Elements of Mathematical Quantum Mechanics
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Lecture 1 [April 24rd 2024]

Ideal Plan

1. Introduction to quantum mechanics (Strocchi)

a.

b.

€.

Motivation for quantum mechanics
Axioms (C* algebras, GNS representation, Hilbert space setting)

Heisenberg group and its representation, Von Neumann theorem, Schrédinger representa-
tion

Dynamics and the Hamiltonian (time ¢t €R) H self-adjoint operator (matrix) Unitary trans-
formation on an Hilbert space U (t) = e™. U(t)U(s)=U(t+s). H=0.

Examples: harmonic oscillator, particle in a potential

2. Euclidean quantum mechanics (t — -it = 7 imaginary time) = Probability ('70-'80)
Nelson/Symanzik/...

a.

Wick rotation (t — —it = r imaginary time) and Feynmann—Kac's formula, Wiener measure
and connection with free particles.

U(t)—e "
Eucledian axioms (with reflection positivity) and reconstruction theorem
Nelson's positivity, uniqueness of ground state and stochastic processes
Particle in a potential and symmetric-stationary measure of SDEs with additive noise
Semiclassical limit (A — 0) and asymptotic expansion

Introduction to Euclidean quantum field theory. (special relativity)

The Stern—Gerlach experiment

(1922)

1. Oven. 2. Beam of atoms out of it. 3. Magnet (create a magnetic field) 5. Actual result. 4. Prediction
of classical mechanics.

Result:
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Quantization of spin. Mejectron=+M. Even weirder:
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We measure twice z and all the atoms go in the + direction.
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We measure Z and then X and the atoms go in the + direction the 50% of the times.
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This is a manifestation of quantum mechanical interference effects.
A mathematical model for a measurement process
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We have two basic players in this game: observables and states.

Observables. An observable is a physical quantity which we can measure (e.g. components of magnetic
moment, position, speed/momentum, energy). Connected with some measuring apparatus which has a
scale where you read a real number. We write O for the set of all observables. Given an observable A€ 0
more observables can be constructed from A by elementary procedures (i.e. relabeling the scale of the
apparatus) E.g. AA,A"€0 A€R. A"A™=A™"". In general we could imagine to define in a similar way f(A)
for any f:R—R. An observable is positive if gives only positive results, in symbols we can reformulate
this property as A>0<=3B€ O: A = B? (there with = we just mean that operationally the two observables
A and B? gives the same values).



States. We imagine that a certain physical object under study can be prepared in such a way that it is
meaningful to speak about repeated experiments on the same entity. This entity is the state w € § of
the system under consideration. E.g. the state of the atoms in the Stern—Gerlach experiment beam, the
state of a particle in motion in a particle accellerator. (And what about “the state of world”?) There is a
relation between measurements on states and values of observables and it is “statistical” in the sense that
w(A) =(w, A) €ER represent the measuring of A on the state w, has to be considered as an average over
“experiences”. Operationally we measure an observable A in a given state « by perfoming a sequence of
repeated experiments and taking the average

n
- lim 2 (i)
©(A) = lim Z my,) (A),
EUD(A) is the i-th measurament of A in the state w. A state is a map w: ©— R understood as
all the values it takes on every possible observable w={w(A): A€ O}.

where each m

You know that different states exists because when we measure an observable we get different numbers:
w(A) =0 (A),VAEO = w=w.
You know that two observables are different because there is a state where they give different values:
w(A)=w(B),Yw€S = A=B.
With respect to the operations we defined on observable we obtain the followin relations:
w(AA) =Aw(A), W(A"+A™) = (A" + w(A™).
o(A)=1=A=1,0(1)=1.
w(A+B)=w(A)+w(B) w€S
Functions of an observable:

o(f(A)) = lim =3 f(mi) (),
i=1

An observable is positive iff its value on any state is positive:
Az0= A=B*=Vo:0(A)=w(B?) =0.
States form a convex set: wy, w, then for A€[0,1] (for positivity and normalization):
w(A)=Aw1(A) + (1-1)w:(A)
and [I think] this forbids to have (exercise)
w(AB)=w(A)w(B).

We introduce a norm on O which measure the size of an observable A€ O via the largest possible value
of a state on it:

IAll = sup(A)]

wES

[AA]=AlIAL, - Al=0= A=0.



We have also (in the notes)
1A%]= LAIP.
The states induce a linear structure over O: we can define a new observable C by doing
w(C)=w(A) +w(B),
for given A,B€E 0. We can extend O to a linear space and
A+ Bl < [IAll + IBI.

The observables form a (pre-)Banach space.

The observables form a Jordan algebra:
AoB:%[(A+B)2—A2—BZ].

At this point we make a leap (of faith) and assume that O are the self-adjoint elements of a C*-algebra &/
over C. [WHY??? I do not know] and

AoB:%, A,BEO.

Crucial techinical assumption. O < & where  is a (non-commutative) algebra over C with involu-
tion A+— A" and such that the following properties are true

(AA+pBB)' =AA"+fB, (AB)'=BA’
VAEA, A'A20, w(AA)=0 wES

IAB|:=suplw(AB)|<[IAllIB].  IA°All=[lAlllA".

WES

/Mathematical model for a physical system.

A physical system is the given of observables and states,
« Observables form a C*-algebra of with unity.
« States & are normalized positive linear functionals on &/. We assume the set of states to be full

(i.e. it separates the observables). Moreover observables should separate states (but this is by
definition). Usually & is only a subset of all the positive linear functionals. D

-

Example. Classical mechanical system (g, p) €' T"R"~ R" x R" where q is position and p momentum.
The set of observables are the (continuous) functions & = C(I',C) f*(q,p) =f (g, p). The states are (a subset
of) the probability measures on I':

o(f)= [ f(a.p)odgxdp).

If1l=suplw(f)I.

WES



The algebra o/ is Abelian or commutative: AB=BA.

In classical physics one assume that states of the form w=§4,p, are possible, these states are charac-
terised by the fact that the dispersion (which can be operationally realized)

Ao(f) =[o(f*-w(f)H)]"*20,

is zero for all f.
C*-algebras

References:
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Definition 1. A C'-algebra o is an associative algebra over C which is endowed with the following addi-
tional structures: a norm ||| for which & is complete and which satisfy |labl < |lall||bll for all a,b€ o and an
antilinear involution =: of — &f for which (ab) = b*a’. These structures satisfy the following compatibility
condition (C* condition)

* 2
lla“all =|lall, a€d.

Example 2. The algebra of all continuous complex-valued functions C(X) on a compact space topolog-
ical Hausdorff space X wrt. the pointwise product and endowed with the supremum norm

Ifli=suplf (x),  feC(X)

x€X

is a C'-algebra which is commutative or Abelian.

Example 3. Let # be an Hilbert space. The set of all bounded linear operators £ (#) on # together
with the operator norm

1Al=sup 22 4e ),

e ol

and the involution given by the adjuction wrt. the scalar product of #’, is a C* algebra, indeed by the
property of the Hilbert space norm we have

AAll= sup [|[A"Agll= sup (Y,A"Ap)= sup (Ay,Ap)<|Al’
llpl=1 lol=lyl=1 lol=lgl=1
and

IAI? = sup [|Agl* = sup (Ap, Ap) = sup (p, A"Ap) < || A"Al.
llpll=1 llpll=1 llpll=1

Any norm-closed subalgebra & of & (%) which is self-adjoint, i.e. 9% =3B" is a concrete C*-algebra. For
example, the compact operators form such a subalgebra or the C*-algebra C(T) generated by a single
bounded self-adjoint operator T, i.e. the closure of all the polynomials in T, T, I.



Example 4. The subalgebra C*(a) € o generated by a€ & and the unity is a C*-algebra with the restiction
of the norm and the involutions of &/. The Banach algebra generated by a set of elements ay,..., a, is just
the closure of all the polynomials in ay,..., a, and in their adjoints.

We call a self-adjoint iff a=a’, a is normal if aa”=a"a. Any a can be decomposed into a=b+ic with b, ¢
self-adjoint. If a is normal then C’(a) is Abelian (i.e. commutative).

Keep in mind that, for us, the observables of a physical system will be self-adjoints elements of an (abstract)
C* algebra.

Definition 5. A Banach algebra 9 is a Banach space with a product such that |lab| < |lal ||b]|.

In any (unital) Banach algebra 9 we can define the spectrum o(a) = og(a) of an element a€ % to be the
set of A€C for which (A- a) is not invertible in 9. The complement of the spectrum is called the resolvent
set and

R()=(A-a)!

is the resolvent function.

Theorem 6. For any a€ 9B, the spectrum o(a) is a non-empty compact set and the resolvent function is
analytic in C\o(a).

Proposition 7. (Spectral radius formula) For any a€ 9 we have

p(a):= sup |A|= lim ||a"'"<|al
A€o (a) n—eo

with equality in case of a normal element of a C’-algebra.

In the C* case we have

212 - P x 12 4
lal*=lla’a’aall=llaa’a all =la"all” = |all*.




