
Elements of Mathematical Quantum Mechanics

Massimiliano Gubinelli ⋅ TCC course ⋅ Oxford, Hilary 2024

Lecture 4 [May 15th 2024]

Pure states and irreducible representations

Definition 1. A representation φ on the Hilbert space H is irreducible if the only invariant
subspaces of the family (φ(a))a∈𝒜 are {0} and H.

For any family ℬ⊂−ℒ(H ) we denote by ℬʹ the commutant ofℬ, that is the set

ℬʹ = {C ∈ℒ(H ): [C ,B]=0, ∀B∈ℬ},

where [C ,B]=CB−BC . Note that ℬ⊂−ℬʹʹ and that ℬʹ ⊃−ℂ={λ1:λ∈ℂ}.

Lemma 2. The representation φ:𝒜→ℒ(H ) is irreducible iff φ(𝒜)ʹ =ℂ={λ1:λ∈ℂ}.

Proof. If φ is reducible then let P the orthogonal projection on a non-trivial invariant
subspace. Let v ∈PH then we have φ(a)v ∈PH and φ(a)Pv =φ(a)v =Pφ(a)v . If v ∈PH
then v ∈QH with Q=1−P and then for any w

⟨w,φ(a)Qv⟩= ⟨φ(a)∗w,Qv⟩= ⟨φ(a)∗(P +Q)w,Qv⟩

=⟨Pφ(a∗)w,Qv⟩+ ⟨φ(a)∗Qw,Qv⟩= ⟨Qw,φ(a)v⟩= ⟨w,Qφ(a)v⟩

so [φ(a),Q]=0. Then is clear that Q ∈φ(𝒜)ʹ so finished.

Reciprocally if R ∈φ(𝒜)ʹ is a nontrivial self-adjoint element of ℒ(H ), by spectral cal-
culus we can produce a projection P ∈ φ(𝒜)ʹ by setting P = χ(R) with χ : ℝ→ℝ some
characteristic function of a subset of ℝ, then P 2=P so P is indeed a projection and the
associated subspace is invariant under φ(𝒜) since P commute with any φ(a). □

Proposition 3. The GNS representation φω is irreducible iff ω is extremal in the set of
states, i.e. a pure state for 𝒜.

Proof. Let's assume that φω is reducible, that is there exists a non-trivial orthogonal
projection P in φω(𝒜)ʹ, then observe that, with Ωω ∈Hω the vacuum vector for φω and
with Q=1−P

ω(a)= ⟨Ωω,φω(a)Ωω⟩Hω= ⟨PΩω,φω(a)PΩω⟩Hω+ ⟨QΩω,φω(a)QΩω⟩Hω,

where the cross terms disappear since P commutes with φω(a). Observe that

λ= ⟨PΩω,PΩω⟩Hω ∈(0, 1)
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indeed if for example λ=0 we would have PΩω=0 but then Pφω(a)Ωω=0 and by ciclicity
of Ωω and continuity of P we would deduce that Pw=0 for any w ∈Hω which is ruled out
by non-triviality of P . Similarly λ=1 is also ruled out by an analogous argument. Now
let

ω1(a) :=
⟨PΩω,φω(a)PΩω⟩Hω

⟨PΩω,PΩω⟩Hω

, ω2(a) :=
⟨QΩω,φω(a)QΩω⟩Hω

⟨QΩω,QΩω⟩Hω

,

and observe that ω1,ω2 are states on 𝒜 and that ω = λω1 + (1 − λ)ω2. If ω1 =ω2 then
ω=ω1=ω2 and this cannot happen since then

⟨Ωω,φω(a)Ωω⟩Hω=
⟨PΩω,φω(a)Ωω⟩Hω

⟨PΩω,PΩω⟩Hω

, a∈𝒜

but then φω(a)Ωω approximate any vector ψ ∈QHω but then this implies

⟨Ωω,ψ ⟩Hω=
⟨PΩω,ψ ⟩Hω

⟨PΩω,PΩω⟩Hω

=0,

which in turn implies that QΩω=0 but this is a contradiction with ⟨PΩω,PΩω⟩Hω<1. This
implies that the state is not extremal, i.e. no pure.

Let's prove the converse, assume that the state ω is not pure, i.e. there exists λ∈ (0, 1)
and states ω1≠ω2 such that ω=λω1+ (1−λ)ω2. This implies that ω1 is dominated by ω
in the sense that if a�0 we have

ω(a)=λω1(a)+(1−λ)ω2(a)|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
�0

�λω1(a).

So the Hermitian form B(a,b)↦ω1(a∗b) on𝒜 satisfies (B(a,b)=ω1(a∗b)=ω1(b ∗a)=B(b,
a))

B(a,a)� 1
λω(a

∗a)= 1
λ⟨a,a⟩Hω.

In particular B(a,b) is well defined on 𝒜 \𝒩ω with 𝒩ω = {a ∈𝒜 : ⟨a,a⟩Hω =0} as a conse-
quence it defines a bounded self-adjoint operator X :Hω→Hω such that

B(a,b)= ⟨a,Xb⟩Hω, a,b ∈𝒜 .

(exercise) Now observe that

B(a, cb)=ω1(a∗cb)=ω1((c ∗a)∗b)=B(c ∗a,b),

as a consequence

⟨a,Xφω(c)b⟩Hω=B(a, cb)=B(c ∗a,b)= ⟨φω(c ∗)a,Xb⟩Hω= ⟨a,φω(c)Xb⟩Hω, a,b ∈𝒜

from which we conclude that Xφω(c)=φω(c)X using the density of𝒜 in Hω. This holds
for any c ∈𝒜 therefore we conclude that X ∈φ(𝒜)ʹ. Now X is a non-trivial self-adjoint
operator so the representation is not irreducible. □
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Example 4. ω =λω1+ (1− λ)ω2 represents the situation where with probability λ1 the
system is in the state ω1 and with probability 1−λ it is in the state ω2.

Corollary 5. A state ω on a commutative C ∗ algebra 𝒜 is pure iff it is multiplicative.

Proof. Let ω be a pure state, then the representation φω is irreducible but it is also
Abelian φω(𝒜)⊂−φ(𝒜)ʹ =ℂ, so it is a one-dimensional representation and Hω=ℂ is also
a one-dimensional Hilbert space. Therefore

ω(ab)= ⟨Ωω,φω(a)φω(b)Ωω⟩Hω= ⟨Ωω,φω(a)Ωω⟩Hω⟨Ωω,φω(b)Ωω⟩Hω =ω(a)ω(b)

so ω is multiplicative. On the hand if ω is multiplicative the ω(a∗b) = ω(a∗)ω(b) =
ω(a)ω(b) so φω(a)=ω(a) is the GNS representation resulting from it and is one dimen-
sional, therefore irreducible. □

In the commutative case, the pure state are the elements of the Gelfand spectrum Σ(𝒜)
and any element of 𝒜 can be seen as a continuous complext function on Σ(𝒜). A pure
state is just evaluation in a point for these functions ω(f )= f (ω), i.e. a Dirac measure
and a impure state is the limit of convex combintations of such “delta measures”. So in
particular any state ω can be written as an average

ω(f )=�
σ(𝒜 )

f̂ (ρ)μ(dρ)

for some measure μ ∈Π(Σ(𝒜)).

Note that on pure states ω we have

Δω(f )=ω(f 2)−ω(f )2=0.

So they represent the more precise determination of the state of a system. This of course
if the algebra is Abelian.

However in general irreducible representations are not one dimensional if the algebra
is non-commutative and they do not corresponds to multiplicative functionals, nor to a
probabilistic situation.

If a state ω dominates another, e.g. ω1 (that is if ω1(a) � Cω(a) for any a � 0) then
there exists a non-trivial self-adjoint operator in φω(𝒜)ʹ and therefore there exists also
an orthogonal projection P ∈ φω(𝒜)ʹ and using it is not-difficult to see that Hω splits
into a direct sum Hω=V ⊕W and that φω restricts leaves these subspaces invariant and
restricts to a sub-representation of 𝒜 , so we have

φω=(((((((((( φ (1)

φ (2) )))))))))).

Given a representation φ on H we can construct a whole family of states associated to
it, called its folium.
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For example of a state vector

ωψ(a)= ⟨ψ ,φ(a)ψ ⟩

where ψ is a unit vector in H .

Or mixures of state vectors ψ1, . . . ,ψn with weights λ1, . . . ,λn such that λ1+ ⋅ ⋅ ⋅ +λn=1 and

ω(a)=�
i

λi⟨ψi,φ(a)ψi⟩=Tr(((((((((�
i

λi|ψi⟩⟨ψi|))))))))φ(a))

So a general element of the folium of φ is given by a density matrix ρ

ωρ(a)=Tr(ρφ(a)).

Note that ωρ is a vector state for its own GNS representation φωρ, i.e.

ωρ(a)= ⟨Ωωρ,φωρ(a)Ωωρ⟩Hωρ
.

Corollary 6. Any vector state of an irreducible representation is pure.

I will not prove the following two interesting results.

Theorem 7. The folium of a representation and the set of vector states of a representation
are norm closed subsets in the space of all states 𝒮.

Theorem 8. (Fell) The folium of a faithful representation is weakly-∗ dense in the set of
all states.

Remark 9. From a physical point of view we can only do a finite amount of exper-
iments (and with finite precision), which means that we can only identify a weak-∗
neighborhood of set of all possible states of the system, i.e. a subset of the form

{ω∈𝒮: |ω(ai)−vi|� εi for all i=1, . . . ,n}

where (ai)i are observables and εi>0 and vi∈ℝ. So any faithful representation is as good
to be used to approximate a realistic situation. However for mathematical purposes
sometimes is useful to single out specific representations which have additional prop-
erties.

The quantum world

Somehow commutative setting does not fit the experiments:

• Stern–Gerlach experiment show that the magnetic moment of the electron M =
(Mx ,My,Mz) is quantized (so does not corresponds to the state space which we
expect from a vector in 𝕊2) and moreover it seems not to agree with probabilistic
reasoning.
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• Black-body radiation. The thermodynamical analysis of a particular situation
(Plack) at very low temperatures (i.e. ∼0∘Κ≈273∘C) pointed out (Einstein) that
the degrees of freedom (i.e. different possible states) in the electromagnetic radi-
ation field (light) has to be discrete and not continuous. I.e. light is composed
by discrete entities, i.e. photons. That is somehow the set of different possible
(pure) states is discrete and not continuous. Planck's constant:

h=6.62607004×10−34m2kg/s.

• Heisenberg's analysis of a quantum particle shows that when you try to measure
the position and the speed of a particle you get in trouble. In the sense that
measurements of position will disturb the velocity of the particle and vice-versa
and one should make the hypothesis that both position q and momentum p=mv
(i.e. mass times velocity) cannot be determined in any conceivable state ω with
arbitrary precision, i.e.

Δω(q)Δω(p)�
ℏ
2 (1)

This is Heisenberg's indetermination principle. It somehow implies that the
states of a particle cannot be labelled by position and momentum variables, i.e.
we need to forbid states which have precise values of position and momentum.
Note that if (q,p) were forming a commutative algebra then you will have such
states like δα ,β(dq, dp) which give precise value to p =α and q =β .

The set of all (elementary) states of a quantum system cannot be put in direct correspon-
dence with the possible values of all the observables. And in particular it is suggested
that the set of elementary states is discrete and not continuous.

p

q

classical

quantum

h

q

p

This was the conclusion of Heisenberg [2] and he created matrix mechanics, while
somehow Schrödinger constructed a different model for the states (i.e. wave-functions
constrained by PDEs) and he created wave mechanics. Dirac [1] later showed that the
two are equivalent descriptions. Von Neumann gave the standard mathematical axiom-
atization [3].
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The quantum particle

We want now to construct a physical system (observables+states) that encodes Heisen-
berg's indetermination principle

Δω(q)Δω(p)�
ℏ
2 (2)

for the position q and momentum p of a particle and other experimental observations.

The C ∗-algebra of observables 𝒜 should contain the C ∗-algebra 𝒬 of all the bounded
functions f (q) of q and the C ∗-algebra 𝒫 of all the bounded functions g(p) of p but I
need to rule out that q, p commutes otherwise I violate Heisenberg principle unless I
restrict the set of states. But restricting the set of states is mode difficult than dealing
with a non-commutative algebra because we have more structure on 𝒜 than on 𝒮.

f (q)=(q ∧L)∨(−L).

Q,P :C(ℝ;ℂ)→𝒜 .

f (q)=Q(f ), g(p)=P(g)

We want to explore how non-commutativity is related to the indetermination prin-
ciple (2) and also to the notion of “complementarity”. Complementary observables are
somehow observables which do not allow simultaneous measurement, that is if we are
able to have states in which one of the is completely detemined, then the other has
to be completely “undetermined”. Think about the Stern-Gerlach experiment and the
measurement of the magnetic moment in two orthogonal directions.

Anyway let us see what we can get from (2).

Observe that if a,b∈𝒜 and self-adjoint then (a+ iλb)∗(a+ iλb)�0 for any λ∈ℝ and if ω
is a state we have

0�ω((a+ iλb)∗(a+ iλb))=ω(a2)+λ2ω(b2)+ iλω(ab−ba),

therefore we need to have, letting [a,b]=ab−ba,

|ω(i[a,b])|�2(ω(a2))1/2(ω(b2))1/2.

So in any C ∗ algebra we have the (Schrödinger–Robertons) relation

Δω(a)Δω(b)�
1
2 |ω(i[a,b])|.
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So if we want to implement Heisenberg's principle for a pair of complementary observ-
ables q,p a way is to require that i[p,q] is constant element of 𝒜 and therefore

[q,p]= iℏ, (3)

Unfortunately this is not possible in a C* context.

First problem: these cannot be finite dimensional matrices, indeed if they were we could
take the trace over the vector space ℂn they acts on and get

Tr([q,p])=�
n

⟨en, [q,p]en⟩=0, Tr(iℏ)= iℏn.. . .

not very nice.

Moreover they cannot implemented even in an abstract C ∗ algebra, indeed if q,p ∈𝒜sa

then

[qn,p]= iℏnqn−1

and therefore by the C ∗ condition

nℏ‖q‖n−1=nℏ‖qn−1‖= ‖iℏnqn−1‖= ‖[qn,p]‖�2‖p‖ ‖q‖n

which implies

‖p‖ ‖q‖�nℏ/2

if ‖q‖≠0. This is true for any n and so either ‖p‖ or ‖q‖ has to be infinite.

This somehow is to be expected because “the position” is not really a bounded observ-
able.

The discussion below is inspired by the following papers:

• Accardi, Luigi. “Some Trends and Problems in Quantum Probability.” InQuantum
Probability and Applications to the Quantum Theory of Irreversible Processes,
edited by Luigi Accardi, Alberto Frigerio, and Vittorio Gorini, 1055:1–19. Lec-
ture Notes in Mathematics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1984.
https://doi.org/10.1007/BFb0071706.

• Ohya, Masanori, and Dénes Petz. Quantum Entropy and Its Use. Texts andMono-
graphs in Physics. Berlin; New York: Springer-Verlag, 1993.

• Schwinger, Julian. “Unitary Operator Bases.” Proceedings of the National Academy
of Sciences 46, no. 4 (April 1, 1960): 570–79. https://doi.org/10.1073/pnas.46.4.570.
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1 Non-commutativity and probability

To start simpler we consider first system which possess “finitely many” pure states.
Think about the two states in the Stern–Gerlach experiment.

Let us assume we have two observables a,b which generates𝒜 and such that σ(a),σ(b)
are finite.

We would like to inquire about the “most indeterminate” relative position of a and b
inside the C ∗-algebra 𝒜 =C ∗(a,b) they generate.

First of all it is clear that since σ(a) is finite, let's say with n elements, we can find
function (ρk ∈C(ℝ))k=1, . . . ,n such that ρk(x) ∈ [0, 1] and ∑k=1

n ρk(x)=1 for all x ∈ℝ and
ρk(x)ρℓ(x)=δk,ℓ for all x ∈σ(a).

Let πk
a :=ρk(a) and observe that by construction

�
k=1

n

πka=1, πk
aπℓ

a=δk,ℓ , k, ℓ =1, . . . ,n,

i.e. (πk
a)k form a partition of unity in self-adjoint projections. We let (πk

b)k=1, . . . ,m the
analogous objects associated to b where m is the size of σ(b).

Clearly there exists constants (ak)k such that f (a)=∑k f (ak)πk
a for any f ∈C(ℝ) and

similarly for b so we need that [πk
a,πℓ

b]≠0 for some k = ℓ in order to have a non-commu-
tative algebra.

Let us assume that C ∗(a) and C ∗(b) are maximally abelian subalgebras in 𝒜 .

Then observe that the observable

�
k

πk
aπℓ

bπk
a

commutes with any element in C ∗(a) and therefore it should belong to it. As a conse-
quence there exist complex numbers (pℓ ,k

b|a)k,ℓ such that

�
k

πk
aπℓ

bπk
a=�

k

pℓ ,k
b|aπk

a.

Since the l.h.s. is positive on any state and there exist states (ωk
a) such that ωk

a(πℓ
a)=δk,ℓ

we have that (πk
a)k is a basis of C ∗(a), that (pℓ ,k

b|a)k,ℓ are uniquely determined and that

pℓ ,k
b|a
�0, �

k

pℓ ,k
b|a=�

ℓ

pℓ ,k
b|a=1.

Therefore we have a set of probabilities (pℓ ,k
b|a)k,ℓ which are generated intrinsically by the

non-commutativity of the algebra, even before we consider the states on that algebra.
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This shows that, as soon as we allow for non-commutativity, some “randomness” is
already built into our algebra of observables.

For any state ω we can construct a new state

ωa(h)=�
k

ω(πk
ahπk

a)

and now observe that

ωa(f (a))=ω(f (a)), ωa(f (b))=�
k,ℓ

f (bℓ)ω(πk
aπℓ

bπk
a)=�

ℓ ,k
f (bℓ)pℓ ,k

b|aω(πk
a)

so ωa(πℓ
b)=∑kpℓ ,k

b|aω(πk
a).
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