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In the last lecture we understood that to any strongly continuous family (U (t))t∈ℝ of
operators in ℒ(H ) we can associate in essentially a unique way an ∗-homomorphism
Q:C(ℝ)→ℒ(H ) such that Q(e iα ⋅)=U (α) and similarly for V : P :C(ℝ)→ℒ(H ) such
that P(e iβ ⋅)=V (β), then we can write f (Q) :=Q(f ) and have that Weyl relations have
the form

e iαQe iβP =e iβPe iαQe iαβ.

Recall that Q(f ) is defined by polarisation of the relation ⟨v ,Q(f )v⟩= ℓv(f ) where v
is any unit vector in H and ℓv is the unique positive functional on C(ℝ) which has
appropriate locality properties (and therefore corresponds to a unique Borel probability
measure μν on ℝ) and such that ℓν(e iα ⋅)= ⟨v ,U (α)v⟩.

From the point of the of C ∗algebraic approach the homomorphism Q,P represents fam-
ilies of observables which are then given by choosing a particular way f to measure the
quantity Q so that we have a definite observable Q(f ), i.e. self-adjoint element of C ∗.
Let's call them extended observables.

For the moment we understand a Weyl C ∗-algebra as given by the concrete realisation
in L2(ℝ) (in particular regular):

U (α)f (x)= e iαxf (x), V (β)f (x)= f (x −β).

Note that we can form the Weyl operators (W (z))z∈ℂ defined for z =α + iβ ∈ℂ as

W (α + iβ) := e iαβ/2e iαQe iβP .

One can check that W (z) is unitary for any z ∈ℂ and that

W (z)W (z ʹ)=e iIm⟨z,zʹ⟩W (z +z ʹ), z,z ʹ ∈ℂ (1)

where ⟨z,z ʹ⟩= z̄z ʹ is the Hermitian scalar product of ℂ (a one dimesional complex Hilbert
space).

Remark that ω(z, z ʹ)= Im⟨z, z ʹ⟩ is antisymmetric i.e. ω(z, z ʹ)=−ω(z ʹ, z) and that ω(z,
z ʹ)=0 for all z implies z ʹ = 0 (i.e. ω is non-degenerate).

1



Let

W̃ (z,λ) :=e iλW (z)

for λ∈ℝ then

W̃ (z,λ)W̃ (z ʹ,λʹ)=W̃ (z +z ʹ,λ+λʹ + Im⟨z,z ʹ⟩),

which means that the (W̃ (z,λ))z,λ give a unitary representation of the Heisenberg group
ℍ≈ℂ×ℝ with composition (z,λ)(z ʹ,λʹ)=(z +z ʹ,λ+λʹ+ Im⟨z,z ʹ⟩). It a non-commutative
group since ω is not symmetric.

Theorem 1. (Von Neumann) Regular irreducible representations of the (finite dimen-
sional, i.e. where instead of ℂ we consider ℂn) Weyl relations are all unitarily equivalent,
i.e there is only one up to isomorphism.

This is quite stricking. Think about having only one (U (t)= e itQ)t∈ℝ strongly contin-
uous group representation of ℝ. Then any multiplicative state of the form

φα(U (t))= e itα.

Remark 2. Regular representation means that

t↦π(W (tz))

(where we understand we are considering the representation π) is weakly continuous
in the Hilbert space for any z ∈ℂ. This is equivalent to strong continuous.

Proof. (one dimensional case) Let us introduce the operator

P :=�
ℝ2
dαdβe−(|α |2+|β|2)/4e iαβ/2e iαQe iβP =�

ℂ
e−|z|

2/4W (z)dzdz̄

which is well defined as a strong integral, i.e when computed on vectors ψ ∈H (regu-
larity is needed here, at least).

We can check that P ≠0 by observing that

W (−w)W (z)W (w)=e iIm⟨z,w⟩W (−w)W (z+w)=e iIm⟨z,w⟩e iIm⟨−w,z+w⟩W (z)=e i2Im⟨z,w⟩W (z)

and looking at

W (−w)PW (w)=�
ℂ
e−|z|

2/4W (−w)W (z)W (w)dzdz̄ =�
ℂ
e−|z|

2/4e i2Im⟨z,w⟩W (z)dzdz̄
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Assume that P =0, so we haveW (−w)PW (w)=0 and for any vector ψ ∈H we will have
for any w ∈ℂ

0=�
ℂ
e−|z|

2/4e i2Im⟨z,w⟩⟨ψ ,W (z)ψ ⟩dzdz̄

by Fourier transform with respect to both real and imaginary part of w we deduce that

e−|z|
2/4⟨ψ ,W (z)ψ ⟩=0

for almost all z ∈ℂ and by continuity of this function we have that ⟨ψ ,W (z)ψ ⟩=0 for
all z, and ψ but this is in contradiction with W (0)=1.

With a tedious but elementary computartion with Fubini theorem and Gaussian inte-
grals one can check that (exercise)

PW (w)P = e−|w |2/4P , w ∈ℂ

so in particular this says that P 2=P and since is clear by definition that P ∗=P we have
that that P is a non-trivial projection (it cannot be P =1).

So let ψ0 be a unit vector in Im(P) so that Pψ0=ψ0.

By irreducibility the linear space 𝒟 := span{W (z)ψ0: z ∈ℂ} is dense in H since any ele-
ment of the C ∗-algebra generated by (W (z))z∈ℂ can be approximated by linear combina-
tion of W (z)s.

We have also that ψ0 is the only eigenvector of P since if φ is another one orthogonal
to ψ0 we have

⟨φ,W (z)ψ0⟩= ⟨Pφ,W (z)Pψ0⟩= ⟨φ,PW (z)Pψ0⟩= e−|z|
2/4⟨φ,ψ0⟩=0

so we learn that ⟨φ,W (z)ψ0⟩=0 for all z but then ⟨φ,ψ ⟩=0 for all ψ ∈𝒟 and this implies
that φ =0.

We learned also that there is a state ω such that

ω0(W (z))= ⟨ψ0,W (z)ψ0⟩=e−|z|
2/4.

(this relation define ω0 on the full C ∗-algebra, because any element can be approx. by
linear comb of W s).

Now if (H ,(W (z))z∈ℂ) and (H ʹ,(W ʹ(z))z∈ℂ) are two irreducible regular representations
of the Weyl algebra we can construct a unitary operator U :H →H ʹ by extending by
linearity the equality

UW (z)ψ0=W ʹ(z)ψ0́
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to the full 𝒟 and observe that U is unitary since

⟨UW (z)ψ0,UW (w)ψ0⟩= ⟨W ʹ(z)ψ0́,W ʹ(w)ψ0́⟩= ⟨ψ0́,PW ʹ(−z)W ʹ(w)Pψ0́⟩

=e−iIm⟨z,w⟩⟨ψ0́,PW ʹ(w −z)Pψ0́⟩=e−iIm⟨z,w⟩e−|w−z|2/4= ⟨W (z)ψ0,W (w)ψ0⟩

therefore is bounded and can be extended to a unitary operator on the whole H . This
show that the two representations of the Weyl relations are unitarily equivalent.

□

The regular state ω0 such that

ω0(W (z))= e−|z|2/4

is called Fock vacuum or vacuum state for the Weyl representation.

Since the representation of the Weyl relation is essentially unique we could think to use
the one we like (or the one more convenient).

One of them is the Schrödinger representation which is given on H =L2(ℝ) by taking

U (t)f (x)= e itxf (x), V (s)f (x)= f (x − s), f ∈H , t , s ∈ℝ.

Is this irreducible?

If it is not irreducible then there exists two unit vectors f ,g ∈L2(ℝ) such that for all t ,
s ∈ℝ

0= ⟨f ,U (t)V (s)g⟩=�
ℝ
f̄ (x)e itxg(x − s)dx .

But then if this is true for any t we have that (by Fourier transform)

| f̄ (x)g(x − s)|=0

for almost every s and x .

But then if this is true for any t we have that (by Fourier transform) | f̄ (x)g(x − s)|=0
for almost every s and x , by squaring and integrating in x , s we have

0=�dx�ds| f̄ (x)g(x − s)|2= ‖f ‖L22 ‖g‖L22 =1

so we have a contradiction and this proves that the Schrödinger representation is irre-
ducible.
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Therefore there must exist a vector ψ0∈L2(ℝ) such that

⟨ψ0,e−its/2U (t)V (s)ψ0⟩=exp�−14(s
2+ t 2)�, s, t ∈ℝ

and by taking s =0 we have

�|ψ0(x)|2e itxdx =exp((((((− t
2

4 ))))))
which means that |ψ0(x)|2 is a Gaussian function (actually the density of a 𝒩 (0, 1/2)
random variable), namely

|ψ0(x)|2=
1

(π)1/2e
−x 2

this determines ψ0 up to a phase factor:

ψ0(x)= e if (x)
1

(π)1/4e
−x 2/2.

However

exp((((((−s
2+ t 2
4 ))))))= ⟨ψ0, e−its/2U (t)V (s)ψ0⟩

=e−its/2�dxe itx e−if (x) 1
(π)1/4e

−x 2/2e if (x−s)
1

(π)1/4e
−(x−s)2/2

= e−its/2

(π)1/2�dxe
it (x +s/2)e−if (x+s/2)e−(x+s/2)

2/2e if (x−s/2)e−(x −s/2)
2/2

= e−s
2/4

(π)1/2�dxe
−x 2

e itxe i( f (x−s/2)− f (x+s/2))

so we have

1
(π)1/2�dxe

itxe i( f (x−s/2)− f (x+s/2))e−x
2=exp((((((− t

2

4 ))))))
Now is better because this is saying that the function

1
(π)1/2e

i( f (x−s/2)− f (x+s/2))e−x
2

is the density of a Gaussian 𝒩 (0, 1/2) so it is equal to 1
(π)1/2e

−x 2 and we conclude that
f =0, so we have proven that, in the Schrödinger representation we have

ψ0(x)=
e−x

2/2

π 1/4 .
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� Gaussian representation. We can introduce the unitary transformation (ground
state transformation)

J :L2(ℝ)→L2(γ)

where γ is the Gaussian measure with mean zero and variance 1/2 by letting

(Jψ)(x)=ψ(x)/ψ0(x), x ∈ℝ.

Then we have the images U ʹ,V ʹ of the Weyl pair U ,V given by (for f ∈L2(γ))

U ʹ(t)f (x)= (JU (t)J −1f )(x)=ψ0(x)−1U (t)(ψ0f )(x)=e itxf (x)

V ʹ(s)f (x)=(JV (s)J −1f )(x)=ψ0(x)−1V (s)(ψ0f )(x)=ψ0(x)−1ψ0(x − s)f (x − s)

=e xs−s2/2f (x − s)

One can check directly that this gives indeed a strongly continuous representation of
the Weyl relation on L2(γ).

This is called the Gaussian representation and is useful because there is a nice basis for
L2(γ) given by polynomial functions, the Hermite basis (hn(x))n�0 (indeed note that
polynomials are in L2(γ) and that one can perform a Gram–Schmidt ortogonalisation
procedure of the family (x n)n�0 which is a separating family for L2(γ) by Stone-Weier-
strass) and every hn(x) has monomial of highest degree n.

� Reducible (regular) representations of Weyl relations.

Assume now that (W (z))z∈ℂ does not act irreducibly on H then the range of P is not
one dimensional.

Corollary 3. Any regular representation ((W (z))z∈ℂ,H ) of the Weyl relations is uni-
tarily equivalent to the representation ((W ♯(z))z∈ℂ,L2(ℝ)⊗K) where K =PH and W ♯(z)
acts trivially on K and as the Schrödinger representation on L2(ℝ), i.e.

W ♯(z)(ψ ♯⊗ψ $)= (WSchrödinger(z)ψ ♯)⊗ψ $, z ∈ℂ,ψ ♯∈L2(ℝ),ψ $∈K .

Theorem 4. For any Q�1/2 there exists a state ωQ on the Weyl algebra such that

ωQ(W (z))=e−Q |z|2/2.

Moreover we know that for Q = 1/2 is pure (because it corresponds to the Schrödinger
model) and for Q>1/2 it is not.
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Question 1. It is a fact that there not exists states on the Weyl algebra for which

ωQ(W (z))=e−Q |z|2/2,

with Q<1/2. How to prove it? (one possible attempt is to prove that ωQ is dominated
by ω1/2, in the sense that ω1/2 could be written as a linear combination of ωQ and other
states which is impossible by irreducibility, maybe use product of two representations).

Sketch of proof of Theorem 4.

The easiest way to come upwith a reducible representation is to that two copies L2(ℝ)⊗
L2(ℝ)=L2(ℝ2) of the Schrödinger representation and define Weyl operators

(W̃ (s + it)f )(x1,x2)= (e its/2Ũ (s)Ṽ (t)f )(x1,x2)

=e its/2e is(ax1+bx2)f (x1−at ,x2+bt)= e its/2U1(as)U2(bs)V1(at)V2(−bt)

where (U1,V1) and (U2,V2) are Weyl pairs acting independenlty on the two factors of
L2(ℝ)⊗L2(ℝ), so they commute among them.

We check that

W̃ (s + it)W̃ (s ʹ + it ʹ)=e−i(b 2−a2)Im[(s+it)(s ʹ+it ʹ)]W̃ (s ʹ + it ʹ)W̃ (s + it)

so it is a representation if a2−b2=1. In this way we can construct a family ofWeyl pairs.
Let Ψ0=ψ0⊗ψ0 the tensor product of the two vacuum states, then

⟨ψ0⊗ψ0,W̃ (s + it)(ψ0⊗ψ0)⟩L2(ℝ2)= e−(1+2b
2)|s+it |2/4.

Let us show concretely that the representation given by W̃ on L2(ℝ2) is not irreducible.

Consider the operators

(W ♯(s + it)f )(x1,x2)= e its/2U1(bs)U2(as)V1(−bt)V2(at)=W1(bs − ibt)W2(as + iat)

and note that

W̃ (s ʹ + it ʹ)W ♯(s + it)=W ♯(s + it)W̃ (s ʹ + it ʹ)

so the two families commute. In particular the Stone–von Neumann projector P ♯ asso-
ciated to the Weyl system W ♯ satisfy

P ♯W̃ (z)=W̃ (z)P ♯

and therefore (W ♯(z))z∈ℂ is not an irreducible representation since P ♯ is a non-trivial
self-adjoint operator.
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Moreover if ψ0
♯ ∈ L2(ℝ2) is a unit vector such that P ♯ψ0

♯ = ψ0
♯ then the space K =

{W ♯(z)ψ0
♯:z ∈ℂ}L2(ℝ2) is invariant under the action of W̃ (z) and we have that {W̃ (z)K :

z ∈ℂ} is dense in L2(ℝ2). □
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