Elements of Mathematical Quantum Mechanics
Massimiliano Gubinelli • TCC course • Oxford, Hilary 2024
Lecture 1 [April 24rd 2024]

Ideal Plan

1. Introduction to quantum mechanics (Strocchi)
a. Motivation for quantum mechanics
b. Axioms (C* algebras, GNS representation, Hilbert space setting)
c. Heisenberg group and its representation, Von Neumann theorem, Schrödinger representation
d. Dynamics and the Hamiltonian (time $t \in \mathbb{R}$) H self-adjoint operator (matrix) Unitary transformation on an Hilbert space $U(t)=e^{i H t} . U(t) U(s)=U(t+s) . H \geqslant 0$.
e. Examples: harmonic oscillator, particle in a potential
2. Euclidean quantum mechanics $(t \rightarrow-i t=\tau$ imaginary time) \Rightarrow Probability ('70-'80) Nelson/Symanzik/...
a. Wick rotation $(t \rightarrow-i t=\tau$ imaginary time $)$ and Feynmann-Kac's formula, Wiener measure and connection with free particles.

$$
U(t) \rightarrow e^{-H \tau}
$$

b. Eucledian axioms (with reflection positivity) and reconstruction theorem
c. Nelson's positivity, uniqueness of ground state and stochastic processes
d. Particle in a potential and symmetric-stationary measure of SDEs with additive noise
e. Semiclassical limit ($\hbar \rightarrow 0$) and asymptotic expansion
f. Introduction to Euclidean quantum field theory. (special relativity)

The Stern-Gerlach experiment

(1922)

1. Oven. 2. Beam of atoms out of it. 3. Magnet (create a magnetic field) 5. Actual result. 4. Prediction of classical mechanics.

Result:

Quantization of spin. $m_{\text {electron }}= \pm M$. Even weirder:

We measure twice \hat{z} and all the atoms go in the + direction.

We measure \hat{z} and then \hat{x} and the atoms go in the + direction the 50% of the times.

Now 50\%/50\%!

$100 \% / 0 \%$!

$50 \% / 50 \%$!
This is a manifestation of quantum mechanical interference effects.

A mathematical model for a measurement process

Main references:
F. Strocchi. An Introduction to the Mathematical Structure of Quantum Mechanics: A Short Course for Mathematicians. World Scientific Publishing Company, New Jersey, 2 edition edition, oct 2008.
I. E. Segal. Postulates for General Quantum Mechanics. The Annals of Mathematics, 48(4):930, oct 1947.

We have two basic players in this game: observables and states.

Observables. An observable is a physical quantity which we can measure (e.g. components of magnetic moment, position, speed/momentum, energy). Connected with some measuring apparatus which has a scale where you read a real number. We write \mathcal{O} for the set of all observables. Given an observable $A \in \mathcal{O}$ more observables can be constructed from A by elementary procedures (i.e. relabeling the scale of the apparatus) E.g. $\lambda A, A^{n} \in \mathcal{O} \lambda \in \mathbb{R}$. $A^{n} A^{m}=A^{n+m}$. In general we could imagine to define in a similar way $f(A)$ for any $f: \mathbb{R} \rightarrow \mathbb{R}$. An observable is positive if gives only positive results, in symbols we can reformulate this property as $A \geqslant 0 \Longleftrightarrow \exists B \in \mathcal{O}: A \equiv B^{2}$ (there with \equiv we just mean that operationally the two observables A and B^{2} gives the same values).

States. We imagine that a certain physical object under study can be prepared in such a way that it is meaningful to speak about repeated experiments on the same entity. This entity is the state $\omega \in \mathcal{S}$ of the system under consideration. E.g. the state of the atoms in the Stern-Gerlach experiment beam, the state of a particle in motion in a particle accellerator. (And what about "the state of world"?) There is a relation between measurements on states and values of observables and it is "statistical" in the sense that $\omega(A)=\langle\omega, A\rangle \in \mathbb{R}$ represent the measuring of A on the state ω, has to be considered as an average over "experiences". Operationally we measure an observable A in a given state ω by perfoming a sequence of repeated experiments and taking the average

$$
\omega(A)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} m_{\omega}^{(i)}(A),
$$

where each $m_{\omega}^{(i)}(A)$ is the i-th measurament of A in the state ω. A state is a map $\omega: \mathcal{O} \rightarrow \mathbb{R}$ understood as all the values it takes on every possible observable $\omega \equiv\{\omega(A): A \in \mathcal{O}\}$.

You know that different states exists because when we measure an observable we get different numbers:

$$
\omega(A)=\omega^{\prime}(A), \forall A \in \mathcal{O} \Leftrightarrow \omega=\omega^{\prime} .
$$

You know that two observables are different because there is a state where they give different values:

$$
\omega(A)=\omega(B), \forall \omega \in \mathcal{S} \Leftrightarrow A=B .
$$

With respect to the operations we defined on observable we obtain the followin relations:

$$
\begin{gathered}
\omega(\lambda A)=\lambda \omega(A), \quad \omega\left(A^{n}+A^{m}\right)=\omega\left(A^{n}\right)+\omega\left(A^{m}\right) . \\
\omega\left(A^{0}\right)=1 \Rightarrow A^{0}=1, \omega(1)=1 . \\
\omega(A+B)=\omega(A)+\omega(B) \quad \omega \in \mathcal{S}
\end{gathered}
$$

Functions of an observable:

$$
\omega(f(A))=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} f\left(m_{\omega}^{(i)}(A)\right),
$$

An observable is positive iff its value on any state is positive:

$$
A \geqslant 0 \Leftrightarrow A=B^{2} \Leftrightarrow \forall \omega: \omega(A)=\omega\left(B^{2}\right) \geqslant 0 .
$$

States form a convex set: ω_{1}, ω_{2} then for $\lambda \in[0,1]$ (for positivity and normalization):

$$
\omega(A)=\lambda \omega_{1}(A)+(1-\lambda) \omega_{2}(A)
$$

and [I think] this forbids to have (exercise)

$$
\omega(A B)=\omega(A) \omega(B)
$$

We introduce a norm on \mathcal{O} which measure the size of an observable $A \in \mathcal{O}$ via the largest possible value of a state on it:

$$
\begin{gathered}
\|A\|=\sup _{\omega \in \mathcal{S}}|\omega(A)| \\
\|\lambda A\|=\mid \lambda\|A A\|, \quad\|A\|=0 \Rightarrow A=0 .
\end{gathered}
$$

We have also (in the notes)

$$
\left\|A^{2}\right\|=\|A\|^{2}
$$

The states induce a linear structure over \mathfrak{O} : we can define a new observable C by doing

$$
\omega(C)=\omega(A)+\omega(B),
$$

for given $A, B \in \mathcal{O}$. We can extend \mathcal{O} to a linear space and

$$
\|A+B\| \leqslant\|A\|+\|B\| .
$$

The observables form a (pre-)Banach space.
The observables form a Jordan algebra:

$$
A \circ B=\frac{1}{2}\left[(A+B)^{2}-A^{2}-B^{2}\right] .
$$

At this point we make a leap (of faith) and assume that \mathcal{O} are the self-adjoint elements of a C^{*}-algebra \mathscr{A} over \mathbb{C}. [WHY??? I do not know] and

$$
A \circ B=\frac{A B+B A}{2}, \quad A, B \in \mathcal{O} .
$$

Crucial techinical assumption. $\mathcal{O} \subseteq \mathscr{A}$ where \mathscr{A} is a (non-commutative) algebra over \mathbb{C} with involution $A \mapsto A^{*}$ and such that the following properties are true

$$
\begin{gathered}
(\lambda A+\beta B)^{*}=\bar{\lambda} A^{*}+\bar{\beta} B^{*}, \quad(A B)^{*}=B^{*} A^{*} \\
\forall A \in \mathscr{A}, \quad A^{*} A \geqslant 0, \quad \omega\left(A^{*} A\right) \geqslant 0 \quad \omega \in \mathcal{S} \\
\|A B\|\left\|=\sup _{\omega \in \mathcal{S}}|\omega(A B)| \leqslant\right\| A\|\|B\| . \quad\| \boldsymbol{A}^{*} \boldsymbol{A}\|=\| \boldsymbol{A}\| \| \boldsymbol{A}^{*} \| .
\end{gathered}
$$

Mathematical model for a physical system.
A physical system is the given of observables and states,

- Observables form a C^{*}-algebra \mathscr{A} with unity.
- States \mathcal{S} are normalized positive linear functionals on \mathscr{A}. We assume the set of states to be full (i.e. it separates the observables). Moreover observables should separate states (but this is by definition). Usually \mathcal{S} is only a subset of all the positive linear functionals.

Example. Classical mechanical system $(q, p) \in \Gamma \subseteq T^{*} \mathbb{R}^{n} \approx \mathbb{R}^{n} \times \mathbb{R}^{n}$ where q is position and p momentum. The set of observables are the (continuous) functions $\mathscr{A}=C(\Gamma, \mathbb{C}) f^{*}(q, p)=\overline{f(q, p)}$. The states are (a subset of) the probability measures on Γ :

$$
\begin{gathered}
\omega(f)=\int_{\Gamma} f(q, p) \omega(\mathrm{d} q \times \mathrm{d} p) . \\
\|f\|=\sup _{\omega \in \mathcal{S}}|\omega(f)| .
\end{gathered}
$$

The algebra \mathscr{A} is Abelian or commutative: $A B=B A$.

In classical physics one assume that states of the form $\omega=\delta_{\left(q_{0}, p_{0}\right)}$ are possible, these states are characterised by the fact that the dispersion (which can be operationally realized)

$$
\Delta_{\omega}(f)=\left[\omega\left(f^{2}-\omega(f)^{2}\right)\right]^{1 / 2} \geqslant 0,
$$

is zero for all f.

C^{*}-algebras

References:

M. A. Naimark. Normed Algebras. Springer, Dordrecht, 1972 edition edition, dec 2011.
F. Strocchi. An Introduction to the Mathematical Structure of Quantum Mechanics: A Short Course for Mathematicians. World Scientific Publishing Company, New Jersey, 2 edition edition, oct 2008.

Definition 1. A C^{*}-algebra \mathscr{A} is an associative algebra over \mathbb{C} which is endowed with the following additional structures: a norm $\|\cdot\|$ for which \mathscr{A} is complete and which satisfy $\|a b\| \leqslant\|a\|\|b\|$ for all $a, b \in \mathscr{A}$ and an antilinear involution $*: \mathscr{A} \rightarrow \mathscr{A}$ for which $(a b)^{*}=b^{*} a^{*}$. These structures satisfy the following compatibility condition (C^{*} condition)

$$
\left\|a^{*} a\right\|=\|a\|^{2}, \quad a \in \mathscr{A} .
$$

Example 2. The algebra of all continuous complex-valued functions $C(X)$ on a compact space topological Hausdorff space X wrt. the pointwise product and endowed with the supremum norm

$$
\|f\|=\sup _{x \in X}|f(x)|, \quad f \in C(X)
$$

is a C^{*}-algebra which is commutative or Abelian.

Example 3. Let \mathscr{H} be an Hilbert space. The set of all bounded linear operators $\mathscr{L}(\mathscr{H})$ on \mathscr{H} together with the operator norm

$$
\|A\|=\sup _{\varphi \neq 0} \frac{\|A \varphi\|}{\|\varphi\|}, \quad A \in \mathscr{L}(\mathscr{H})
$$

and the involution given by the adjuction wrt. the scalar product of \mathscr{H}, is a C^{*} algebra, indeed by the property of the Hilbert space norm we have

$$
\left\|A^{*} A\right\|=\sup _{\|\varphi\|=1}\left\|A^{*} A \varphi\right\|=\sup _{\|\varphi\|=\|\psi\|=1}\left\langle\psi, A^{*} A \varphi\right\rangle=\sup _{\|\varphi\|\| \| \psi \|=1}\langle A \psi, A \varphi\rangle \leqslant\|A\|^{2}
$$

and

$$
\|A\|^{2}=\sup _{\|\varphi\|=1}\|A \varphi\|^{2}=\sup _{\|\varphi\|=1}\langle A \varphi, A \varphi\rangle=\sup _{\|\varphi\|=1}\left\langle\varphi, A^{*} A \varphi\right\rangle \leqslant\left\|A^{*} A\right\| .
$$

Any norm-closed subalgebra \mathscr{B} of $\mathscr{L}(\mathscr{H})$ which is self-adjoint, i.e. $\mathscr{B}=\mathscr{B}^{*}$ is a concrete C^{*}-algebra. For example, the compact operators form such a subalgebra or the C^{*}-algebra $C(T)$ generated by a single bounded self-adjoint operator T, i.e. the closure of all the polynomials in T, T^{*}, I.

Example 4. The subalgebra $C^{*}(a) \subseteq \mathscr{A}$ generated by $a \in \mathscr{A}$ and the unity is a C^{*}-algebra with the restiction of the norm and the involutions of \mathscr{A}. The Banach algebra generated by a set of elements a_{1}, \ldots, a_{n} is just the closure of all the polynomials in a_{1}, \ldots, a_{n} and in their adjoints.

We call a self-adjoint iff $a=a^{*}, a$ is normal if $a a^{*}=a^{*} a$. Any a can be decomposed into $a=b+i c$ with b, c self-adjoint. If a is normal then $C^{*}(a)$ is Abelian (i.e. commutative).

Keep in mind that, for us, the observables of a physical system will be self-adjoints elements of an (abstract) C^{*} algebra.

Definition 5. A Banach algebra \mathscr{B} is a Banach space with a product such that $\|a b\| \leqslant\|a\|\|b\|$.

In any (unital) Banach algebra \mathscr{B} we can define the spectrum $\sigma(a)=\sigma_{\mathscr{B}}(a)$ of an element $a \in \mathscr{B}$ to be the set of $\lambda \in \mathbb{C}$ for which $(\lambda-a)$ is not invertible in \mathscr{B}. The complement of the spectrum is called the resolvent set and

$$
R_{a}(\lambda)=(\lambda-a)^{-1}
$$

is the resolvent function.

Theorem 6. For any $a \in \mathscr{B}$, the spectrum $\sigma(a)$ is a non-empty compact set and the resolvent function is analytic in $\mathbb{C} \backslash \sigma(a)$.

Proposition 7. (Spectral radius formula) For any $a \in \mathscr{B}$ we have

$$
\rho(a):=\sup _{\lambda \in \sigma(a)}|\lambda|=\lim _{n \rightarrow \infty}\left\|a^{n}\right\|^{1 / n} \leqslant\|a\|
$$

with equality in case of a normal element of a C^{*}-algebra.

In the C^{*} case we have

$$
\left\|a^{2}\right\|^{2}=\left\|a^{*} a^{*} a a\right\|=\left\|a a^{*} a^{*} a\right\|=\left\|a^{*} a\right\|^{2}=\|a\|^{4} .
$$

