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Dynamics on a canonical pair

So far we described the kinematics, that is the structure of the space of observables
which holds at a specific time, because we imagine to perform a measurement described
by 𝒜 on a state ω.

Example. Let us start from an example. Note that if (W (z))z∈ℂ is an irreducible Weyl
system on some Hilbert space H then also

(W̃t(z) :=W (e itz))z∈ℂ

is a Weyl system for any t ∈ℝ. Then it must be that there exists a unitary operator Ut

such that

UtW̃t(z)Ut
∗=W (z), t ∈ℝ,z ∈ℂ.

Moreover we can define an automorphism of the Weyl algebra by letting

αt(W (z))=W (e itz)

(i.e. a map of the Weyl algebra in itself which respects the ∗-operation and the algebraic
relations in the C∗-algebra, and as a consequence is an isometry). This is an example
of dynamics, i.e. the introduction of a time evolution in our description of a physical
system.

Let us obseve that α2π(W (z))=W (z) so α2π = id. So the dynamics is periodic of period
2π , we will see that it corresponds to the quantum motion of an harmonic oscillator.

The time and dynamics enters into the model via a group (αt)t of (∗-)automorphisms of
𝒜 , which have the following meaning ω(αt(a)) is the measurement of the observable a
at the time t . α0=id. αt+s=αt ∘αs, i.e. is a representation of the additive group of ℝ onto
automorphisms of the C∗-algebra 𝒜 .

We can let α act on the linear functional by duality: (αt
∗ω)(a) :=ω(αt(a)) and then this

gives a group of linear transformations on linear functionals on𝒜 and is easy to see that
it preserves the states of 𝒜 .
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Remark 1. Suppose that αt
∗ω is not pure, then it can be decomposed into two states

αt
∗ω = λω1+ (1 − λ)ω2 but then ω =α−t

∗ αt
∗ω = λα−t

∗ ω1+ (1 − λ)α−t
∗ ω2 so ω is not pure either.

Therefore the dynamics preseves pure states.

Fix a specific setting (ℋ , 𝒜̃ , Q̃0) where 𝒜̃ is a general C∗-algebra and Q̃0 is a representa-
tion inℋ .

Definition 2. Let (αt)t∈ℝ a set of C∗-automorphisms of 𝒜̃. We call α a regular dynamics,
if

i. (αt)t∈ℝ is a group wrt. t, i.e. α0= id and αt ∘αs=αt+s for any t , s∈ℝ

ii. the map t↦αt is weakly continuous, i.e. for any state ω and for any a∈𝒜̃ the map
t↦ω(αt(a)) is continuous.

Define Q̃t(a) := Q̃(αt(a)) for a∈𝒜̃ . In general this is understood as a quantum stochastic
process.

Definition 3. The set {U (t)}t∈ℝ⊂ℬ(ℋ) is a unitary group of strongly continuous oper-
ators, if U (t)U (s)=U (t + s) and U (t)∗=U (−t) and if the map t↦U (t) is weakly (and
thus strongly) continuous.

Theorem 4. Assume that there exists a state

ωh0(αt(a))=ωh0(a) (1)

for all t ∈ℝ and a ∈ 𝒜̃ and (αt)t is a regular dynamics of 𝒜̃, then if ℋ is the GNS repre-
sentation space associated with ωh0 and h0∈ℋ is the corresponding cyclic vector, then there
exists a unitary strongly continuous group (U (t))t∈ℝ on ℋ such that

Q̃t(⋅)=U (t)Q̃0(⋅)U (−t)

and also U (t)h0=h0.

The proof is in the notes. It is just GNS as soon as one realises that we can construct
U (t) as

U (t)Q̃0(a)h0 := Q̃0(αt(a))h0

on the dense set {Q̃0(a)h0}a∈𝒜̃ and prove that it is an isometry, here is where we use (1).

Remark 5. Without the hypothesis that the state is invariant, then this construction is
not true in general anymore. Take for example𝒜 commutative, i..e C∞

0 (ℝ2) and consider
an Hilbert space L2(ℝ2,μ) where

μ(dx)= e−x 2/2dx +δ0(dx)
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and the usual moltiplication and take αt(f (x))= f (x − t). But here there is no unitary
group associated to α . Indeed take the state ωμ(a)=∫a(x)μ(dx). Consider the trans-
lated state ωμ(αt(⋅)), then GNS representation of it lives on L2(ℝn,μt) where μt=Tt∗μ the
pull forward of μ by the translation operator. In order to have a unitary transformation
we need that μt has to be absolutely continuous wrt. μ, but this is not the case.

Through the looking-glass

In this lectures wewill require always to have a unitary implementation of the dynamics
(αt)t∈ℝ for (ℋ ,𝒜 ,Q0), i.e. to have a strongly continuous group of unitary operators
(U (t))t∈ℝ so that Qt(⋅)=Q0(αt(⋅))=U (t)Q0(⋅)U (−t).

Recall that we have proven the following link between unitary groups and representa-
tions of C(ℝ):

Theorem 6. Consider an Hilbert space ℋ, a strongly continuous unitary group (U (t))t∈ℝ
on ℋ, then there exists a unique C∗-representation X of Cb

0(ℝ,ℂ) on ℋ such that

i. X(e it ⋅)=U (t)

ii. If fn→ f pointwise and supn ‖fn‖<∞ then X(fn)→X(f ) weakly.

Which could be considered a C* version of the Fourier transform. We want now to
do the same for certain semigroups. This essentially is the C* analogon of the Laplace
transform.

Definition 7. {K(t)}t∈ℝ+
⊂−ℬ(ℋ). We say that K(t) is a strongly continuous semigroup

of self-adjoint contractions if

i. K(0)=1, K(t)K(s)=K(t + s), for t , s�0.
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ii. K(t)=K(t)∗,

iii. t↦K(t) is strongly continuous

iv. ‖K(t)h‖� ‖h‖,t �0.

Theorem 8. Assume that K is a strongly continuous semigroup of self-adjoint contractions
then there exists a unique representation X of Cb

0(ℝ+) on ℋ such that

i. X(e−t ⋅)=K(t)

ii. If fn→ f pointwise and supn ‖fn‖<∞ then X(fn)→X(f ) weakly.

Remember that for proving the theorem on unitary operators we needed Bochner's the-
orem

Definition 9. If G: ℝ→ℂ we call G positive definite if for any λ1, . . . , λk ∈ℂ and t1, . . . ,
tk∈ℝ we have

�
i, j=1

k

λiλ̄jG(ti− tj)�0

Theorem 10. (Bochner) G is a continuous positive definite function iff there exists a
bounded positive measure μ on ℝ such that

G(t)=�
ℝ
e itxμ(dx).

In this case we will need Bernstein's theorem

Theorem 11. (Bernstein) F is a bounded totally monotone function iff there exists a
bounded positive measure μ on ℝ+ and a constant C �0 such that

F(t)=C�
ℝ+
e−txμ(dx).

where

Definition 12. We say that F : ℝ+→ℂ is totally monotone if for any λ1, . . . , λk ∈ℂ and
t1, . . . , tk∈ℝ+ we have

�
i, j=1

k

λiλ̄jF(ti+ tj)�0.
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Lemma 13. Assume that F is a bounded, totally monotone function, then

a) For any a>0, −ΔaF is bounded totally monotone with ΔaF(t)=F(t +a)−F(t).

Corollary 14. If F is bounded and totally monotone, for any a1, . . . ,an∈ℝ+

(−1)nΔa1⋅ ⋅ ⋅ΔanF

is totally monotone and therefore (−1)nΔa1⋅ ⋅ ⋅ΔanF �0.

The idea to construct X is to consider

FK(t ,h) := ⟨h,K(t)h⟩

for h unit vector inℋ and check that it is totally monotone. So by Bernstein it exists a
measure μh such that

⟨h,K(t)h⟩=�
ℝ+
e−txμh(dx) .

From that one can construct X as

⟨h,X(f )h⟩ :=�
ℝ+
f (x)μh(dx) .

The following lemma guarantees uniqueness

Lemma 15. There is only one C∗ representation X0 of Cb
0(ℝ+,ℂ) such that

X0(e−t ⋅)=K(t).

See the notes for more details.

Now we have seen that if (U (t))t∈ℝ is a strongly continuous unitary group this is equiv-
alent to have an representation XU of Cb

0(ℝ, ℂ) on ℬ(ℋ) and if (K(t))t�0 is a self-
adjoint, strongly continuous contraction semigroup, then we have a representation XK

of Cb
0(ℝ+,ℂ) onℬ(ℋ). We want to look into the relation between these two objects.

Definition 16. We say that (U (t))t∈ℝ (as before) has positive energy for each f ∈Cb
0(ℝ,

ℂ) such that supp(f )⊂−(−∞,0) we have that XU(f )=0.

Remark 17. Assume that f1, f2∈Cb
0(ℝ,ℂ) such that f1= f2 on [0,∞) then if U has positive

energy then XU(f1)=XU(f2).

Lemma 18. U has positive energy iff for any h∈ℋ μUh is supported on ℝ+= [0,∞) where
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μUh is the measure such that

⟨h,XU(f )h⟩=�f (x)μh,U(dx).

Theorem 19. Assume (U (t))t∈ℝ is a strongly continuous unitary group with positive
energy, then K(t) =XU(e−t ⋅) is a strongly continuous self-adjoint contraction semigroup
and also XU =XK on Cb

0(ℝ+,ℂ). The converse is true, i.e. if we have K and we define U (t)=
XK(e it ⋅), then (U (t))t∈ℝ is a strongly continuous unitary group with positive energy and
XK =XU.

We want to justify now the name of “positive energy”. This is not fundamental in the
following but will give a better grasp of the connection with standard physical intuition.

By the way note that

U (t)XU(f )U (−t)=XU(e−it•fe+it•)=XU(f )

so the homomorphism XU is invariant under the time dynamics. It is a generalized
observable called “energy”.

Let𝒟H be a subspace ofℋ such that h∈𝒟H iff t↦U (t)h is strongly differentiable in 0.
For any h∈𝒟H we define

Hh= 1
i limt→0

U (t)h−h
t ∈ℋ .

Is simple to prove that H is a linear operator H :𝒟H →ℋ . For generic U , the operator
H is not bounded, which implies that H cannot be extended as a continuous operator on
allℋ . H is an unbounded operator and 𝒟H is called the domain of H .

Lemma 20. h∈𝒟H iff

�
ℝ
x 2μh,U(dx)<∞, and then ‖Hh‖2=�

ℝ
x 2μh,U(dx).

If h1∈𝒟H and h2∈ℋ then

�
ℝ
|x ||μh1,h2,U |(dx)<∞, and ⟨Hh1,h2⟩=�

ℝ
xμh1,h2,U(dx).

where μh1,h2,U is the polarization of the hermitian map h↦μh,U.

Theorem 21. 𝒟H is dense in ℋ and h1,h2∈𝒟(H) we have ⟨Hh1,h2⟩= ⟨h1,Hh2⟩, so H is
symmetric.

Remark 22. Is possible to prove that (H ,𝒟H) is self-adjoint, i.e. H ∗ =H . (given the
natural definition of the adjoint of a densely defined unbounded operator)
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If h1,h2∈𝒟H we define

ℰ(h1,h2)= ⟨Hh1,h2⟩.

If h1∈𝒟H and ‖h‖ℋ =1 then we define ℰ(h,h) to be the energy of the state h∈ℋ .

Recall that (ℋ ,𝒜 ,Q0) is our quantum space and if h∈ℋ gives the vector state ωh(a)=
⟨Q0(a)h,h⟩. So the energy is an extension of this formula for the unbounded operator
H which formally is the derivative of the time-evolution group U . We had Qt(a) =
U (−t)Q0(a)U (t). If it is possible to take the derivative wrt. to t then we obtain

∂tQt(a)=
1
i [H ,Qt(a)]

Theorem 23. U has positive energy iff ℰ(h,h)�0 for all h∈𝒟H.

Recall the definitions

FU(t ,h)= ⟨U (t)h,h⟩=�
ℝ
e itxμh,U(dx),

FK(t ,h)= ⟨K(t)h,h⟩=�
ℝ+
e−txμh,K(dx).

Theorem 24. The function FK is holomorphic when t ∈ℂ and Re(t)>0 and it is continuous
when Re(t)�0. Moreover, we have that

FU(s,h)=FK(is,h)= lim
y↓0

FK(is+y,h).

Remark 25. We can define the generator H ʹ of K similarly as we defined the generator
H of U . Namely 𝒟H ʹ is defined as the set of vectors h∈ℋ such that K(t)h is strongly
differentiable in zero and define

H ʹh=−lim
t↓0

K(t)h−h
t .

But if U and K are related so that XU =XK then H ʹ =H and 𝒟H =𝒟H ʹ.

Consider now ℋ =L2(ℝn, dx). 𝒜 =Cb
0(ℝn,ℂ) and (Q0(a)h)(x)=a(x)h(x). Define

K(t)h=ρt ∗h=
1

(2πt)n/2�e
−|x−y |2/(2t)h(y)dy.

Theorem 26. (K(t))t�0 is a strongy continuous, self-adjoint contraction semigroup.
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Take f ∈C∞∩Lp for any p�1. Then in L2(ℝn) we have

lim
t↓0

ℱ((((((K(t)f − f
t ))))))(k)= limt↓0

e−tk
2/2−1
t ℱ (f )(k)=−k2ℱ (f )(k)=ℱ (Δf )(k)

so H =−Δ and one can prove that 𝒟H =H 2. Moreover ℰ(h, h)=∫ℝn |∇h|2dx � 0. So the
semigroup has positive energy (it was already clear from the fact that it is a contraction).

So now

FK(t ,h)=�
ℝ2n

e−|x−y |
2/2t

(2πt)n/2 h(x)h(y)dxdy

and for h∈L2∩L1 we have the explicit representation

FU(s,h)=FK(is,h)=�
ℝ2n

e−|x−y |
2/2(is)

(2πis)n/2 h(x)h(y)dxdy

where (i)n/2= eπin/4 given the kind of limit we had to perform.

We conclude therefore that for h∈L2∩L1

(U (s)h)(x)=�
ℝn

e−|x−y |
2/2(is)

(2πis)n/2 h(y)dy.

This is the model of the free particle in ℝn, i.e. a particle not interacting with any
external system. In this case (U (t))t∈ℝ is a unitary group on L2(ℝn) and the expec-
tation of any observable Qt(a) on the state ωh evolves according to the equation

ωt
h(a)= ⟨Qt(a)h,h⟩= ⟨U (−t)Q0(a)U (t)h,h⟩= ⟨Q0(a)U (t)h,U (t)h⟩.

To construct more complex dynamics we will look at the Euclidean strategy next time.

In two weeks: Wightman and Schwinger functions.

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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