
Elements of Mathematical Quantum Mechanics

Massimiliano Gubinelli ⋅ TCC course ⋅ Oxford, Hilary 2024

Lecture 1 [April 24rd 2024]

Ideal Plan

1. Introduction to quantum mechanics (Strocchi)

a. Motivation for quantum mechanics

b. Axioms (C ∗ algebras, GNS representation, Hilbert space setting)

c. Heisenberg group and its representation, Von Neumann theorem, Schrödinger representa-
tion

d. Dynamics and the Hamiltonian (time t ∈ℝ) H self-adjoint operator (matrix) Unitary trans-
formation on an Hilbert space U (t)= e iHt. U (t)U (s)=U (t + s). H �0.

e. Examples: harmonic oscillator, particle in a potential

2. Euclidean quantum mechanics (t →−i t = τ imaginary time) ⇒ Probability ('70-'80)
Nelson/Symanzik/. . .

a. Wick rotation (t→−it =τ imaginary time) and Feynmann–Kac's formula, Wiener measure
and connection with free particles.

U (t)→ e−Hτ

b. Eucledian axioms (with reflection positivity) and reconstruction theorem

c. Nelson's positivity , uniqueness of ground state and stochastic processes

d. Particle in a potential and symmetric-stationary measure of SDEs with additive noise

e. Semiclassical limit (ℏ→0) and asymptotic expansion

f. Introduction to Euclidean quantum field theory. (special relativity)

The Stern–Gerlach experiment

(1922)

1. Oven. 2. Beam of atoms out of it. 3. Magnet (create a magnetic field) 5. Actual result. 4. Prediction
of classical mechanics.

Result:

1



Quantization of spin. melectron=±M . Even weirder:

Oven ẑ
ẑ

+ +
−

We measure twice ẑ and all the atoms go in the + direction.

Oven x̂
ẑ

+ +

−

We measure ẑ and then x̂ and the atoms go in the + direction the 50% of the times.

Oven x̂
ẑ

ẑ+
+ +

−

Now 50%/50%!

Oven x̂ x� ẑ
ẑ

+ +
−

100%/0%!

Oven x̂ x� ẑ
ẑ

+ +
+
−

50%/50%!

This is a manifestation of quantum mechanical interference effects.

A mathematical model for a measurement process

Main references:

F. Strocchi. An Introduction to the Mathematical Structure of QuantumMechanics: A Short Course for Math-
ematicians. World Scientific Publishing Company, New Jersey, 2 edition edition, oct 2008.

I. E. Segal. Postulates for General Quantum Mechanics. The Annals of Mathematics, 48(4):930, oct 1947.

We have two basic players in this game: observables and states.

Observables. An observable is a physical quantity which we can measure (e.g. components of magnetic
moment, position, speed/momentum, energy). Connected with some measuring apparatus which has a
scale where you read a real number. We write 𝒪 for the set of all observables. Given an observable A∈𝒪
more observables can be constructed from A by elementary procedures (i.e. relabeling the scale of the
apparatus) E.g. λA,An∈𝒪 λ∈ℝ. AnAm=An+m. In general we could imagine to define in a similar way f (A)
for any f : ℝ→ℝ. An observable is positive if gives only positive results, in symbols we can reformulate
this property as A�0⇔∃B∈𝒪:A≡B2 (there with ≡ we just mean that operationally the two observables
A and B2 gives the same values).
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States. We imagine that a certain physical object under study can be prepared in such a way that it is
meaningful to speak about repeated experiments on the same entity. This entity is the state ω ∈𝒮 of
the system under consideration. E.g. the state of the atoms in the Stern–Gerlach experiment beam, the
state of a particle in motion in a particle accellerator. (And what about “the state of world”?) There is a
relation between measurements on states and values of observables and it is “statistical” in the sense that
ω(A)= ⟨ω,A⟩ ∈ℝ represent the measuring of A on the state ω, has to be considered as an average over
“experiences”. Operationally we measure an observable A in a given state ω by perfoming a sequence of
repeated experiments and taking the average

ω(A)= lim
n→∞

1
n�

i=1

n

mω
(i)(A),

where each mω
(i)(A) is the i-th measurament of A in the state ω. A state is a map ω:𝒪→ℝ understood as

all the values it takes on every possible observable ω≡ {ω(A):A∈𝒪}.

You know that different states exists because when we measure an observable we get different numbers:

ω(A)=ω ʹ(A), ∀A∈𝒪⇔ω=ω ʹ.

You know that two observables are different because there is a state where they give different values:

ω(A)=ω(B), ∀ω ∈𝒮⇔A=B.

With respect to the operations we defined on observable we obtain the followin relations:

ω(λA)=λω(A), ω(An+Am)=ω(An)+ω(Am).

ω(A0)=1⇒A0=1,ω(1)=1.

ω(A+B)=ω(A)+ω(B) ω ∈𝒮

Functions of an observable:

ω(f (A))= lim
n→∞

1
n�

i=1

n

f (mω
(i)(A)),

An observable is positive iff its value on any state is positive:

A�0⇔A=B2⇔∀ω:ω(A)=ω(B2)�0.

States form a convex set: ω1,ω2 then for λ∈ [0, 1] (for positivity and normalization):

ω(A)=λω1(A)+ (1−λ)ω2(A)

and [I think] this forbids to have (exercise)

ω(AB)=ω(A)ω(B).

We introduce a norm on 𝒪 which measure the size of an observable A ∈𝒪 via the largest possible value
of a state on it:

‖A‖=sup
ω∈𝒮

|ω(A)|

‖λA‖= |λ|‖A‖, ‖A‖=0⇒A=0.
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We have also (in the notes)

‖A2‖= ‖A‖2.

The states induce a linear structure over 𝒪: we can define a new observable C by doing

ω(C)=ω(A)+ω(B),

for given A,B∈𝒪. We can extend 𝒪 to a linear space and

‖A+B‖� ‖A‖+ ‖B‖.

The observables form a (pre-)Banach space.

The observables form a Jordan algebra:

A ∘B= 1
2[(A+B)2−A2−B2].

At this point we make a leap (of faith) and assume that 𝒪 are the self-adjoint elements of a C ∗-algebra𝒜
over ℂ. [WHY??? I do not know] and

A ∘B= AB+BA
2 , A,B∈𝒪.

Crucial techinical assumption. 𝒪⊂−𝒜 where 𝒜 is a (non-commutative) algebra over ℂ with involu-
tion A↦A∗ and such that the following properties are true

(λA+βB)∗= λ̄A∗+ β̄B∗, (AB)∗=B∗A∗

∀A∈𝒜 , A∗A�0, ω(A∗A)�0 ω ∈𝒮

‖AB‖ := sup
ω∈𝒮

|ω(AB)|� ‖A‖ ‖B‖. ‖A∗A‖= ‖A‖‖A∗‖.

Mathematical model for a physical system.

A physical system is the given of observables and states,

• Observables form a C ∗-algebra 𝒜 with unity .

• States 𝒮 are normalized positive linear functionals on 𝒜 . We assume the set of states to be full
(i.e. it separates the observables). Moreover observables should separate states (but this is by
definition). Usually 𝒮 is only a subset of all the positive linear functionals.

Example. Classical mechanical system (q,p)∈Γ⊂−T ∗ℝn≈ℝn×ℝn where q is position and p momentum.
The set of observables are the (continuous) functions𝒜 =C(Γ,ℂ) f ∗(q,p)= f (q,p). The states are (a subset
of) the probability measures on Γ:

ω(f )=�
Γ
f (q,p)ω(dq×dp).

‖f ‖=sup
ω∈𝒮

|ω(f )|.
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The algebra 𝒜 is Abelian or commutative: AB=BA.

In classical physics one assume that states of the form ω = δ(q0,p0) are possible, these states are charac-
terised by the fact that the dispersion (which can be operationally realized)

Δω(f )= [ω(f 2−ω(f )2)]1/2�0,

is zero for all f .

C∗-algebras

References:

M. A. Naimark. Normed Algebras. Springer, Dordrecht, 1972 edition edition, dec 2011.

F. Strocchi. An Introduction to the Mathematical Structure of QuantumMechanics: A Short Course for Math-
ematicians. World Scientific Publishing Company, New Jersey, 2 edition edition, oct 2008.

Definition 1. A C ∗-algebra 𝒜 is an associative algebra over ℂ which is endowed with the following addi-
tional structures: a norm ‖⋅‖ for which 𝒜 is complete and which satisfy ‖ab‖� ‖a‖ ‖b‖ for all a,b ∈𝒜 and an
antilinear involution ∗:𝒜→𝒜 for which (ab)∗= b ∗a∗. These structures satisfy the following compatibility
condition (C ∗ condition)

‖a∗a‖= ‖a‖2, a∈𝒜 .

Example 2. The algebra of all continuous complex-valued functions C(X) on a compact space topolog-
ical Hausdorff space X wrt. the pointwise product and endowed with the supremum norm

‖f ‖=sup
x∈X

|f (x)|, f ∈C(X)

is a C ∗-algebra which is commutative or Abelian.

Example 3. Let ℋ be an Hilbert space. The set of all bounded linear operators ℒ(ℋ) on ℋ together
with the operator norm

‖A‖=sup
φ≠0

‖Aφ‖
‖φ‖ , A∈ℒ(ℋ),

and the involution given by the adjuction wrt. the scalar product of ℋ , is a C ∗ algebra, indeed by the
property of the Hilbert space norm we have

‖A∗A‖= sup
‖φ‖=1

‖A∗Aφ‖= sup
‖φ‖=‖ψ‖=1

⟨ψ ,A∗Aφ⟩= sup
‖φ‖=‖ψ‖=1

⟨Aψ ,Aφ⟩� ‖A‖2

and

‖A‖2= sup
‖φ‖=1

‖Aφ‖2= sup
‖φ‖=1

⟨Aφ,Aφ⟩= sup
‖φ‖=1

⟨φ,A∗Aφ⟩� ‖A∗A‖.

Any norm-closed subalgebra ℬ of ℒ(ℋ) which is self-adjoint, i.e. ℬ=ℬ∗ is a concrete C ∗-algebra. For
example, the compact operators form such a subalgebra or the C ∗-algebra C(T) generated by a single
bounded self-adjoint operator T , i.e. the closure of all the polynomials in T ,T ∗, I .
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Example 4. The subalgebra C ∗(a)⊂−𝒜 generated by a∈𝒜 and the unity is a C ∗-algebra with the restiction
of the norm and the involutions of 𝒜 . The Banach algebra generated by a set of elements a1, . . . ,an is just
the closure of all the polynomials in a1, . . . ,an and in their adjoints.

We call a self-adjoint iff a=a∗, a is normal if aa∗=a∗a. Any a can be decomposed into a=b+ ic with b, c
self-adjoint. If a is normal then C ∗(a) is Abelian (i.e. commutative).

Keep inmind that, for us, the observables of a physical systemwill be self-adjoints elements of an (abstract)
C ∗ algebra.

Definition 5. A Banach algebra ℬ is a Banach space with a product such that ‖ab‖� ‖a‖ ‖b‖.

In any (unital) Banach algebra ℬ we can define the spectrum σ(a)=σℬ(a) of an element a∈ℬ to be the
set of λ∈ℂ for which (λ−a) is not invertible inℬ. The complement of the spectrum is called the resolvent
set and

Ra(λ)= (λ−a)−1

is the resolvent function.

Theorem 6. For any a ∈ℬ, the spectrum σ(a) is a non-empty compact set and the resolvent function is
analytic in ℂ\σ(a).

Proposition 7. (Spectral radius formula) For any a∈ℬ we have

ρ(a) := sup
λ∈σ(a)

|λ|= lim
n→∞

‖an‖1/n� ‖a‖

with equality in case of a normal element of a C ∗-algebra.

In the C ∗ case we have

‖a2‖2= ‖a∗a∗aa‖= ‖aa∗a∗a‖= ‖a∗a‖2= ‖a‖4.

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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