Elements of Mathematical Quantum Mechanics

Massimiliano Gubinelli · TCC course · Oxford, Hilary 2024

Lecture 3 [May 8th 2024]

1 The GNS representation

GNS = Gelfand–Naimark–Segal \Rightarrow Hilbert space picture = choice of coordinates on a C^{*} algebra.

Representations of C* algebras in Hilbert space (this will allow us to do computations).

Analogy: coordinates on a manifold

The Gelfand–Naimark–Segal theorem allows to construct representations of C^* algebras on an Hilbert space starting from any state ω (i.e. normalized positive linear functional).

A representation: a map $\varphi: \mathscr{A} \to \mathscr{L}(H)$ for some complex Hilbert space *H* such that φ is linear, $\varphi(1) = 1$, $\varphi(ab) = \varphi(a)\varphi(b)$ and $\varphi(a^*) = \varphi(a)^*$ where on the r.h.s. the involution is understood as the adjoint in the Hilbert space. This is also called a *-homomorphism.

More interesting: Any positive multiplicative functional $\varphi: \mathcal{A} \to \mathbb{C}$ give a one-dimensional representation on the Hilbert space $H = \mathbb{C}$. [Can we give up positivity?] Recall that positive linear functionals ω satisfy $\omega(a^*) = \overline{\omega(a)}$.

Lemma 1. Any representation is a contraction.

Proof. Let's assume that *a* is normal. Then Note that if $\lambda - a$ is invertible in \mathscr{A} then exists $c \in \mathscr{A}$ s.t. $c(\lambda - a) = 1$ that implies $\varphi(c)(\lambda - \varphi(a)) = 1$ so $\lambda - \varphi(a)$ is also invertible, that is $\sigma_{\mathscr{L}(H)}(\varphi(a)) \subseteq \sigma_{\mathscr{A}}(a)$. So for *C*^{*}-algebras

$$\|\varphi(a)\|_{\mathscr{L}(H)} = \mathcal{Q}_{\mathscr{L}(H)}(\varphi(a)) \leq \mathcal{Q}_{\mathscr{A}}(a) = \|a\|.$$

Now if *b* is a generic element then $a = b^*b$ is self-adjoint. And using the C^{*} property twice we have

$$\|\varphi(b)\|_{\mathscr{L}(H)}^{2} = \|\varphi(b)^{*}\varphi(b)\|_{\mathscr{L}(H)} = \|\varphi(a)\|_{\mathscr{L}(H)} \le \|a\| = \|b\|^{2}.$$

We want to construct representations.

Assume ω is a state and define the Hermitean form on $\mathscr{A}\colon$

$$\langle a, b \rangle_{\omega} = \omega(a^*b).$$

The linear space \mathscr{A} with this scalar product is a pre-Hilbert space. Let

$$\mathcal{N}_{\omega} = \{ a \in \mathscr{A} : \langle a, a \rangle_{\omega} = 0 \}$$

the set of zero elements and define the Hilbert space $H_{\omega} = \overline{\mathscr{A} \setminus \mathscr{N}_{\omega}}$ where the bar denotes the completion wrt. the topology generated by the scalar product $\langle, \rangle_{\omega}$. Denotes $||a||_{\omega} = \langle a, a \rangle_{\omega}^{1/2}$ the corresponding norm.

Observe that since $||b^*b||a^*a - a^*b^*ba \ge 0$ then

$$\langle ba, ba \rangle_{\omega} = \omega(a^*b^*ba) \leq \|b^*b\|\omega(a^*a) = \|b\|^2 \omega(a^*a) = \|b\|^2 \langle a, a \rangle_{\omega}$$

so the operator $L_b: H_\omega \longrightarrow H_\omega$ defined by $L_b a = ba$ on the dense subset \mathscr{A} is bounded with norm $||L_b|| \le ||b||$. Note that it is well defined, since $L_b a = 0$ if $a \in \mathcal{N}$.

Moreover $L_bL_c = L_{bc}$ and $L_b^* = L_{b^*}$ as can be easily checked. Therefore $a \mapsto L_a$ is an homomorphism of C^* algebras (since $\{L_a: a \in \mathcal{A}\}$ is a C^* subalgebra of $\mathcal{L}(H_\omega)$), indeed recall that $\|L_b\|_{\mathcal{L}(H_\omega)}^2 = \|L_b^*L_b\|_{\mathcal{L}(H_\omega)}$. So $\varphi_\omega(a) = L_a$ is a representation of \mathcal{A} on H_ω and if we denote by $\Omega_\omega = [1] \in \mathcal{H}_\omega$ we have

$$\omega(a) = \langle \Omega_{\omega}, L_a \Omega_{\omega} \rangle.$$

This is the GNS construction.

Note that the set $\{L_a\Omega_\omega: a \in \mathscr{A}\} \subseteq H_\omega$ is dense in H_ω . Then one says that Ω_ω is a cyclic vector for the representation φ_ω and that the representation is cyclic.

If *K* is another Hilbert space supporting a cyclic representation $\pi: \mathscr{A} \to \mathscr{L}(K)$ with cyclic vector $\psi \in K$ such that $\omega(a) = \langle \psi, \pi(a) \psi \rangle_K$ then the map $a \in \mathscr{A} \mapsto \pi(a) \psi \in K$ is an densely defined isometry from H_ω to *K* since

$$\langle a, a \rangle_{H_{\omega}} = \omega(a^*a) = \langle \pi(a) \psi, \pi(a) \psi \rangle_K.$$

Therefore the cyclic representations of \mathscr{A} associated to a state ω are unique up to isomorphism.

In general one call it the GNS representation associated to the state ω .

Example 2. Consider the commutative setting and let $H = L^2(\Omega, \mathcal{F}, \mu)$ for some probability space $(\Omega, \mathcal{F}, \mu)$ then on this space there are three different C^* algebras acting with pointwise multiplication on the elements of H: that of the continuous functions (taking \mathcal{F} to be the Borel σ -algebra on some compact space K), that of the bounded measurable functions and that of the $L^{\infty}(\mu)$ functions (i.e. equivalence classes modulo μ -null sets).

Remark 3. The space H_{ω} of the GNS construction can be thought as a non-commutative version of the commutative $L^2(\Omega, \mathcal{F}, \mu)$. However here right multiplication $R_b a = ab$ is not in general given by a bounded operator.

Theorem 4. (Gelfand–Naimark) The exists a faithful representation of \mathcal{A} in Hilbert space H

Faithful means that $\varphi(a) = 0 \Longrightarrow a = 0$. (i.e. the representation is injective)

Then GN theorem shows that there is no loss of generality to consider representations of physical systems in Hilbert space.

Remark 5. Consider a state ω and a self-adjoint *a* such that ω is dispersion-free wrt. *a*, i.e. $0 = \Delta_{\omega}(a) = [\omega((a - \omega(a))^2)]^{1/2}$ then in the corresponding GNS representation we have

$$\omega((a - \omega(a))^2) = \langle \Omega_{\omega}, (\varphi(a) - \omega(a))^2 \Omega_{\omega} \rangle = \|(\varphi(a) - \omega(a)) \Omega_{\omega}\|^2$$

so $(\varphi(a) - \omega(a))\Omega_{\omega} = 0$ and $\omega(a)$ is an eigenvalue of $\varphi(a)$ with eigenvector Ω_{ω} . In particular $\omega(a)$ should be in $\sigma(\varphi(a)) \subseteq \sigma(a)$.

1.1 Pure states and irreducible representations

Definition 6. A representation φ on the Hilbert space *H* is **irreducible** if the only invariant subspaces of the family $(\varphi(a))_{a \in \mathcal{A}}$ are $\{0\}$ and *H*.

For any family $\mathscr{B} \subseteq \mathscr{L}(H)$ we denote by \mathscr{B}' the commutant of \mathscr{B} , that is the set

$$\mathscr{B}' = \{ C \in \mathscr{L}(H) : [C, B] = 0, \forall B \in \mathscr{B} \},\$$

where [C, B] = CB - BC. Note that $\mathscr{B} \subseteq \mathscr{B}''$ and that $\mathscr{B}' \supseteq \mathbb{C} = \{\lambda 1: \lambda \in \mathbb{C}\}.$

Lemma 7. The representation $\varphi: \mathcal{A} \to \mathcal{L}(H)$ is irreducible iff $\varphi(\mathcal{A})' = \mathbb{C} = \{\lambda \mathbb{1} : \lambda \in \mathbb{C}\}.$

Proof. If φ is reducible then let *P* the orthogonal projection on a non-trivial invariant subspace. Let $v \in PH$ then we have $\varphi(a)v \in PH$ and $\varphi(a)Pv = \varphi(a)v = P\varphi(a)v$. If $v \notin PH$ then $v \in QH$ with Q = 1 - P and then for any *w*

$$\langle w, \varphi(a)Qv \rangle = \langle \varphi(a)^*w, Qv \rangle = \langle \varphi(a)^*(P+Q)w, Qv \rangle$$
$$= \langle P\varphi(a^*)w, Qv \rangle + \langle \varphi(a)^*Qw, Qv \rangle = \langle Qw, \varphi(a)v \rangle = \langle w, Q\varphi(a)v \rangle$$

so $[\varphi(a), Q] = 0$. Then is clear that $Q \in \varphi(\mathscr{A})'$ so finished.

Reciprocally if $R \in \varphi(\mathscr{A})'$ is a nontrivial self-adjoint element of $\mathscr{L}(H)$, by spectral calculus we can produce a projection $P \in \varphi(\mathscr{A})'$ by setting $P = \chi(R)$ with $\chi: \mathbb{R} \to \mathbb{R}$ some characteristic function of a subset of \mathbb{R} , then $P^2 = P$ so P is indeed a projection and the associated subspace is invariant under $\varphi(\mathscr{A})$ since P commute with any $\varphi(a)$.

Proposition 8. The GNS representation φ_{ω} is irreducible iff ω is extremal in the set of states, i.e. a pure state for \mathscr{A} .