

= [n]�!
p

[m]�!
p

hen; emil2
= [n]�! �n;m:

Hence, the assertion holds. �

We saw that the �-Gaussian distribution �� can be characterized as the orthogonalizing
probability measure for the sequence of �-Hermite polynomials. We recall that the classical
Poisson distribution is the orthogonalizing probability measure for the sequence of Charlier-
Poisson polynomials [ . . . ]. Inspired by that, we can define the �-Poisson distribution.

For �2 (¡1;1) and �>0 we define the �-analogues of the Charlier-Poisson polynomials,

as the polynomials Cn
(�) (n2N[f0g), determined by

C0
(�)(x)=1; C1

(�)(x)=x¡�

and

Cn+1
(�) (x)= (x¡�¡ [n]�)Cn

(�)(x)¡�[n]�Cn¡1
(�) (x); for all n� 1: (5.9)

Definition 5.9. Let � 2 (¡1; 1) and � > 0. We define the �-Poisson distribution with
parameter �, as the probability measure �;� on R, determined by the relationsZ

R
Cn
(�)(x)Cm

(�)(x)�;�(dx)=�n[n]�! �n;m:

The existence of such a probability measure emerges from Favard's theorem. Similarly
with the Gaussian case, a self-adjoint random variable a of a �-probability space (A; �) will
be said a �-Poisson variable with parameter �> 0, if it's non-commutative distribution is
characterized by the �-Poisson distribution �;�, in the sense that

�(ak)=
Z
R
tk�;�(dt); for all k 2N:

In the free case (�=0), we saw that for f 2L2(R) with kf k=1, the self-adjoint operator
l+(f)l¡(f)+ �

p
(l+(f)+ l¡(f))+� �1 is a free Poisson variable with parameter �>0, with

respect to the vacuum state. Therefore, that's a similar situation with the bosonic case,
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where a non-commuatative realization of the classical Poisson distribution with parameter
� can be given by considering the operator a+(f)a¡(f)+ �

p
(a+(f)+ a¡(f))+� � 1 [ . . . ].

We recall that a+(f) and a¡(f) stand for the bosonic creation operator and the bosonic
annihilation operator, respectively. In the same way we will give the operator on the �-
Fock space of L2(R) which is a �-Poisson variable with parameter �, with respect to the
vacuum state ��.

Theorem 5.10. Let f 2L2(R) with kf k=1 and let � be a positive number. Then, the self-
sdjoint operator c+(f)c¡(f) + �

p
(c+(f) + c¡(f)) + � � 12B(F�(L2(R))) is a �-Poisson

variable with parameter �, with respect to ��.

Proof. Let x= c+(f)c¡(f)+ �
p

(c+(f)+ c¡(f))+� � 1. First, we will show that

Cn
(�)(x)
= �n

p
f
n; for all n� 0: (5.10)

For n=0; 1 we have nothing to prove. Let n� 2 and we assume that the equality stated
in (5.10) holds for all k <n. By the definition of c+(f); c¡(f) we have,

c+(f)f
m= f
(m+1); c¡(f)f
m= [m]�f
(m¡1) and c+(f)c¡(f)f
m= [m]�f
m;

for all m2N. Then, our induction hypothesis and the relations (5.9) imply that

Cn
(�)(x)
 = (x¡ (�+ [n¡ 1]�) � 1)Cn¡1

(�) (x)
¡�[n¡ 1]�Cn¡2
(�) (x)


= �n¡1
p

xf
(n¡1)¡ (�+ [n¡ 1]�) �n¡1
p

f
(n¡1)¡�[n¡ 1]� �n¡2
p

f
(n¡2)

= �n¡1
p

[n¡ 1]� f
(n¡1)+ �n
p

f
n+ �n
p

[n¡ 1]� f
(n¡2)+� �n¡1
p

f
(n¡1)

¡� �n¡1
p

f
(n¡1)¡ �n¡1
p

[n¡ 1]� f
(n¡1)¡ �n
p

[n¡ 1]� f
(n¡2)

= �n
p

f
n:

Hence, we have,

��
¡
Cn
(�)(x)Cm

(�)(x)
�
=



; Cn

(�)(x)Cm
(�)(x)


�
� =



Cn
(�)(x)
; Cm

(�)(x)

�
�

= �n+m
p

hf
n; f
mi�
= �n[n]�! �n;m:

Therefore, we deduce that the assertion holds. �

Since for �=0 we have c+(f)= l+(f) and c¡(f)= l¡(f), we see that the polynomials�
Cn
(0)	

n=0
1 are the orthogonal polynomials for the free Poisson distribution.

In the same way, using an induction argument, we can show that the self-adjoint
operator S�S��+ �

p
(S�+S��)+� �12B(l2(N[f0g)) is a �-Poisson variable with parameter

�, with respect to the vacuum state �0.
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Remark 5.11. For the fermionic case (�=¡1) we regard the fermionic Fock space as the
(¡1)-Fock space because, as we saw, for �=¡1, we get a kernel of our scalar product h�; �i�
consisting of antisymmetric tensors. In this case we can consider the self-adjoint operator
b+(f)b¡(f)+ �

p
(b+(f)+ b¡(f))+� � 1 (kf k=1; �> 0) as the fermionic Poisson variable

with parameter �. We recall that b+(f) and b¡(f) stand for the fermionic creation operator
and the fermionic annihilation operator, respectively. Then, for

�=
2�� 1+ 4�+1

p

2
; m�=

1
2
� 1
2 4�+1
p ;

the probability measure ¡1;�(dt) :=m+�¡(dt)+m¡�+(dt) is the fermionic Poisson dis-
tribution, i.e. we have,

�^[(b+(f)b¡(f)+ �
p

b+(f)+ �
p

b¡(f)+� � 1)k] =
Z
R
tk ¡1;�(dt); for all k 2N:

As a consequence, the corresponding orthogonal polynomials are given by,

C0
(¡1)(x)=1; C1

(¡1)(x)=x¡� and C2
(¡1)(x)=x2¡ (2�+1)x+�2:

5.4 Invariance principle

In subsection 5.2, using our stochastic interpolation, we saw that the non-commutative
distribution of c¡(f)2 (C�; ��) (f 2L2(R);¡1<�<1) can be derived from a central limit
theorem. Now we are interested in the generalization of Theorem 5.2 to an invariance
principle which will lead us to the whole non-commutative process (C�; ��; (cI¡1; cI1)I2R). In
order to obtain this generalization, we will mimic in the non-commutative framework, the
standard procedure from Donsker's theorem, which allows a passage from classical random
walk to classical Brownian motion. To be more precise, let (A; �) be a �-probability space
and let (ai)i2N be a sequence of non-commutative random variables which satisfy the
assumptions of Theorem 5.2. In this context, for N 2N and I = [s; t)�R we define,

SI
(N) := 1

N
p

X
i=[N �s]+1

[N �t]
ai : (5.11)

For x2R, we denote by [x] the largest integer which is less or equal than x. For notation
homogeneity, for every N 2N and I = [s; t)�R, we define

SI
(N);¡1 :=SI

(N) and SI
(N);1 :=

¡
SI
(N)��:

Then for i=¡1;1 and N 2N, the definition of SI
(N);i extends to I 2R, in such a way that

the mapping R3 I 7!
¡
SI
(N);¡1

; SI
(N);1� is finitely additive.

Using our stochastic interpolation, we will show that the non-commutative stochastic
process

¡
A; �;

¡
SI
(N);¡1

; SI
(N);1�

I2R
�
almost surely converges in distribution to the non-

commutative stochastic process (C�; ��; (cI¡1; cI1)I2R), as N!1.
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Theorem 5.12. Let S be the set of infinite symmetric matrices (s(i; j))i;j=11 and let F be
the �-algebra on S generated by S 3 (s(k; l))k;l=11 = s 7! s(i; j), for i; j 2N. Moreover, let
P be a probability measure on (S ;F) such that for i> j, the random variables S 3s 7! s(i;
j) are independent, with probability distribution

P(fs2S j s(i; j)= 1g)= p; P(fs2S j s(i; j)=¡1g)= q := 1¡ p:

Let (A; �) be a �-probability space and for every s= (s(i; j))i;j=11 2S with s(i; j)2 f¡1;
1g, consider a sequence of non-commutative random variables (ai)i2N such that we have
for all i; j 2N with i=/ j and all k; l2f¡1; 1g,

ai
kaj

l = s(i; j)ajl aik

and such that � of naturally ordered products factorizes. Assume further that for all i2N,
we have

(�(ai); �(ai�))= (0; 0);
�
�(aiai) �(aiai�)
�(ai�ai) �(ai�ai�)

�
=
�
0 1
0 0

�
:

Then for almost all (s(i; j))i;j=11 , we have for all r 2N, I1; : : : ; Ir 2 R and k(1); : : : ;
k(r)2f¡1; 1g,

lim
N!1

�
¡
SI1
(N);k(1)

: : :SIr
(N);k(r)�= ��

¡
cI1
k(1)

: : :cIr
k(r)�

;

where � := p¡ q.

Proof. We will only sketch the proof since in order to prove this theorem we just have
to use similar arguments as in the proofs of Theorem 5.2 and of Lemma 5.3. Let r 2N,
I1; : : : ; Ir2R and k(1); : : : ; k(r)2f¡1; 1g. Without loss of generality, we can assume that
for i=/ j we have Ii= Ij or Ii\ Ij= ; and that every interval Ii has the form Ii= [si; ti).
This is so because for every N 2N the maps I 7!

¡
SI
(N);¡1

; SI
(N);1� and I 7! (cI

¡1; cI
1) are

finitely additive. We have to calculate the following expression, as N!1:

MN := �
¡
SI1
(N);k(1)

: : :SIr
(N);k(r)�

= 1
N r/2

X
i(1)=[N �s1]+1

[N �t1]

: : :
X

i(r)=[N �sr]+1

[N �tr]

�
¡
ai(1)
k(1)

: : :ai(r)
k(r)�

:

=
X

V 2P (1; : : : ;r)

1
N r/2

X
(i(1); : : : ;i(r))2A1�� � ��Ar

ker(i)=V

�
¡
ai(1)
k(1)

: : :ai(r)
k(r)�

;

where Ai := f[N � si] + 1; [N � si] + 2; : : : ; [N � ti]g for all i= 1; : : : ; r. We consider the last
sum separateley, for all V 2P (1; : : : ; r) and we use the same arguments as in the proof of
Theorem 5.2. Then, for r odd we have that MN is equal to zero, as N!1. Moreover, for
r=2n, only the partitions V = f(e1; z1); : : : ; (en; zn)g2P2(1; : : : ;2n) contribute to the sum,
as N!1. Since the allowed indices (i(1); : : : ; i(r)) belong to a more complicated domain,
using the same arguments as in Lemma 5.3, we can see that for V = f(e1; z1); : : : ; (en;
zn)g2P2(1;:::;2n), the analogue of t(V ) is now equal to (p¡ q)i(V )�(Ie1\Iz1):::�(Ien\Izn),
almost surely. Therefore, the assertion holds. �
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