Elements of Mathematical Quantum Mechanics

Massimiliano Gubinelli · TCC course · Oxford, Hilary 2024

Lecture 1 [April 24rd 2024]

Ideal Plan

- 1. Introduction to quantum mechanics (Strocchi)
 - a. Motivation for quantum mechanics
 - b. Axioms (C* algebras, GNS representation, Hilbert space setting)
 - c. Heisenberg group and its representation, Von Neumann theorem, Schrödinger representation
 - d. Dynamics and the Hamiltonian (time $t \in \mathbb{R}$) *H* self-adjoint operator (matrix) Unitary transformation on an Hilbert space $U(t) = e^{iHt}$. U(t)U(s) = U(t+s). $H \ge 0$.
 - e. Examples: harmonic oscillator, particle in a potential
- 2. Euclidean quantum mechanics $(t \rightarrow -it = \tau \text{ imaginary time}) \Rightarrow$ Probability ('70-'80) Nelson/Symanzik/...
 - a. Wick rotation ($t \rightarrow -it = \tau$ imaginary time) and Feynmann–Kac's formula, Wiener measure and connection with free particles.

$$U(t) \rightarrow e^{-Ht}$$

- b. Eucledian axioms (with *reflection positivity*) and reconstruction theorem
- c. Nelson's positivity, uniqueness of ground state and stochastic processes
- d. Particle in a potential and symmetric-stationary measure of SDEs with additive noise
- e. Semiclassical limit $(\hbar \rightarrow 0)$ and asymptotic expansion
- f. Introduction to Euclidean quantum field theory. (special relativity)

The Stern-Gerlach experiment

(1922)

1. Oven. 2. Beam of atoms out of it. 3. Magnet (create a magnetic field) 5. Actual result. 4. Prediction of classical mechanics.

Result:

Quantization of spin. $m_{\text{electron}} = \pm M$. Even weirder:

We measure twice \hat{z} and all the atoms go in the + direction.

We measure \hat{z} and then \hat{x} and the atoms go in the + direction the 50% of the times.

Now 50%/50%!

50%/50%!

This is a manifestation of quantum mechanical *interference* effects.

A mathematical model for a measurement process

Main references:

F. Strocchi. An Introduction to the Mathematical Structure of Quantum Mechanics: A Short Course for Mathematicians. World Scientific Publishing Company, New Jersey, 2 edition edition, oct 2008.

I. E. Segal. Postulates for General Quantum Mechanics. The Annals of Mathematics, 48(4):930, oct 1947.

We have two basic players in this game: observables and states.

Observables. An observable is a physical quantity which we can measure (e.g. components of magnetic moment, position, speed/momentum, energy). Connected with some measuring apparatus which has a scale where you read a real number. We write \mathcal{O} for the set of all observables. Given an observable $A \in \mathcal{O}$ more observables can be constructed from A by elementary procedures (i.e. relabeling the scale of the apparatus) E.g. $\lambda A, A^n \in \mathcal{O} \lambda \in \mathbb{R}$. $A^n A^m = A^{n+m}$. In general we could imagine to define in a similar way f(A) for any $f: \mathbb{R} \to \mathbb{R}$. An observable is *positive* if gives only positive results, in symbols we can reformulate this property as $A \ge 0 \iff \exists B \in \mathcal{O}: A \equiv B^2$ (there with \equiv we just mean that operationally the two observables A and B^2 gives the same values).

States. We imagine that a certain physical object under study can be *prepared* in such a way that it is meaningful to speak about repeated experiments on the *same* entity. This entity is the *state* $\omega \in S$ of the system under consideration. E.g. the state of the atoms in the Stern–Gerlach experiment beam, the state of a particle in motion in a particle accellerator. (And what about "the state of world"?) There is a relation between measurements on states and values of observables and it is "statistical" in the sense that $\omega(A) = \langle \omega, A \rangle \in \mathbb{R}$ represent the measuring of A on the state ω , has to be considered as an average over "experiences". Operationally we measure an observable A in a given state ω by perfoming a sequence of repeated experiments and taking the average

$$\omega(A) = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} m_{\omega}^{(i)}(A),$$

where each $m_{\omega}^{(i)}(A)$ is the *i*-th measurament of A in the state ω . A state is a map $\omega: \mathcal{O} \to \mathbb{R}$ understood as all the values it takes on every possible observable $\omega = \{\omega(A): A \in \mathcal{O}\}.$

You know that different states exists because when we measure an observable we get different numbers:

$$\omega(A) = \omega'(A), \forall A \in \mathcal{O} \Longleftrightarrow \omega = \omega'.$$

You know that two observables are different because there is a state where they give different values:

$$\omega(A) = \omega(B), \forall \omega \in \mathcal{S} \Longleftrightarrow A = B.$$

With respect to the operations we defined on observable we obtain the followin relations:

$$\begin{split} \omega(\lambda A) &= \lambda \omega(A), \qquad \omega(A^n + A^m) = \omega(A^n) + \omega(A^m) \\ \omega(A^0) &= 1 \Longrightarrow A^0 = 1, \omega(1) = 1. \\ \omega(A + B) &= \omega(A) + \omega(B) \qquad \omega \in \mathcal{S} \end{split}$$

Functions of an observable:

$$\omega(f(A)) = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} f(m_{\omega}^{(i)}(A))$$

An observable is positive iff its value on any state is positive:

$$A \ge 0 \Longleftrightarrow A = B^2 \Longleftrightarrow \forall \omega: \omega(A) = \omega(B^2) \ge 0.$$

States form a convex set: ω_1, ω_2 then for $\lambda \in [0, 1]$ (for positivity and normalization):

$$\omega(A) = \lambda \omega_1(A) + (1 - \lambda) \omega_2(A)$$

and [I think] this forbids to have (exercise)

$$\omega(AB) = \omega(A)\omega(B).$$

We introduce a norm on \mathcal{O} which measure the size of an observable $A \in \mathcal{O}$ via the largest possible value of a state on it:

$$\|A\| = \sup_{\omega \in \mathcal{S}} |\omega(A)|$$
$$\|\lambda A\| = |\lambda| \|A\|, \quad \|A\| = 0 \Longrightarrow A = 0.$$

We have also (in the notes)

$$\|A^2\| = \|A\|^2.$$

The states induce a linear structure over \mathcal{O} : we can define a new observable *C* by doing

$$\omega(C) = \omega(A) + \omega(B),$$

for given $A, B \in \mathcal{O}$. We can extend \mathcal{O} to a linear space and

$$||A + B|| \le ||A|| + ||B||.$$

The observables form a (pre-)Banach space.

The observables form a Jordan algebra:

$$A \circ B = \frac{1}{2} [(A+B)^2 - A^2 - B^2].$$

At this point we make a leap (of faith) and **assume** that \mathcal{O} are the self-adjoint elements of a *C*^{*}-algebra \mathcal{A} over \mathbb{C} . [WHY??? I do not know] and

$$A \circ B = \frac{AB + BA}{2}, \qquad A, B \in \mathcal{O}.$$

Crucial techinical assumption. $\mathcal{O} \subseteq \mathcal{A}$ where \mathcal{A} is a (non-commutative) algebra over \mathbb{C} with involution $A \mapsto A^*$ and such that the following properties are true

$$(\lambda A + \beta B)^* = \overline{\lambda} A^* + \overline{\beta} B^*, \qquad (AB)^* = B^* A^*$$
$$\forall A \in \mathcal{A}, \quad A^* A \ge 0, \qquad \omega (A^* A) \ge 0 \qquad \omega \in \mathcal{S}$$
$$AB \| := \sup_{\omega \in \mathcal{S}} |\omega(AB)| \le \|A\| \|B\|. \qquad \|A^*A\| = \|A\| \|A^*\|$$

Mathematical model for a physical system.

A physical system is the given of observables and states,

||.

- Observables form a C^* -algebra \mathcal{A} with unity.
- States *S* are normalized positive linear functionals on *A*. We assume the set of states to be *full* (i.e. it separates the observables). Moreover observables should separate states (but this is by definition). Usually *S* is only a subset of all the positive linear functionals.

Example. Classical mechanical system $(q, p) \in \Gamma \subseteq T^* \mathbb{R}^n \approx \mathbb{R}^n \times \mathbb{R}^n$ where q is position and p momentum. The set of observables are the (continuous) functions $\mathscr{A} = C(\Gamma, \mathbb{C}) f^*(q, p) = \overline{f(q, p)}$. The states are (a subset of) the probability measures on Γ :

$$\begin{split} \omega(f) &= \int_{\Gamma} f(q,p) \, \omega(\mathrm{d}q \times \mathrm{d}p). \\ \|f\| &= \sup_{\omega \in \mathcal{S}} |\omega(f)|. \end{split}$$

The algebra \mathscr{A} is Abelian or commutative: AB = BA.

In classical physics one assume that states of the form $\omega = \delta_{(q_0, p_0)}$ are possible, these states are characterised by the fact that the *dispersion* (which can be operationally realized)

$$\Delta_{\omega}(f) = \left[\omega(f^2 - \omega(f)^2)\right]^{1/2} \ge 0,$$

is zero for all f.

C*-algebras

References:

M. A. Naimark. Normed Algebras. Springer, Dordrecht, 1972 edition edition, dec 2011.

F. Strocchi. An Introduction to the Mathematical Structure of Quantum Mechanics: A Short Course for Mathematicians. World Scientific Publishing Company, New Jersey, 2 edition edition, oct 2008.

Definition 1. A C^{*}-algebra \mathcal{A} is an associative algebra over \mathbb{C} which is endowed with the following additional structures: a norm $\|\cdot\|$ for which \mathcal{A} is complete and which satisfy $\|ab\| \leq \|a\| \|b\|$ for all $a, b \in \mathcal{A}$ and an antilinear involution $*: \mathcal{A} \to \mathcal{A}$ for which $(ab)^* = b^*a^*$. These structures satisfy the following compatibility condition (C^{*} condition)

 $\|a^*a\| = \|a\|^2, \qquad a \in \mathscr{A}.$

Example 2. The algebra of all continuous complex-valued functions C(X) on a compact space topological Hausdorff space X wrt. the pointwise product and endowed with the supremum norm

$$||f|| = \sup_{x \in X} |f(x)|, \qquad f \in C(X)$$

is a C^* -algebra which is commutative or Abelian.

Example 3. Let \mathcal{H} be an Hilbert space. The set of all bounded linear operators $\mathcal{L}(\mathcal{H})$ on \mathcal{H} together with the operator norm

$$\|A\| = \sup_{\varphi \neq 0} \frac{\|A\varphi\|}{\|\varphi\|}, \qquad A \in \mathscr{L}(\mathscr{H}),$$

and the involution given by the adjuction wrt. the scalar product of \mathcal{H} , is a C^* algebra, indeed by the property of the Hilbert space norm we have

$$\|A^*A\| = \sup_{\|\varphi\|=1} \|A^*A\varphi\| = \sup_{\|\varphi\|=\|\psi\|=1} \langle \psi, A^*A\varphi \rangle = \sup_{\|\varphi\|=\|\psi\|=1} \langle A\psi, A\varphi \rangle \leq \|A\|^2$$

and

$$\|A\|^2 = \sup_{\|\varphi\|=1} \|A\varphi\|^2 = \sup_{\|\varphi\|=1} \langle A\varphi, A\varphi \rangle = \sup_{\|\varphi\|=1} \langle \varphi, A^*A\varphi \rangle \leq \|A^*A\|$$

Any norm-closed subalgebra \mathscr{B} of $\mathscr{L}(\mathscr{H})$ which is self-adjoint, i.e. $\mathscr{B} = \mathscr{B}^*$ is a *concrete* C^* -algebra. For example, the compact operators form such a subalgebra or the C^* -algebra C(T) generated by a single bounded self-adjoint operator T, i.e. the closure of all the polynomials in T, T^*, I .

Example 4. The subalgebra $C^*(a) \subseteq \mathcal{A}$ generated by $a \in \mathcal{A}$ and the unity is a C^* -algebra with the restiction of the norm and the involutions of \mathcal{A} . The Banach algebra generated by a set of elements a_1, \ldots, a_n is just the closure of all the polynomials in a_1, \ldots, a_n and in their adjoints.

We call *a* self-adjoint iff $a = a^*$, *a* is *normal* if $aa^* = a^*a$. Any *a* can be decomposed into a = b + ic with *b*, *c* self-adjoint. If *a* is normal then $C^*(a)$ is Abelian (i.e. commutative).

Keep in mind that, for us, the observables of a physical system will be self-adjoints elements of an (abstract) C^* algebra.

Definition 5. A Banach algebra \mathscr{B} is a Banach space with a product such that $||ab|| \le ||a|| ||b||$.

In any (unital) Banach algebra \mathscr{B} we can define the *spectrum* $\sigma(a) = \sigma_{\mathscr{B}}(a)$ of an element $a \in \mathscr{B}$ to be the set of $\lambda \in \mathbb{C}$ for which $(\lambda - a)$ is not invertible in \mathscr{B} . The complement of the spectrum is called the *resolvent* set and

$$R_a(\lambda) = (\lambda - a)^{-1}$$

is the resolvent function.

Theorem 6. For any $a \in \mathcal{B}$, the spectrum $\sigma(a)$ is a non-empty compact set and the resolvent function is analytic in $\mathbb{C} \setminus \sigma(a)$.

Proposition 7. (Spectral radius formula) For any $a \in \mathcal{B}$ we have

 $\rho(a) := \sup_{\lambda \in \sigma(a)} |\lambda| = \lim_{n \to \infty} \|a^n\|^{1/n} \le \|a\|$

with equality in case of a normal element of a C^* -algebra.

In the C^* case we have

$$||a^2||^2 = ||a^*a^*aa|| = ||aa^*a^*a|| = ||a^*a||^2 = ||a||^4.$$