Elements of Mathematical Quantum Mechanics

Massimiliano Gubinelli - TCC course - Oxford, Hilary 2024

Lecture 3 [May 8th 2024]

1 The GNS representation

GNS = Gelfand-Naimark-Segal = Hilbert space picture = choice of coordinates on a C*
algebra.

Representations of C* algebras in Hilbert space (this will allow us to do computations).
Analogy: coordinates on a manifold

The Gelfand-Naimark-Segal theorem allows to construct representations of C* algebras
on an Hilbert space starting from any state w (i.e. normalized positive linear functional).

A representation: a map ¢: & — £ (H) for some complex Hilbert space H such that ¢
is linear, ¢(1) =1, ¢(ab) =¢(a)p(b) and ¢(a’) = p(a)” where on the r.h.s. the involution
is understood as the adjoint in the Hilbert space. This is also called a »-homomorphism.

More interesting: Any positive multiplicative functional ¢: & — C give a one-dimen-
sional representation on the Hilbert space H=C. [Can we give up positivity?] Recall

that positive linear functionals w satisty w(a’) = w(a).
Lemma 1. Any representation is a contraction.

Proof. Let's assume that a is normal. Then Note that if A- a is invertible in & then
exists c€ & s.t. ¢(A-a) =1 that implies ¢(c)(A-¢(a))=1so A-¢(a) is also invertible,
that is oy (¢(a)) coy(a). So for C-algebras

(@)l zozw (@(a)) < 0u(a)zllal.

Now if b is a generic element then a=b"b is self-adjoint. And using the C* property
twice we have

(b)Y ay = () (D)2 a1y = (@) ey < llaall = 1 DI,

We want to construct representations.

Assume w is a state and define the Hermitean form on &:

(a,b),=w(ab).



The linear space & with this scalar product is a pre-Hilbert space. Let
Ny,={a€H:(a,a),=0}

the set of zero elements and define the Hilbert space H, = &/\.#,, where the bar denotes
the completion wrt. the topology generated by the scalar product ¢, ),. Denotes | all,=(a,
ay!/? the corresponding norm.

Observe that since ||b*b||a’'a-a'b"ba=0 then
(ba,ba),=w(a'b’ba)<|b'bllw(aa)=blfw(aa)=bl*a,a),

so the operator L;: H,— H, defined by Lya=ba on the dense subset & is bounded with
norm ||Ly|| <||b|l. Note that it is well defined, since L,a=0 if a€ /.

Moreover L,L.= Ly, and L}, = L as can be easily checked. Therefore a+ L, is an homo-
morphism of C* algebras (since {L,: a€ &/} is a C* subalgebra of £ (H,)), indeed recall
that ||Lb||?g(Hm) =|LyLoll #(m,)- So ¢.(a) =L, is a representation of & on H, and if we denote
by Q,=[1]€ %, we have

O)(Cl) = <Qw» LaQw>-

This is the GNS construction.

Note that the set {L,Q,:a€ &} <H, is dense in H,. Then one says that Q, is a cyclic
vector for the representation ¢, and that the representation is cyclic.

If K is another Hilbert space supporting a cyclic representation 7: & — & (K) with
cyclic vector € K such that w(a) =(y, 7(a) )k then the map a€ &/ +— 7 (a)y €K is an
densely defined isometry from H, to K since

(a,ayy,=w(aa)=(m(a)y,m(a)P)k.

Therefore the cyclic representations of &/ associated to a state w are unique up to iso-
morphism.

In general one call it the GNS representation associated to the state w.

Example 2. Consider the commutative setting and let H=L*(Q, %, i) for some proba-
bility space (Q,F, i) then on this space there are three different C* algebras acting with
pointwise multiplication on the elements of H: that of the continuous functions (taking
F to be the Borel o-algebra on some compact space K), that of the bounded measurable
functions and that of the L*(y) functions (i.e. equivalence classes modulo p-null sets).

Remark 3. The space H, of the GNS construction can be thought as a non-commuta-
tive version of the commutative L*(Q, %, ). However here right multiplication Rya=ab
is not in general given by a bounded operator.



Theorem 4. (Gelfand-Naimark) The exists a faithful representation of < in Hilbert space
H

Faithful means that ¢(a) =0= a=0. (i.e. the representation is injective)

Then GN theorem shows that there is no loss of generality to consider representations
of physical systems in Hilbert space.

Remark 5. Consider a state w and a self-adjoint a such that w is dispersion-free wrt.
a,ie. 0=A,(a)=[w((a-w(a))?)]"? then in the corresponding GNS representation we
have

w((a-w(a))?) =(Qu (p(a) - 0(a))*Qu) =1l (p(a) - &(a)) QI

so (p(a) - w(a))Q,=0 and w(a) is an eigenvalue of ¢(a) with eigenvector Q. In par-
ticular w(a) should be in a(¢(a))<co(a).

1.1 Pure states and irreducible representations

Definition 6. A representation ¢ on the Hilbert space H is irreducible if the only invariant
subspaces of the family (¢(a)) e are {0} and H.

For any family < % (H) we denote by % the commutant of &, that is the set
F ={CeZ¥(H):[C,B]=0,VBE %},
where [C, B] = CB- BC. Note that < %" and that &' 2C = {A1: A€ C}.

Lemma 7. The representation ¢: o/ — & (H) is irreducible iff p(&f) =C={A1: A€C}.

Proof. If ¢ is reducible then let P the orthogonal projection on a non-trivial invariant
subspace. Let v€ PH then we have ¢(a)v€PH and ¢(a)Pv=¢(a) v=Pp(a)v. If v PH
then v€ QH with Q=1-P and then for any w

(w, (@) Qv) =(p(a)'w,Qv) =(¢p(a) (P +Q)w,Qv)
=(Pp(a’) w,Qv) +(p(a)' Qw, Qv) =(Qw, p(a)v) =(w, Qp(a) )

so [¢(a),Q]=0. Then is clear that Q€ ¢(</) so finished.

Reciprocally if R€ ¢(&/) is a nontrivial self-adjoint element of & (H), by spectral cal-
culus we can produce a projection P€ ¢(&/) by setting P = y(R) with y:R — R some
characteristic function of a subset of R, then P?=P so P is indeed a projection and the
associated subspace is invariant under ¢(</) since P commute with any ¢(a). O



Proposition 8. The GNS representation ¢,, is irreducible iff © is extremal in the set of
states, i.e. a pure state for .
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