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Complementary observables in finite quantum system

We want now to devise observables a,b for which the matrix pℓ ,k
b|a is as uniform as pos-

sible, meaning that if we have measured a then there is no particular knowledge on b.
We call these observables “complementary”. We require also that either a or b provides
an as complete as possible description of the physical system, i.e. that C ∗(a) and C ∗(b)
are maximally abelian. Without loss of generality we can assume that σ(a) = σ(b) =
{0, . . . ,n−1} for some integer n�2.

Actually, we assume that they have all the same spectrumwith n points and to be given
by

Γ={γk= e 2πik/n}k=0, . . . ,n−1.

I call the observables u,v . I want that σ(u)=σ(v)=Γ. I consider themℒ(ℂn). Let (φk)k
be the eigenvectors of u, i.e.

uφk=γkφk

and then take

vφk :=φk+1

with k +1 understood modulus n. Now observe that uvφk =uφk+1= γk+1φk+1= γk+1vφk =
(γk+1/γk)vuφk for any k =0, . . . ,n−1 so

uv = e 2πi/nvu. (1)

If we assume that u,v generate the algebra of observables then this fixes the full alge-
braic structure. Observe also that un=v n=1.

Remark 1. Observe also that (1) implies that unv = vun and also v nu =uv n so the ele-
ments un,v n belongs to the center (i.e. the elements which commutes with all the others)
of the algebra generated by u,v . If we assume that u,v generate each of them a maxi-
mally abelian subalgebra then we can conclude from the commutation relation only that
un,v n∈ℂ. From this one can see that any irreducible representation of the commutation
relation is n dimensional.
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In particular

0=(γk−1u)n−1=(γk−1u−1)�
ℓ=0

n−1

(γk−1u)ℓ

and from this we deduce that

πk
u :=n−1�

ℓ=0

n−1

(γk−1u)ℓ

satisfies

uπk
u=γkπk

u

so πk
u is the orthogonal projection on the span of φk, indeed one can check that (πk

u)∗=πk
u

and πk
uπℓ

u=δk,ℓπk
u. So we have also u=∑k=0

n−1γkπk
u. For v we can proceed in the same way

and define πk
v. Now let's compute ∑kπk

uπℓ
vπk

u using (1) and get

�
k

pℓ ,k
v|uπk

u=�
k

πk
uπℓ

vπk
u= 1

n , ℓ =1, . . . ,n−1

so as required we have pℓ ,k
v|u=1/n.

So we confirm that our choice of algebraic structure give indeed a maximally comple-
mentary pair of observables.

We want now to argue that u, v are sufficient to generate all ℒ(ℂn) (i.e. all the n ×n
complex matrices).

Let X ∈ℒ(ℂn) and observe that the operator

Y = 1
n2�

k,ℓ
u−kv−ℓXv ℓuk,

satisfy uY =Yu and vY =Yv so Y commutes with all the algebra generated by u,v (this
actually depends only on the commutation relation (1)).

Then this means that Y is a multiple of the identity, because since it commutes with u
we must have Y =∑kykπk

u but then Y = vYv ∗=∑kykvπk
uv ∗=∑kykπk+1

u and this implies
that yk=yk+1 that is Y =λ1 for some λ∈ℂ.

Construct a linear functional ρ such that ρ(X)=λ and by thinking a bit is clear that ρ:
ℒ(ℂn)→ℂ is a actually a positive linear functional (think about it, is clear from the
definition of Y ) and ρ(1)=1.

The definition of Y implies easily that for any X ∈ℒ(ℂn)

X =�
k,ℓ

ukv ℓρ((ukv ℓ)∗X)
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that is (ukv ℓ)k,ℓ is an orthornomal basis of ℒ(ℂn) with respect to the non-degenerate
scalar product ⟨X ,Y ⟩= ρ(X ∗Y ). So in particular the algebra generated by u, v span all
the n×n complex matrices.

This proves that the representation we gave is irreducible and therefore the pure states
of this algebra are exactly the vector states of this representation. So to describe all the
possible states is enough to restrict to states of the form

ω(X)=Trℂn[ρπ(X)],

where ρ ∈ℒ(ℂn) is a density matrix (i.e. ρ �0, Trℂn(ρ)=1) and π is the concrete repre-
sentation of this algebra that we have analyzed.

We would like now to take some limit n→∞ in order to produce in this way contin-
uous analogs of these algebras. This would give us an example of non-commutative C ∗

algebra generated by two abelian subalgebras with continuous spectrum.

The intuition we want to carry on is howwe go from discrete uniform r.v. to continuous
ones. In particular imagine that X is a r.v. with continuous distribution described by a
density p(x) on ℝ. I can imagine to approximate it in law by taking a discrete r.v. XL

such that XL= [X ]L for L ∈ℕ where [x]L= ⌊Lx⌋/L. Then we have for any continuous
and bounded function f : ℝ→ℝ

𝔼[f (XL)]=�
ℝ
f ([x]L)p(x)dx→�

ℝ
f (x)p(x)dx =𝔼[f (X)].

Let's try to implement the same procedure for a C ∗-algebra. The first observation is that
if we denote (un,vn) a discrete canonical pair of degree n we have the following. We can
take L2(𝕋) as Hilbert space where 𝕋=ℝ\ℤ and represent each un and vn as

unf (x)=exp(2πi [x]n)f (x), vnf (x)= f (x −1/n), x ∈𝕋.

One can check that un,vn is a representation of the algebra we constructed above. In this
way we can embed all the operators (un,vn)n�0 intoℒ(L2(𝕋)).

We have to understand what plays the role of “continuous functions” in this context.
We just take monomials of the form un

kvnℓ (they suffice to determine any other element
of C ∗(un,vn) due to their commutation relation). However is easy to see that un

kvnℓ →1
in the weak topology of L2(𝕋). Somehow we need to look at high powers of un, vn to
see something interesting. We take ℓn=n1/2[s]n1/2 and kn=n1/2[t]n1/2 and now consider

⟨fn,un
knvnℓngn⟩L2(𝕋)=�

𝕋
fn(x)exp(2πikn [x]n)gn(x − ℓn/n)dx .

un
knvnℓn= e 2πiknℓn/nvnℓnun

kn =e 2πi[s]n1/2[t]n1/2vnℓnun
kn
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By rescaling we have, for functions fn,gn supported on (−π ,π) and letting x =y/n1/2.

⟨fn,un
knvnℓngn⟩L2(𝕋)=�

(−π ,π)
fn(x)exp(2πi[t]n1/2[x]nn1/2)gn(x − [s]n1/2/n1/2)dx

=n−1�
(−πn1/2,πn1/2)

fn(y/n1/2)exp(2πi[t]n1/2n1/2[y/n1/2]n)gn((y − [s]n1/2)/n1/2)dy

so to have a well defined limit we can take fn(x)=n1/4f (n1/2x) and gn(x)=n1/4g(n1/2x)
with f ,g ∈C0

∞(ℝ) so that for n large enough we have

⟨fn,un
knvnℓngn⟩L2(𝕋)=�

ℝ
f (y)exp(2πi[t]n1/2n1/2[y/n1/2]n)g(y − [s]n1/2)dy

so here now we can take the limit and obtain that

lim
n

⟨fn,un
knvnℓngn⟩L2(𝕋)= ⟨f ,U (t)V (s)g⟩L2(ℝ) (2)

where (U ,V ) are two unitary groups acting on L2(ℝ) as

U (t)f (y)=exp(2πity)f (y), V (s)f (y)= f (y − s).

Un(t)=un
kn, Vn(s)=vnℓn

un
knvnℓn= e 2πiknℓn/nvnℓnun

kn =e 2πi[s]n1/2[t]n1/2vnℓnun
kn

Un(t)Vn(s)=e 2πi[s]n1/2[t]n1/2Vn(s)Un(t)

lim
n→∞

ωn(Un(t)Vn(s))=C(t , s)=ω(U (t)V (s))

which implies that for any non-commutative polynomial F we have

ωn(F(Un,Vn))→ω(F(U ,V ))

since by the commutation relations we can rewrite F(U ,V ) as a linear combination of
monomials of the form U (t)V (s) for various t , s.

Moreover they are weakly continuous, i.e. t ↦ ⟨f ,U (t)g⟩ is continuous for all f , g ∈
L2(ℝ). Since they are unitary they are also strongly continuous.

They satisfying the commutation relations

U (t)V (s)=e 2πistV (s)U (t), t , s ∈ℝ. (3)

These commutation relations are called the Weyl form of the canonical commutation
relations and they are the implementation of the Heisenberg's commutation relations

[P ,Q]= iℏ,
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within the C ∗-framework (i.e. working only with bounded operators). The link between
these formulas comes from interpreting the two unitary groups as being generated by
the self-adjoint operators P ,Q i.e. as

U (t)=exp(iQt), V (s)=exp(iPs),

Putting aside for the moment unbounded operators we obtained a pair of commutative
C ∗ algebras 𝒬,𝒫 given by 𝒬=C ∗((U (t))t∈ℝ), 𝒫 =C ∗((V (s))s∈ℝ) which are concrete C ∗

algebras on L2(ℝ). We denote 𝒜 =C ∗(𝒬,𝒫 ).

The C ∗-algebra 𝒜 is called the Weyl algebra. It is the fundamental example of two
continuous observables which do not commute and in some sense they show comple-
mentarity.

Unitary representations of ℝ and observables as homorphisms

Assume for the moment that we the family (U (t))t∈ℝ is a unitary family of bounded
operators on an Hilbert space H (giving a representation of ℝ on H ).

For any unit vector v ∈H we can form the function φ v(t)= ⟨v ,U (t)v⟩, it is easy to show
that φ v(0)=1, and φ v is positive definite, i.e.

�
i, j

λ̄iλjφ v(tj− ti)�0 (λi)i⊂−ℂ,(ti)i⊂−ℝ.

This are the same properties of the characteristic function of a measure, so we want to
show that there exist a measure μv on ℝ so that

φ v(t)=�
ℝ
e itxμv(dx), t ∈ℝ.

This is essentially Bochner's theorem (given some continuity of φ v), but are going to
sketch a proof because will give us a simple example of more involved reconstruction
we encouter later on.

Let f ∈𝒮(ℝ) a Schwartz function and define

Tf :=�
ℝ
U (t) f̂ (t)dt

where f̂ is the Fourier transform of f . In order for this definition to make sense I need
some condition on the family (U (t))t∈ℝ to be able to integrate it. Is easy to check in
simple cases that (U (t))t∈ℝ is essentially never continuous in the operator norm.

5



Note that it is a bounded operator because

|⟨v ,Tfv⟩|��
ℝ
|φ v(t)| | f̂ (t)|dt � ‖v‖2�

ℝ
| f̂ (t)|dt �Cf ‖v‖2

for all f ∈𝒮(ℝ) and for all f ∈ℱL1={f ∈C(ℝ): ‖ f̂ ‖L1<∞}. This define a linear functional
ℓv on 𝒮(ℝ) such that

|ℓv(f )|�Cv‖ f̂ ‖L1.

In order to extend this functional to all C0(ℝ) I need to show that |ℓv(f )| <∼ ‖f ‖∞ for
f ∈𝒮(ℝ).

In order to do this one has to use that ℓv is positive, that is if f = g 2
� 0 then provided

g ∈𝒮(ℝ) we have

ℓv(f )= ℓv(g 2)�0

because we use that

�
ℝ
φ v(t) f̂ (t)dt =�

ℝ
�
ℝ
φ v(t + s)ĝ(t)ĝ(s)dtds �0

by positive definiteness of φ ν.

Then one argue by approximation that for any f ∈𝒮(ℝ) one has ‖f ‖∞− f =h�0 and this
can be approximated by hε in 𝒮(ℝ) to get that ℓv(h)�0 and this will imply that

ℓv(f )� ‖f ‖∞

and the the functional can be extended to all C0(ℝ) by approximation.

To make rigorous this argument one need that φ v is continuous in t .

As soon as we have extended ℓv continously we can define a ∗-representationQ of C0(ℝ)
onℒ(H ). For any f ∈C0(ℝ) define the operator Q(f ) by the relation ⟨v ,Q(f )v⟩= ℓv(f )
and its polarization. This define a bounded operator such that ‖Q(f )‖ℒ(H )� ‖f ‖∞ and
Q(f )∗=Q( f̄ ) and Q is linear in f and Q(f )Q(g)=Q(fg) (by continuity is enough to
check there relations of f ∈𝒮(ℝ) and this case we have the more precise relation

Q(f )=�
ℝ
U (t) f̂ (t)dt

(remember that the r.h.s is defined as a weak integral). I would like to use f (x)=e isx , in
order to do this observe that for any v ∈H

⟨v ,Q(f )v⟩=�
ℝ
φ v(t) f̂ (t)dt ,

looking at this formula is clear that if fn→ f in such a way that the r.h.s. converges, so
we can take fn(x)=e isxe−x

2/(2n) so that

⟨v ,Q(fn)v⟩=�
ℝ
φ v(t)fn̂(t)dt =(2πn−1)−1/2�

ℝ
φ v(t)e−n(t−s)2/2dt→φ ν(s)
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by continuity of φ ν. So this suggest that we can define Q(e is⋅)=U (s). In order for this to
make full sense we need to extend Q to all continuous bounded functions. Short way to
do this is to realise that ℓv corresponds to a measure μv By Riesz-Markov and then just
extend it using measure theory. In this case actually you can extend it to all bounded
measurable functions on ℝ.

Note also that if fn↑f then the sequence (⟨v ,Q(fn)v⟩)n is monotone increasing since if
f �0 then ⟨v ,Q(f )v⟩�0 so we can extend Q to all Cb(ℝ). To check that the extension is
unique the following argument works.

Take now the family (hn(x)=exp(−nx 2))n then by continuity of φ v it is easy to prove
that

Q(hn)→1ℒ(H ).

Observe that if f ∈Cb(ℝ) then hnf ∈C0(ℝ) and it follows that for any extension Q ʹ of Q
to Cb(ℝ) we have

Q ʹ(hn)Q ʹ(f )=Q ʹ(hnf )=Q(hnf )=Q(hn)Q(f )

and taking limits we have Q ʹ(f )=Q(f ).

So today we proved that for any weakly-continuous one-parameter unitary group in
ℒ(H ) we can construct a representation Q of the C ∗-algebra Cb(ℝ) onℒ(H ). It is sug-
gestive to write f (Q)=Q(f ) and think to f (Q) as a function computed on an operator
Q in such a way that the formula

U (t)=exp(itQ)

has now a sense. We could of course associate to Q an unbounded linear operator Q̂ on
a dense domain within H in such a way that by Stone theorem Q̂ is the generator of the
group (U (t))t∈ℝ.

From the operational point of view such an homomorphism Q represent an observable
in the sense that we can measure its expectation value on any state ω and also we can
see it as a random variable with a law given by the linear functional

f ↦ω(f (Q)).

If we go back to the Weyl relation we now understand that they describe two observ-
ables P ,Q which satisfy the commutation relations

exp(itQ)exp(isP)=exp(2πist)exp(isP)exp(itQ).
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Combining unbouded operators is a task of the same difficulty of combining two homo-
morphism or two unitary representations of ℝ.

There is no simple way to understand, for example, the sum P +Q.

Tentantively in this course we take the attitude that an observable is really a *-homomor-
phism of Cb(ℝ) into either some abstract C ∗-algebra or into a C ∗-algebra of operators.
This extends to the non-commutative/quantum context the probabilistic notion of real
random variable.

This is coherent with our modelisation which sees observables as self-adoint elements
of a C ∗-algebra in that if f : ℝ→ℝ then f (Q) is a self-adjoint operator.

The reason to use this different notion is that it can accomodate the case where we
have dealing with “unbounded” obserables. Think for example to a Gaussian random
variable X . A Gaussian random variable is not an element of a C ∗-algebra since X can
take arbitrarily large values. However if we look at X has a ∗-homomorphism by letting
X(f ) := f (X) for any f ∈C(ℝ) then X is a well defined observable. In this case it has a
concrete realisation on L2(ℙ) and if we take v(ω)=1 we have that

⟨v ,X(f )v⟩=𝔼[f (X)].

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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