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1 The GNS representation

GNS = Gelfand–Naimark–Segal⇒Hilbert space picture = choice of coordinates on a C*
algebra.

Representations of C* algebras in Hilbert space (this will allow us to do computations).

Analogy: coordinates on a manifold

The Gelfand–Naimark–Segal theorem allows to construct representations of C∗ algebras
on an Hilbert space starting from any state ω (i.e. normalized positive linear functional).

A representation: a map φ:𝒜→ℒ(H) for some complex Hilbert space H such that φ
is linear, φ(1)=1, φ(ab)=φ(a)φ(b) and φ(a∗)=φ(a)∗ where on the r.h.s. the involution
is understood as the adjoint in the Hilbert space. This is also called a ∗-homomorphism.

More interesting: Any positive multiplicative functional φ:𝒜→ℂ give a one-dimen-
sional representation on the Hilbert space H =ℂ. [Can we give up positivity?] Recall
that positive linear functionals ω satisfy ω(a∗)=ω(a).

Lemma 1. Any representation is a contraction.

Proof. Let's assume that a is normal. Then Note that if λ − a is invertible in 𝒜 then
exists c ∈𝒜 s.t. c(λ−a)=1 that implies φ(c)(λ−φ(a))=1 so λ−φ(a) is also invertible,
that is σℒ(H)(φ(a))⊂−σ𝒜(a). So for C∗-algebras

‖φ(a)‖ℒ(H)=C∗ϱℒ(H)(φ(a))�ϱ𝒜(a)=C∗‖a‖.

Now if b is a generic element then a = b ∗b is self-adjoint. And using the C* property
twice we have

‖φ(b)‖ℒ(H)
2 = ‖φ(b)∗φ(b)‖ℒ(H)= ‖φ(a)‖ℒ(H)� ‖a‖= ‖b‖2.

□

We want to construct representations.

Assume ω is a state and define the Hermitean form on 𝒜 :

⟨a,b⟩ω=ω(a∗b).
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The linear space 𝒜 with this scalar product is a pre-Hilbert space. Let

𝒩ω= {a∈𝒜 : ⟨a,a⟩ω=0}

the set of zero elements and define the Hilbert space Hω=𝒜 \𝒩ω where the bar denotes
the completion wrt. the topology generated by the scalar product ⟨,⟩ω. Denotes ‖a‖ω=⟨a,
a⟩ω1/2 the corresponding norm.

Observe that since ‖b ∗b ‖a∗a−a∗b ∗ba�0 then

⟨ba,ba⟩ω=ω(a∗b ∗ba )� ‖b ∗b ‖ω(a∗a)= ‖b‖2ω(a∗a)= ‖b‖2⟨a,a⟩ω

so the operator Lb:Hω→Hω defined by Lba=ba on the dense subset 𝒜 is bounded with
norm ‖Lb‖� ‖b‖. Note that it is well defined, since Lba=0 if a∈𝒩 .

Moreover LbLc=Lbc and Lb∗ =Lb ∗ as can be easily checked. Therefore a↦La is an homo-
morphism of C∗ algebras (since {La: a ∈𝒜} is a C∗ subalgebra of ℒ(Hω)), indeed recall
that ‖Lb‖ℒ(Hω)

2 =‖Lb∗Lb‖ℒ(Hω). So φω(a)=La is a representation of𝒜 on Hω and if we denote
by Ωω= [1]∈ℋω we have

ω(a)= ⟨Ωω,LaΩω⟩.

This is the GNS construction.

Note that the set {LaΩω: a ∈𝒜} ⊂−Hω is dense in Hω. Then one says that Ωω is a cyclic
vector for the representation φω and that the representation is cyclic.

If K is another Hilbert space supporting a cyclic representation π :𝒜 →ℒ(K) with
cyclic vector ψ ∈K such that ω(a)= ⟨ψ ,π(a)ψ ⟩K then the map a∈𝒜↦π(a)ψ ∈K is an
densely defined isometry from Hω to K since

⟨a,a⟩Hω=ω(a∗a)= ⟨π(a)ψ ,π(a)ψ ⟩K .

Therefore the cyclic representations of 𝒜 associated to a state ω are unique up to iso-
morphism.

In general one call it the GNS representation associated to the state ω.

Example 2. Consider the commutative setting and let H =L2(Ω,ℱ ,μ) for some proba-
bility space (Ω,ℱ ,μ) then on this space there are three different C∗ algebras acting with
pointwise multiplication on the elements of H : that of the continuous functions (taking
ℱ to be the Borel σ-algebra on some compact space K), that of the bounded measurable
functions and that of the L∞(μ) functions (i.e. equivalence classes modulo μ-null sets).

Remark 3. The space Hω of the GNS construction can be thought as a non-commuta-
tive version of the commutative L2(Ω,ℱ ,μ). However here right multiplication Rba=ab
is not in general given by a bounded operator.

2



Theorem 4. (Gelfand–Naimark) The exists a faithful representation of 𝒜 in Hilbert space
H

Faithful means that φ(a)=0⇒a=0. (i.e. the representation is injective)

Then GN theorem shows that there is no loss of generality to consider representations
of physical systems in Hilbert space.

Remark 5. Consider a state ω and a self-adjoint a such that ω is dispersion-free wrt.
a, i.e. 0=Δω(a)= [ω((a−ω(a))2)]1/2 then in the corresponding GNS representation we
have

ω((a−ω(a))2)= ⟨Ωω,(φ(a)−ω(a))2Ωω⟩= ‖(φ(a)−ω(a))Ωω‖2

so (φ(a)−ω(a))Ωω=0 and ω(a) is an eigenvalue of φ(a) with eigenvector Ωω. In par-
ticular ω(a) should be in σ(φ(a))⊂−σ(a).

1.1 Pure states and irreducible representations

Definition 6. A representation φ on the Hilbert space H is irreducible if the only invariant
subspaces of the family (φ(a))a∈𝒜 are {0} and H.

For any family ℬ⊂−ℒ(H) we denote by ℬʹ the commutant ofℬ, that is the set

ℬʹ = {C ∈ℒ(H): [C,B]=0,∀B∈ℬ},

where [C,B]=CB−BC. Note that ℬ⊂−ℬʹʹ and that ℬʹ ⊃−ℂ= {λ1:λ∈ℂ}.

Lemma 7. The representation φ:𝒜→ℒ(H) is irreducible iff φ(𝒜)ʹ =ℂ= {λ1:λ∈ℂ}.

Proof. If φ is reducible then let P the orthogonal projection on a non-trivial invariant
subspace. Let v ∈PH then we have φ(a)v ∈PH and φ(a)Pv =φ(a)v =Pφ(a)v. If v ∈PH
then v ∈QH with Q=1−P and then for any w

⟨w,φ(a)Qv⟩= ⟨φ(a)∗w,Qv⟩= ⟨φ(a)∗(P +Q)w,Qv⟩

=⟨Pφ(a∗)w,Qv⟩+ ⟨φ(a)∗Qw,Qv⟩= ⟨Qw,φ(a)v⟩= ⟨w,Qφ(a)v⟩

so [φ(a),Q]=0. Then is clear that Q ∈φ(𝒜)ʹ so finished.

Reciprocally if R ∈φ(𝒜)ʹ is a nontrivial self-adjoint element of ℒ(H), by spectral cal-
culus we can produce a projection P ∈ φ(𝒜)ʹ by setting P = χ(R) with χ : ℝ→ℝ some
characteristic function of a subset of ℝ, then P 2=P so P is indeed a projection and the
associated subspace is invariant under φ(𝒜) since P commute with any φ(a). □
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Proposition 8. The GNS representation φω is irreducible iff ω is extremal in the set of
states, i.e. a pure state for 𝒜.

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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