Elements of Mathematical Quantum Mechanics

Massimiliano Gubinelli ⋅ *TCC course* ⋅ *Oxford, Hilary 2024*

Lecture 3 [May 8th 2024]

1 The GNS representation

GNS = Gelfand–Naimark–Segal \Rightarrow Hilbert space picture = choice of coordinates on a C^* algebra.

Representations of C^* algebras in Hilbert space (this will allow us to do computations).

Analogy: coordinates on a manifold

The Gelfand–Naimark–Segal theorem allowsto construct representations of *C* [∗] algebras on an Hilbert space starting from any state *ω* (i.e. normalized positive linear functional).

A representation: a map $\varphi: \mathcal{A} \to \mathcal{L}(H)$ for some complex Hilbert space *H* such that φ is linear, $\varphi(1) = 1$, $\varphi(ab) = \varphi(a)\varphi(b)$ and $\varphi(a^*) = \varphi(a)^*$ where on the r.h.s. the involution is understood as the adjoint in the Hilbert space. This is also called a ∗-homomorphism.

More interesting: Any positive multiplicative functional $\varphi: \mathcal{A} \to \mathbb{C}$ give a one-dimensional representation on the Hilbert space $H = \mathbb{C}$. [Can we give up positivity?] Recall that positive linear functionals ω satisfy $\omega(a^*) = \overline{\omega(a)}$.

Lemma 1. *Any representation is a contraction.*

Proof. Let's assume that *a* is normal. Then Note that if $\lambda - a$ is invertible in \mathcal{A} then exists $c \in \mathcal{A}$ s.t. $c(\lambda - a) = 1$ that implies $\varphi(c)(\lambda - \varphi(a)) = 1$ so $\lambda - \varphi(a)$ is also invertible, that is $\sigma_{\mathscr{L}(H)}(\varphi(a)) \subseteq \sigma_{\mathscr{A}}(a)$. So for C*-algebras

$$
\|\varphi(a)\|_{\mathscr{L}(H)_C^{\infty}=\mathcal{Q}\mathscr{L}(H)}(\varphi(a))\leq \varrho_{\mathscr{A}}(a)_{\substack{=}{C}}\|a\|.
$$

Now if *b* is a generic element then $a = b^*b$ is self-adjoint. And using the C^* property twice we have

$$
\|\varphi(b)\|_{\mathscr{L}(H)}^2 = \|\varphi(b)^*\varphi(b)\|_{\mathscr{L}(H)} = \|\varphi(a)\|_{\mathscr{L}(H)} \le \|a\| = \|b\|^2.
$$

□

We want to construct representations.

Assume ω is a state and define the Hermitean form on \mathscr{A} :

$$
\langle a,b\rangle_{\omega}=\omega(a^*b).
$$

The linear space $\mathscr A$ with this scalar product is a pre-Hilbert space. Let

$$
\mathcal{N}_{\omega} = \{ a \in \mathcal{A} : \langle a, a \rangle_{\omega} = 0 \}
$$

the set of zero elements and define the Hilbert space $H_{\omega} = \overline{\mathscr{A} \setminus \mathscr{N}_{\omega}}$ where the bar denotes the completion wrt. the topology generated by the scalar product $\langle , \rangle_{\omega}$. Denotes $||a||_{\omega} = \langle a, \rangle$ $a\rangle_\omega^{1/2}$ the corresponding norm.

Observe that since $||b^*b||a^*a - a^*b^*ba \ge 0$ then

$$
\langle ba, ba \rangle_{\omega} = \omega(a^* b^* ba) \le ||b^* b|| \omega(a^* a) = ||b||^2 \omega(a^* a) = ||b||^2 \langle a, a \rangle_{\omega}
$$

so the operator $L_b: H_\omega \to H_\omega$ defined by $L_b a = ba$ on the dense subset $\mathscr A$ is bounded with norm $||L_b|| \le ||b||$. Note that it is well defined, since $L_b a = 0$ if $a \in \mathcal{N}$.

Moreover $L_b L_c = L_{bc}$ and $L_b^* = L_{b^*}$ as can be easily checked. Therefore $a \mapsto L_a$ is an homomorphism of *C** algebras (since $\{L_a: a \in \mathscr{A}\}$ is a *C** subalgebra of $\mathscr{L}(H_\omega)$), indeed recall $\|L_b\|^2_{\mathscr{L}(H_\omega)}$ = $\|L_b^*L_b\|_{\mathscr{L}(H_\omega)}$. So $\varphi_\omega(a)$ = L_a is a representation of $\mathscr A$ on H_ω and if we denote by Ω_{ω} = [1] $\in \mathcal{H}_{\omega}$ we have

$$
\omega(a) = \langle \Omega_{\omega}, L_a \Omega_{\omega} \rangle.
$$

This is the GNS construction.

Note that the set $\{L_a \Omega_\omega : a \in \mathcal{A}\}\subseteq H_\omega$ is dense in H_ω . Then one says that Ω_ω is a cyclic vector for the representation φ_{ω} and that the representation is cyclic.

If *K* is another Hilbert space supporting a cyclic representation $\pi: \mathcal{A} \to \mathcal{L}(K)$ with cyclic vector $\psi \in K$ such that $\omega(a) = \langle \psi, \pi(a) \psi \rangle_K$ then the map $a \in \mathcal{A} \mapsto \pi(a) \psi \in K$ is an densely defined isometry from *H^ω* to *K* since

$$
\langle a,a\rangle_{H_{\omega}}=\omega(a^*a)=\langle \pi(a)\psi,\pi(a)\psi\rangle_K.
$$

Therefore the cyclic representations of $\mathscr A$ associated to a state ω are unique up to isomorphism.

In general one call it the GNS representation associated to the state *ω*.

Example 2. Consider the commutative setting and let $H = L^2(\Omega, \mathcal{F}, \mu)$ for some probability space $(\Omega, \mathscr{F}, \mu)$ then on this space there are three different \mathcal{C}^* algebras acting with pointwise multiplication on the elements of *H*: that of the continuous functions (taking $\mathcal F$ to be the Borel σ -algebra on some compact space *K*), that of the bounded measurable functions and that of the $L^{\infty}(\mu)$ functions (i.e. equivalence classes modulo μ -null sets).

Remark 3. The space *H^ω* of the GNS construction can be thought as a non-commutative version of the commutative $L^2(\Omega, \mathscr{F}, \mu)$. However here right multiplication $R_b a$ = ab is not in general given by a bounded operator.

Theorem 4. *(Gelfand–Naimark) The exists a faithful representation of in Hilbert space H*

Faithful means that $\varphi(a) = 0 \implies a = 0$. (i.e. the representation is injective)

Then GN theorem shows that there is no loss of generality to consider representations of physical systems in Hilbert space.

Remark 5. Consider a state ω and a self-adjoint *a* such that ω is dispersion-free wrt. *a*, i.e. $0 = \Delta_{\omega}(a) = [\omega((a - \omega(a))^2)]^{1/2}$ then in the corresponding GNS representation we have

$$
\omega((a-\omega(a))^2) = \langle \Omega_{\omega}, (\varphi(a)-\omega(a))^2 \Omega_{\omega} \rangle = ||(\varphi(a)-\omega(a)) \Omega_{\omega}||^2
$$

so $(φ(a) − ω(a))Ω_ω = 0$ and $ω(a)$ is an eigenvalue of $φ(a)$ with eigenvector $Ω_ω$. In particular *ω*(*a*) should be in $σ(φ(a)) \nsubseteq σ(a)$.

1.1 Pure states and irreducible representations

Definition 6. *A representation φ on the Hilbert space H is irreducible if the only invariant subspaces of the family* $(\varphi(a))_{a \in \mathcal{A}}$ *are* $\{0\}$ *and H.*

For any family $\mathscr{B} \subseteq \mathscr{L}(H)$ we denote by \mathscr{B}' the commutant of \mathscr{B} , that is the set

$$
\mathcal{B}' = \{ C \in \mathcal{L}(H) : [C, B] = 0, \forall B \in \mathcal{B} \},
$$

where $[C, B] = CB - BC$. Note that $\mathcal{B} \subseteq \mathcal{B}$ ["] and that $\mathcal{B}' \supseteq \mathbb{C} = {\lambda \mathbb{1} : \lambda \in \mathbb{C}}$.

Lemma 7. *The representation* $\varphi: \mathcal{A} \to \mathcal{L}(H)$ *is irreducible iff* $\varphi(\mathcal{A})' = \mathbb{C} = {\lambda \mathbb{1} : \lambda \in \mathbb{C}}$.

Proof. If *φ* is reducible then let *P* the orthogonal projection on a non-trivial invariant subspace. Let $v \in PH$ then we have $\varphi(a)v \in PH$ and $\varphi(a)Pv = \varphi(a)v = P\varphi(a)v$. If $v \notin PH$ then $v ∈ QH$ with $Q = 1 - P$ and then for any *w*

$$
\langle w, \varphi(a)Qv \rangle = \langle \varphi(a)^*w, Qv \rangle = \langle \varphi(a)^* (P+Q)w, Qv \rangle
$$

= $\langle P\varphi(a^*) w, Qv \rangle + \langle \varphi(a)^* Qw, Qv \rangle = \langle Qw, \varphi(a)v \rangle = \langle w, Q\varphi(a)v \rangle$

so $\lceil \varphi(a), 0 \rceil = 0$. Then is clear that $O \in \varphi(\mathcal{A})'$ so finished.

Reciprocally if $R \in \varphi(\mathcal{A})'$ is a nontrivial self-adjoint element of $\mathcal{L}(H)$, by spectral calculus we can produce a projection $P \in \varphi(\mathscr{A})'$ by setting $P = \chi(R)$ with $\chi: \mathbb{R} \to \mathbb{R}$ some characteristic function of a subset of R, then $P^2 = P$ so P is indeed a projection and the associated subspace is invariant under $\varphi(\mathcal{A})$ since *P* commute with any $\varphi(a)$. □

Proposition 8. *The GNS representation φ^ω is irreducible iff ω is extremal in the set of states, i.e. a pure state for .*

-