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Facets of stochastic quantisation
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done

- euclidean quantum fields
- what is stochastic quantisation?
- varieties of stochastic quantisation

todo

- infinite volume limit (L - o)

- renormalization and small scale limit (¢ > 0)

- properties of stochastically quantised measures

- elliptic stochastic quantisation (?) & supersymmetry

reference material

https://www.iam.uni-bonn.de/abteilung-gubinelli/sq-lectures-milan-ws2021



coupling to the GFF

we work on A, =Z¢,. The solution X: Ry, > R"* to

4X,(0) = -(AX) ()t -V (X))t + 2B x)  xeNe,

with A=m?-A (discrete Laplacian) leaves the measure

vel(dp)=2e = Ot dg),  V(E)=AE" - Beg”
invariant. Here (B(x))eo<n,, are iid BM and p“" is the GFF (i.e. //7(0,A™)).
Let Y be the solution of the linear equation (dynamic GFF):
dY,=-AY,dt+2"%dB,
with invariant measure p®". Define Z=X-Y which solves a RDE:

dz ,
7 = AZ Vi (Y Z2).



dZ;
dt -

V() =Ap’-Bop

=-AZ,-V.(Y;+Z)

test this equation with Z:

2dtz 1200 |+ G(Zy) -AZ (Yi(X)°Ze(0) + 3%(X)°Zi(X) + 3%,(x)Z,(x)°)

B (ZX)Vi(x)+ Z(x)?)
where
G(@)= |V | 2em | @l2+A] @]

with the natural Lebesgue spaces on A=A,y (with counting measure).



the key property being that in the r.h.s. we have all terms which we can bound via
Holder inequality as

d
gz | Zi(x) | 2+ G(Z) s Co[ | Vel Lo+ | Vel 2] + 6G(Zy),
for 6>0 small as we wish, e.g. 6=1/2. We conclude that

1t t
|27+ [ 6@)ds< 1201+ [ LIYel e 1D . )

This bound implies that solutions cannot explode and we have an explicit bound
on its growth in term of Y and Z,.

However we do not know Z,... how to close the argument???




stationary coupling

>one possible approach: construct a stationary coupling of Y and Z via Krylov-
Bogoliubov argument.

>we can construct a measure y; on a pair of fields (¢, w)¢R"x R" by the formula

1 T
[ fo.w)dvi0,0)=7 [ Elf(Y. Z)lds,
for any bounded function f of the pair (¢, )¢ R"xR" where (Y, Z2) are started from

Uxv.
> note also that

[ fo+wavio.w)=7 [ Elftv. +2)1ds =1 [ Elf0x)ds=Elfxo)] = [ fiw)v(dp)

therefore the law of ¢ + @ under y; is always given by v for any T and also

[ Fo)avsto,w)=7 [ IRV lds=Elf(Y)] = [ fp)u(ds)



>we have that

107 2
[16w)+ 1o 181dvito,w)=1 [ El6@) + 1%l idds< 3 (Elzo |2 e [ Eva] tas),
2
<(FEIZo 1% ) +2CE NI,

which is uniformly bounded in T.

>this implies that the family (y;); is tight on R"x R" and one can extract a weakly
convergent subsequence to a limit y.

>as a consequence the law of ¢+ under y is v.

>the measure y is stationary under the joint dynamics of (Z,Y), i.e. if (Zo,Y,) ~y then
(Ztr Yt)~y



infinite volume limit at fixed €>0

what happens when we want to take the limit M - co?
modify our apriori estimate introducing a polynomial weight p:A=(£2)? > R

p(x)=(1+€|x|)°,  0>0,£>0,

and test the equation for Z with p>Z summing over the full lattice A and we get

2 dtz | p(x)Z:(x) | *+G(Z) ‘AZ P(X)(Ye(X)>Z4(x) + 3Yy(x)2Z4(x)? + 3Y,(X) Z,(X)*)

Xxeg Xxelg

B pONZ)Yi(X) +Z(xX)D) + Cop Y P(OZ(X)?

Xxel\g XeN

G(p)= | PV | Tpy+ m* | p@ | Eay + Al P20 | o,



weighted estimates

we have
d
dat | pZ:| zZ(/\g) +G(Z) < Gs | P”zYt I L[‘*(/\g) +6G(Z,)

indeed the interaction terms can be estimated as

A (PO 0% (p(x)2Z(x))

Xeg

D p)Y(x)Zi(0)| <

xelg

<7\— |02V i+ A1 p"2Z: | <7\— |2Vl i+ 66(2,)

for any small 6>0.

1t t
| pZ: | 220 +§f0 G(Zs)ds< | pZo || Exny + Cfo | 0"V, | Li(nds




tightness

use the stationary coupling:

E | pZ:|| 0 = E | pZo || 0y

SO

1t 2C (¢t
EG(Z)= ?.[0 [EG(Zs)dss Tfo E|p"?Y,| fends=E | 0" |l funy

Elp"Yollw=EY  p(? 1 Yo(x) = pOO’E| Yo(x) [*=CY_ p(x)*<oo

XeNg XeNg XeNg
uniformly in L. Namely from this estimate one can deduce that
sup [ 107, v (dep) <o
L
This is a key estimate to take the infinite volume limit since it allows to use tight-

ness on the family (v©"), in the topology of local convergence.
It gives also a stationary infinite volume limit coupling to the GFF.



bounds

> the local (or weighted) LP(A,) norms of ¢: R" - R under the measure v&" have
finite moments:

sup [ 1| v (dp)<eo
for any p>1.

> by working a bit harder one can prove uniform integrability of functions like
exp(| pw| ). (see Gubinelli-Hofmanova CMP 2021)

> another approach is to use the “coming down from infinity” to remove depen-
dence on the initial condition (see Mourrat-Weber CMP 2017, Gubinelli-Hofmanova
CMP 2020, Moinat-Weber CPAM 2020)



coming down from infinity (in one slide)

consider the ODE:
d
—(®) =y (0 +£(t)

take p(t)=t“ with a>0. If t,>0 is a maximum point of p(t)y(t) for te[0, T| then:

SPOVO]  =FpeI(t)-p(EIye)+p(LIfE) 20

that is
)2/3

(e y(e)F <22 ey oy (e it

take a=3/2 so that

sup [o(t)"y(t)] =p<t*>”3y<t*>sc{1 + sup [p(t)f(t)]”3} > y(t)<Crrt 2

t[0,T] te[0,T]

independently of y(0). Extendable to parabolic PDEs (maximum principle).



optimal bounds: Hairer/Steele argument

>we want to bound Z,= [ e"“v&(dyp) for some nice function H(¢p)=0.
> the idea of Hairer/Steele (slightly revisited here) is to consider the new measure

H(p), &L H(p)-Ve(p)
H — e v (d(p) _ e &L
pldg)=——7 — =77 (dp)

and observe that by Jensen's:

1= | MOy i dp) =2, | € " VpH(dp) > Zeexp - Hp)o"(d))
SO

logZy< f H(p)p"(dep).

>the SQ of p" can be used as before to obtain bounds which depends only on the
GFF provided (e.g.)

<Q(p)+6G(p), |HWw+)| <Q(y)+G(p)

> ppH (y+o)
A\

G(©)= | V@ 2ny+ M* | o0 [ Eony + Al 0" 2@ || n-



> shifted SQ equation

dZ:

W=_Azt_vel(yt+zt)+HI(Yt+Zt)

> bounds

d
dat | pZ: | EZ(/\g) +G(Z) <G| P”zYt I L[‘*(/\Q +Q(Y) +26G(Z,)

> use stationary coupling

2C ('t

’I t
EG(Z)=7 | EG(Z)ds<

E{ p"2Ys |l Ly + Q(Ye) ds = E{ | p"2Yo || £eny + Q(Yo))

therefore

~["’(()f’)PILI(d(P) =E[H(Xo)]=E[H(Yo+Zo)] s C[E{]| P”ZYO I L[‘*(/\) +Q(Yo)}] < 0.

example: H(@)=n| pw|: for n>0 small gives the optimal bound

sup fe” leeliayel(dgp) < co.
L




uniqueness

what about uniqueness of the accumulation points?

> using essentially a similar approach one can prove that provided

Ve (@) 2-x,

for some x>0 then for m large enough (depending on x) we have also uniqueness
of the limit measure v*.

> this is natural because we do not expect in general that the limit is unique (there
could be phase transitions in the model, in d=2 since it is a model of ferromagnetic
unbounded spin).

>the idea to prove uniquess is to compare two solutions Z',Z* driven by two Gaus-
sian processes Y',Y? and use a coupling approach.

>the same idea can be used to control correlations.



coupling of two solutions

>let (Z',Y") and (2%, Y?) be two solutions of the shifted SQ equation. then H=2"-Z7?
solves

1
dH-AH=Q:=-[V'(X")-V'(X'+ H+K)] f ATV X+ T(H+ K))(H +K)

=5

with K:=Y'-Y?and X'=Y"+Z" as usual. assume that V''(¢) = -x for some x>0.

> test the equation with p?H for some weight p. RHS:

) P°HQ=) p’GKH-) p*GH’<CslpGKIL+6lpHIE-)  p*GH
A A A A
2x | pH 2

<Cs | pGK 2+ (x+6) | pH I :



> consider

ct

e
_at(eCt IpHIE)=3 ~(e“|pHI%)+ S0l pHI L

s—e“Z p*H (mZ—ZX—g—A> H+e“C | pGK]|z.
A

01xl we have

Zp H(-A)Hz> ZZP | ViH | ?- CQZZP [H|%.

A

>for p(x)=e

> putting all together:

22 IpH 1) re(m 2x-5C8) ) pH e ZZZp |H |

20

<e“C | pG (OK(1) | &
~Q(1)




> integrating

t
pH | 2<e | pHolE+2 [ et |pG (s)K(s) | 2ds
>from which one can deduce bounds of the form

EllpH, |:<eE | pHo|7:+C ) p2(0)(EK(x))"

XeN\

e.g. when K=Y"'-Y? is stationary.

> many informations:

- by coupling two different invariant measures via a common dynamics (K=0) one
can show that the two measures are equal. This gives uniqueness.

- one can use noises which coincide in a bounded region Q) to drive two different
dynamics, e.g. started from the same invariant measure. in this case K=0 in Q
and this shows that the two solutions X' and X* are near inside Q' <Q.

- one can modify this setup to obtain decay of correlations in SQ (work in pro-
gress with Hofmanova and Rana)



features of stochastic quantisation

the interacting field X is expressed as a function of the (dynamic) Gaussian free field
Y:

X(t)=F(Y), v=Law(X(t))=F.Law(Y)=F.GFF

- estimates on X obtained via two ingredients:
o pathwise PDE (weigthed) estimates for the map F
o probabilistic estimates for the GFF Y

- coupling (X,Y)

X=Y+Z

where Z is a random field which is more regular (i.e. smaller at small scale) than
Y (link with asymptotic freedom/perturbation theory)



...end of lecture 2



