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The quantum particle

Table of contents

1 Non-commutativity and probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Complementary observables in finite quantum system . . . . . . . . . . . . . . . . . . . 4

3 Quantum degrees of freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Unitary representations of ℝ and observables as homorphisms . . . . . . . . . . . . 10

5 The Weyl algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6 Dynamics on a canonical pair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

7 Through the mirror . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

8 Wightman and Schwinger functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

9 The Ornstein–Uhlenbeck process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

10 Euclidean processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

p

q

classical

quantum

h

q

p

We want now to construct a physical system (observables+states) that encodes Heisenberg's
indetermination principle

Δω(q)Δω(p)�
ℏ
2 (1)

for the position q and momentum p of a particle and other experimental observations.

1



The C∗-algebra of observables 𝒜 should contain the C∗-algebra 𝒬 of all the bounded functions
f (q) of the position q and the C∗-algebra 𝒫 of all the bounded functions g(p) of the velocity (or
momentum) p but I need to rule out that q,p commutes otherwise I violate Heisenberg principle
unless I restrict the set of states. But restricting the set of states is mode difficult than dealing
with a non-commutative algebra because we have more structure on 𝒜 than on 𝒮 .

So we postulate that [a,b]≠0 at least for some a∈𝒬 and b∈𝒫 and we let 𝒜 to be the smallest
C∗ algebra containing the abelian subalgebras 𝒬, 𝒫 . In order for this to describe a single degree
of freedom we require that Σ(𝒬)≈ℝ and Σ(𝒫 )≈ℝ.

We want to explore how non-commutativity is related to the indetermination principle (1) and
also to the notion of “complementarity”. Complementary observables are somehow observ-
ables which do not allow simultaneous measurement, that is if we are able to have states in
which one of the is completely detemined, then the other has to be completely “undetermined”.
Think about the Stern-Gerlach experiment and the measurement of the magnetic moment in
two orthogonal directions.

Let us see what we can get from (1). Observe that if a,b∈𝒜 and self-adjoint then

(a+ iλb)∗(a+ iλb)�0

for any λ∈ℝ and if ω is a state we have

0�ω((a+ iλb)∗(a+ iλb))=ω(a2)+λ2ω(b2)+ iλω(ab−ba),

therefore we need to have, letting [a,b]=ab−ba,

|ω(i[a,b])|�2(ω(a2))1/2(ω(b2))1/2.

Therefore in any C∗ algebra we have the (Schrödinger–Robertons) relation

Δω(a)Δω(b)�
1
2 |ω(i[a,b])|.

If we want to implement Heisenberg's principle for a pair of complementary observables q,p a
way is to require that i[p,q] is constant element of 𝒜 :

[q,p]= iℏ, (2)

These are called canonical commutation relations Heisenberg's matrix mechanics consist in a
model where q,p are matrices satisfying the above relation. First problem: these cannot be finite
dimensional matrices, indeed if they were we could take the trace over the vector space ℂn they
acts on and get

Tr([q,p])=�
n

⟨en, [q,p]en⟩=0, Tr(iℏ)= iℏn.. . .

not very nice. Moreover they cannot implemented even in an abstract C∗ algebra, indeed if q,
p ∈𝒜sa then

[qn,p]= iℏnqn−1
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and therefore by the C∗ condition

nℏ‖q‖n−1=nℏ‖qn−1‖= ‖iℏnqn−1‖= ‖[qn,p]‖�2‖p‖ ‖q‖n

which implies ‖p‖ ‖q‖�nℏ/2 if ‖q‖≠0. This is true for any n and so either ‖p‖ or ‖q‖ has to be
infinite.

This somehow is to be expected because “the position” is not really a bounded observable. We
cannot really talk about the position of the particle as an element of a C∗-algebra but it is ok if
the think to any bounded function of q and an element of the C∗ algebra. So we need to avoid to
talk about q and talk instead of a C∗ algebra 𝒬which plays the role of the algebra of functions of
the position, that is has to be a commutative C∗ algebra without unit (in order to allow for non-
compact spectrum).

At this point is not clear how to single out an algebra of observables which satisfies something
like the indetermination principle.

The discussion in this part is inspired by the following papers:

• Accardi, Luigi. “Some Trends and Problems in Quantum Probability.” InQuantum Probability
and Applications to the Quantum Theory of Irreversible Processes, edited by Luigi Accardi,
Alberto Frigerio, and Vittorio Gorini, 1055:1–19. Lecture Notes in Mathematics. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 1984. https://doi.org/10.1007/BFb0071706.

• Ohya, Masanori, and Dénes Petz. Quantum Entropy and Its Use. Texts and Monographs in
Physics. Berlin; New York: Springer-Verlag, 1993.

• Schwinger, Julian. “Unitary Operator Bases.” Proceedings of the National Academy of Sci-
ences 46, no. 4 (April 1, 1960): 570–79. https://doi.org/10.1073/pnas.46.4.570.

1 Non-commutativity and probability

To start simpler we consider first systemwhich possess “finitely many” pure states. Think about
the two states in the Stern–Gerlach experiment.

Let us assume we have two observables a, b which generates 𝒜 and such that σ(a), σ(b) are
finite.

We would like to inquire about the “most indeterminate” relative position of a and b inside the
C∗-algebra𝒜 =C∗(a,b) they generate. First of all it is clear that since σ(a) is finite, let's say with
n elements, we can find function (ρk ∈C(ℝ))k=1, . . . ,n such that ρk(x)∈ [0, 1] and ∑k=1

n ρk(x)=1
for all x ∈ℝ and ρk(x)ρℓ(x)=δk,ℓ for all x ∈σ(a). Let πka :=ρk(a) and observe that by construction

�
k=1

n

πk
a=1, πk

aπℓa=δk,ℓ , k, ℓ =1, . . . ,n,

i.e. (πka)k form a partition of unity in self-adjoint projections. We let (πkb)k=1, . . . ,m the analogous
objects associated to bwherem is the size of σ(b). Clearly there exists constants (ak)k such that
f (a)=∑k f (ak)πk

a for any f ∈C(ℝ) and similarly for b so we need that [πka,πℓb]≠0 for some k= ℓ
in order to have a non-commutative algebra. We have ω(f (a))=∑kf (ak)ω(πk

a) for any state ω.
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Let us assume that C∗(a) and C∗(b) are maximal abelian subalgebras in 𝒜 . Then observe that
the observable ∑kπk

aπℓ
bπk

a commutes with any element in C∗(a) and therefore it should belong
to it. As a consequence there exist complex numbers �pℓ ,k

b|a�k,ℓ such that

�
k

πk
aπℓ

bπk
a=�

k

pℓ ,k
b|aπk

a.

Since the l.h.s. is positive on any state and there exist states (ωk
a) such that ωk

a(πℓa)=δk,ℓ we have
that (πka)k is a basis of C∗(a), that �pℓ ,k

b|a�k,ℓ are uniquely determined and that

pℓ ,k
b|a
�0, �

k

pℓ ,k
b|a=�

ℓ

pℓ ,k
b|a=1.

Therefore we have a set of probabilities �pℓ ,k
b|a�k,ℓ which are generated intrinsically by the non-

commutativity of the algebra, even before we consider the states on that algebra.

That is the matrix �pℓ ,k
b|a�k,ℓ is bistochastic. This shows that, as soon as we allow for non-com-

mutativity, some “randomness” is already built into our algebra of observables.

For any state ω we can construct a new state

ωa(h)=�
k

ω(πkahπka)

and now observe that

ω(f (a))=ωa(f (a)), ωa(f (b))=�
k,ℓ

f (bℓ)ω(πkaπℓbπka)=�
ℓ ,k

f (bℓ)pℓ ,k
b|aω(πka)

so ωa(πℓb)=∑kpℓ ,k
b|aω(πka).

We can attempt the following interpretation of this formula: the matrix �pℓ ,k
b|a�k,ℓ gives the prob-

ability of observing given values of b under the condition that we have preliminarily measured
a specific (but unspecified) value for a and therefore changed the state ω into a new state ωa in
which a has a specific value, i.e. is a convex combination of states multiplicative on C∗(a).

2 Complementary observables in finite quantum system

We want now to devise observables a, b for which the matrix pℓ ,k
b|a is as uniform as possible,

meaning that if we have measured a then there is no particular knowledge on b. We call these
observables “complementary”. We require also that either a or b provides an as complete as
possible description of the physical system, i.e. that C∗(a) and C∗(b) are maximally abelian.
Without loss of generality we can assume that σ(a)={0, . . . ,n−1} for some integer n�2.

Consider still systems with finitely many pure states. All the observables have to take only
finitely many values, let say n. So we can assume that they have all the same spectrum with n
points and to be given by

Γ={γk= e2πik/n}k=0, . . . ,n−1.

We want to construct an algebra of two non-commuting observables u,v where both have the
same spectrum (as above) and they are complementary, and for that we mean here that we are
trying to impose that pℓ ,k

v|u=1/n for any k, ℓ .

4



There is no loss of generality to restrict to operators in Hilbert space, they have to be unitary
because Γ⊂𝕊={z ∈ℂ: |z|=1} and is clear we need at least a space of dimensions n otherwise we
cannot accomodate the n different eigenvalues Γ. By abuse of language u,v the representatives
of u,v in the space ℒ(ℂn). Let (φk)k be the eigenvectors of u, i.e.

uφk=γkφk

and then take

vφk :=φk+1

with k +1 understood modulus n. Now observe that uvφk =uφk+1= γk+1φk+1= γk+1vφk = (γk+1/
γk)vuφk for any k=0, . . . ,n−1 so

uv = e2πi/nvu. (3)

If we assume that u,v generate the algebra of observables then this fixes the full algebraic struc-
ture. Observe also that un=vn=1.

Remark 1. Note that we could have defined vφk=αφk+1 for some α ∈𝕊 and then we would have
vn=αn and we could have let also uφk = βγkφk for some β ∈𝕊 and then we would have un=βn.
This preserves the commutation relation (3) but changes the spectra of u,v .

Remark 2. Observe also that (3) implies that unv =vun and also vnu=uvn so the elements un,
vn belongs to the center (i.e. the elements which commutes with all the others) of the algebra
generated by u,v . If we assume that u,v generate each of them a maximally abelian subalgebra
then we can conclude from the commutation relation only that un,vn∈ℂ. From this one can see
that any irreducible representation of the commutation relation is n dimensional.

In particular

0=(γk−1u)n−1=(γk−1u−1)�
ℓ=0

n−1

(γk−1u)ℓ

and from this we deduce that πku :=n−1∑ℓ=0
n−1 (γk−1u)ℓ satisfies uπku=γkπku so πk

u is the orthogonal
projection on the span of φk, indeed one can check that (πku)∗=πku and πkuπℓu=δk,ℓπku. So we have
also u =∑k=0

n−1 γkπk
u. For v we can proceed in the same way and define πk

v. Now let's compute
∑kπk

uπℓvπk
u using (3) and get

�
k

pℓ ,k
v|uπk

u=�
k

πk
uπℓvπk

u= 1
n , ℓ =1, . . . ,n−1

so as required we have pℓ ,k
v|u = 1/n. So we confirm that our choice of algebraic structure give

indeed a maximally complementary pair of observables.

We want now to argue that u,v are sufficient to generate all ℒ(ℂn) (i.e. all the n ×n complex
matrices). Let X ∈ℒ(ℂn) and observe that the operator

Y = 1
n2�

k,ℓ
u−kv−ℓXv ℓuk,
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satisfy uY =Yu and vY =Yv so Y commutes with all the algebra generated by u, v (this actu-
ally depends only on the commutation relation (3)). Then this means that Y is a multiple of
the identity, because since it commutes with u we must have Y =∑kykπk

u but then Y =vYv ∗=
∑kykvπk

uv ∗=∑kykπk+1
u and this implies that yk =yk+1 that is Y =λ1 for some λ∈ℂ so we can

construct a linear functional ρ such that ρ(X)=λ and by thinking a bit is clear that ρ:ℒ(ℂn)→ℂ
is a actually a positive linear functional (think about it, is clear from the definition of Y ) and
ρ(1)=1. The definition of Y implies easily that for any X ∈ℒ(ℂn)

X =�
k,ℓ

ukv ℓρ((ukv ℓ)∗X)

that is (ukv ℓ)k,ℓ is an orthornomal basis of ℒ(ℂn) with respect to the non-degenerate scalar
product ⟨X ,Y ⟩=ρ(X ∗Y ). So in particular the algebra generated by u,v span all the n×n complex
matrices.

This proves that the representation we gave is irreducible and therefore the pure states of this
algebra are exactly the vector states of this representation. So to describe all the possible states
is enough to restrict to states of the form

ω(X)=Trℂn[ρπ(X)],

where ρ ∈ℒ(ℂn) is a density matrix (i.e. ρ�0, Trℂn(ρ)=1) and π is the concrete representation
of this algebra that we have analyzed. So the pure states are those for which ω(X)=⟨ψ ,π(X)ψ⟩
for some unit vector in ℂn, i.e. ρ has to be of rank one. All the pure states of this quantum
system are described by a ray in ℂn i.e the set {e iθψ : θ ∈ℂ, ‖ψ‖=1}. This is very different from
the commutative case where two observables u,v with each n different values have has possible
pure states the n2 different values of the pair.

The ray ψ is called the wave-function of the system and it provides a complete description as
we saw. However it is so only because it parametrizes the set of all pure states. Irreducible
representations are like “charts” that we use to compute over the manifold of all the possible
states of a physical (quantum) system.

We have completely classified this quantum system.

3 Quantum degrees of freedom
Assume that n = n1n2 for two integers n1, n2 then there exist an alternative way to construct
two complementary set of observables which each of them is maximally abelian. For α = 1, 2,
make the same construction above with nα and obtain uα,vα ∈ℒ(Hα) on the space Hα =ℂnα and
consider the Hilbert space product H =ℂn =ℂn1 ×ℂn2 and let uα, vα act on this product in the
natural way so that u1 and v1 commutes with u2, v2. The operator u1,u2 together generate an
abelian subalgebra and is maximal. Same for v1, v2 moreover the monomials u1

k1u2
k2v1

ℓ1v2
ℓ2 gen-

erates all ℒ(H), so this representation is irreducible. And by the same reasoning as above
we can show that p(k1,k2),(ℓ1,ℓ2)

(v1,v2)|(u1,u2)=1/n, so these pairs of maximally commutative observables are
complementary.

So the full system ℒ(H) splits into two subsystems ℒ(H1) and ℒ(H2) which do not interefere
with each other. They represent two physically kinematically independent quantum systems
𝒜1,𝒜2 whose observable algebras are generated resp. by (u1, v1) and (u2, v2). They could be
not really independent because like in classical probability independence is a notion linked to a
state.
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We can proceed this way for any n by factorising into prime factors. So we could think of as
this construction when n is prime as giving very basic quantum systems.

Example, when n=2 we have u,v satisfying u2=v 2=1 and uv =−vu. Let σx =u, σy=v , σz=(−i)uv
unitary and hermitian matrices for which we can check that they satisfy the commutation rela-
tions

[σ1,σ2]=2iσ3, [σ2,σ3]=2iσ1, [σ3,σ1]=2iσ2,

and moreover any 2×2 complex matrix X can be written X =α +βσx +γσy +δσz. The operators
(σx,σy,σz) are called Pauli matrices and describe a quantum degrees of freedom with only two
possible values, i.e. the abelian subalgebras have a spectrum with two points. This is the kind
of model suitable to model the Stern-Gerlach experiment.

These C∗algebras (let's call them discrete canonical pairs) gives examples of very simple and
discrete quantum observables. In particular we could take a state on which u has a given value,
meaning that there exist states ωk such that ωk(uℓ)=e2πiℓk/n for all ℓ =1,...,n−1 (recall that un=1).
These states are just given by

ωk(a)= ⟨φk,aφk⟩

where φk are the eigenfunctions of u. This means that ωk is multiplicative on C∗(u).

However we have also that it cannot be multiplicative on v (because u,v do not commue) and
actually

ωk(v ℓ)= ⟨φk,v ℓφk⟩=0, ℓ =1, . . . ,n−1.

This means that they are uniformly distributed on the set {exp(2πik/n):k=0, . . . ,n−1}.

Here their maximal complementary shows up in the fact that while one is completely deter-
mined, the other is uniformly distributed. So in some sense they can be considered the quantum
equivalent of discrete uniform random variables.

Wewould like now to take some limit n→∞ in order to produce in this way continuous analogs
of these algebras. This would give us an example of non-commutative C∗ algebra generated by
two abelian subalgebras with continuous spectrum.

The intuition we want to carry on is how we go from discrete uniform r.v. to continuous ones.
In particular imagine that X is a r.v. with continuous distribution described by a density p(x)
on ℝ. I can imagine to approximate it in law by taking a discrete r.v. XL such that XL=[X]L for
L∈ℕ where [x]L= ⌊Lx⌋/L. Then we have for any continuous and bounded function f :ℝ→ℝ

𝔼[f (XL)]=�
ℝ
f ([x]L)p(x)dx→�

ℝ
f (x)p(x)dx =𝔼[f (X)].

Let's try to implement the same procedure for a C∗-algebra. The first observation is that if we
denote (un,vn) a discrete canonical pair of degree n we have the following. We can take L2(𝕋)
as Hilbert space where 𝕋=ℝ\ℤ and represent each un and vn as

unf (x)=exp(2πi [x]n)f (x), vnf (x)= f (x −1/n), x ∈𝕋.
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One can check that un,vn is a representation of the algebra we constructed above. In this way
we can embed all the operators (un,vn)n�0 into ℒ(L2(𝕋)).

We have to understand what plays the role of “continuous functions” in this context. We just
take monomials of the form unkvnℓ (they suffice to determine any other element of C∗(un,vn) due
to their commutation relation). However is easy to see that unkvnℓ →1 in the weak topology of
L2(𝕋). Somehowwe need to look at high powers of un,vn to see something interesting. We take
ℓn=n1/2[s]n1/2 and kn=n1/2[t]n1/2 and now consider

�fn,unknvnℓngn�L2(𝕋)=�
𝕋
fn(x)exp(2πikn [x]n)gn(x − ℓn/n)dx .

Note that we choose ℓn,kn in that particular way since the commutation relations reads

un
knvn

ℓn= e2πiknℓn/nvnℓnunkn= e
2πi[s]n1/2[t]n1/2vn

ℓnun
kn

so the choice of the factor n1/2 was due to the nice cancellation in the phase factor here. By
rescaling we have, for functions fn,gn supported on (−π ,π) and letting x =y /n1/2.

�fn,unknvnℓngn�L2(𝕋)=�
(−π ,π)

fn(x)exp(2πi[t]n1/2 [x]nn1/2)gn(x − [s]n1/2/n1/2)dx

=n−1�
(−πn1/2,πn1/2)

fn(y /n1/2)exp(2πi[t]n1/2n1/2[y /n1/2]n)gn((y − [s]n1/2)/n1/2)dy

so to have a well defined limit we can take fn(x)=n1/4f (n1/2x) and gn(x)=n1/4g(n1/2x) with f ,
g ∈C0

∞(ℝ) so that for n large enough we have

�fn,unknvnℓngn�L2(𝕋)=�
ℝ
f (y)exp(2πi[t]n1/2n1/2[y /n1/2]n)g(y − [s]n1/2)dy

so here now we can take the limit and obtain that

lim
n

�fn,unknvnℓngn�L2(𝕋)= ⟨f ,U (t)V (s)g⟩L2(ℝ) (4)

where (U ,V ) are two unitary groups acting on L2(ℝ) as

U (t)f (y)=exp(2πity)f (y), V (s)f (y)= f (y − s).

Unitary group means that U (t)∗=U (−t), U (t)U (s)=U (t + s) for all t , s ∈ℝ and U (0)=1. These
relations come from the formula for the convergence in law above.

Exercise 1. Justify that U ,V are unitary groups. Actually try to prove it using only (4) and not the explicit form
of the operators.

Moreover they are weakly continuous, i.e. t↦⟨f ,U (t)g⟩ is continuous for all f ,g∈L2(ℝ). Since
they are unitary they are also strongly continuous.

They satisfying the commutation relations

U (t)V (s)= e2πistV (s)U (t), t , s ∈ℝ. (5)
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These commutation relations are called the Weyl form of the canonical commutation relations
and they are the implementation of the Heisenberg's commutation relations

[P ,Q]= iℏ,

within the C∗-framework (i.e. working only with bounded operators). The link between these
formulas comes from interpreting the two unitary groups as being generated by the self-adjoint
operators P ,Q i.e. as

U (t)=exp(iQt), V (s)=exp(iPs),

and recalling that Baker-Campbell-Hausdorff forumula gives (under suitable conditions for
unbounded self-adjoint operators A,B with [A,B] given by a scalar that)

eAeB= eA+B+ 1
2[A,B].

Applying it formally to P ,Q we have

e iQte iPs= e i(Ps+Qt)+
1
2[P ,Q]= e

1
2[P ,Q]e i(Ps+Qt), e iPse iQt = e i(Ps+Qt)−

1
2[P ,Q]= e

1
2[P ,Q]e i(Ps+Qt)

so that

e iQte iPs= e iℏste iPse iQt,

so in my notations ℏ=2π .

Putting aside for the moment unbounded operators we obtained a pair of commutative C∗ alge-
bras 𝒬,𝒫 given by 𝒬 =C∗((U (t))t∈ℝ), 𝒫 =C∗((V (s))s∈ℝ) which are concrete C∗ algebras on
L2(ℝ). We denote 𝒜 =C∗(𝒬,𝒫 ).

The spectrum of 𝒬 and 𝒫 can be identified with a subset of 𝕊 ⊂ ℂ. So they are like random
variables taking values on 𝕊 and they can be easily parametrized by real number. In particular
if ω is a state on 𝒜 then the function t↦ω(U (t)) is continuous on ℝ and positive definite and
normalized so it corresponds to probability measure on ℝ, which we denote by μ𝒬,ω this is the
law of 𝒬 on ω. Similarly for 𝒫 . However 𝒬 and 𝒫 do not commute.

The C∗-algebra 𝒜 is called the Weyl algebra. It is the fundamental example of two continuous
observables which do not commute and in some sense they show complementarity.

4 Unitary representations of ℝ and generalized observables

Let us concentrate only on one of the families of unitaries, let's say (U (t))t∈ℝ. I want to look at it
at some kind of non-commutative Fourier transfrom (or characteristic function). It is giving me
information about an observable very much like the characteristic function give informations
about a random variable.

Assume that we the family (U (t))t∈ℝ is a family of bounded operators on an Hilbert space H
(giving a representation of ℝ on H ).

9



For any unit vector v ∈H we can form the function φv(t)= ⟨v ,U (t)v⟩, it is easy to show that
φv(0)=1, and φv is positive definite, i.e.

�
i, j

λ̄iλjφv(tj− ti)�0 (λi)i⊂−ℂ,(ti)i⊂−ℝ.

This are the same properties of the characteristic function of a measure, so by Bochner's the-
orem, there exist a measure μv on ℝ so that

φv(t)=�
ℝ
e itxμv(dx), t ∈ℝ.

In particular this defines a linear functional ℓv on C(ℝ) by

As soon as we have extended ℓv continously we can define a ∗-representation Q of C0(ℝ) on
ℒ(H). For any f ∈C0(ℝ) define the operator Q(f ) by the relation

⟨v ,Q(f )v⟩= ℓv(f )

and its polarization. This define a bounded operator such that ‖Q(f )‖ℒ(H)� ‖f ‖∞ and Q(f )∗=
Q( f̄ ) and Q is linear in f and Q(f )Q(g)=Q(fg) (by continuity is enough to check there rela-
tions of f ∈𝒮(ℝ) and this case we have the more precise relation

Q(f )=�
ℝ
U (t) f̂ (t)dt

(remember that the r.h.s is defined as a weak integral). I would like to use f (x)= e isx, in order
to do this observe that for any v ∈H

⟨v ,Q(f )v⟩=�
ℝ
φv(t) f̂ (t)dt ,

looking at this formula is clear that if fn→ f in such a way that the r.h.s. converges, so we can
take fn(x)= e isxe−x

2/(2n) so that

⟨v ,Q(fn)v⟩=�
ℝ
φv(t)fn̂(t)dt =(2πn−1)−1/2�

ℝ
φv(t)e−n(t−s)

2/2dt→φν(s)

by continuity of φν. So this suggest that we can define Q(e is⋅)=U (s).

Note also that if fn↑f then the sequence (⟨v ,Q(fn)v⟩)n is monotone increasing since if f � 0
then ⟨v ,Q(f )v⟩�0 so we can extend Q to all Cb(ℝ). To check that the extension is unique the
following argument works.

Take now the family (hn(x)=exp(−nx 2))n then by continuity of φv it is easy to prove that

Q(hn)→1ℒ(H).

Observe that if f ∈Cb(ℝ) then hnf ∈C0(ℝ) and it follows that for any extension Q ʹ of Q to Cb(ℝ)
we have

Q ʹ(hn)Q ʹ(f )=Q ʹ(hnf )=Q(hnf )=Q(hn)Q(f )

and taking limits we have Q ʹ(f )=Q(f ).
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This argument proves the following theorem

Theorem 3. Any weakly-continuous one-parameter unitary group (U (t))t in ℒ(H) corresponds
to a C∗ algebra representation Q of Cb(ℝ) on ℒ(H).

It is suggestive to write f (Q)=Q(f ) and think to f (Q) as a function computed on an operator
Q in such a way that the formula

U (t)=exp(itQ),

has now a sense.

We could of course associate to Q an unbounded linear operator Q̂ on a dense domain within H
in such a way that by Stone theorem Q̂ is the generator of the group (U (t))t∈ℝ.

From the operational point of view such an homomorphism Q represent an observable in the
sense that we can measure its expectation value on any state ω and also we can see it as a
random variable with a law given by the linear functional

f ↦ω(f (Q)).

If we go back to the Weyl relation we now understand that they describe two observables P ,Q
which satisfy the commutation relations

exp(itQ)exp(isP)=exp(2πist)exp(isP)exp(itQ).

Combining unbouded operators is a task of the same difficulty of combining two homomor-
phism or two unitary representations of ℝ. There is no simple way to understand, for example,
the sum P +Q.

Tentantively in this course we take the attitude that an observable is really a *-homomorphism
of Cb(ℝ) into either some abstract C∗-algebra or into a C∗-algebra of operators. This extends to
the non-commutative/quantum context the probabilistic notion of real random variable.

This is coherent with our modelisation which sees observables as self-adoint elements of a C∗-
algebra in that if f :ℝ→ℝ then f (Q) is a self-adjoint operator.

From the point of the of C∗algebraic approach the homomorphism Q,P represents families of
observables which are then given by choosing a particular way f to measure the quantity Q so
that we have a definite observable Q(f ), i.e. self-adjoint element of C∗. Let's call them extended
observables.

If a is a self-adjoint element of a C∗-algebra𝒜 we can always via continuous functional calculus
associate to it an observable A in this extended sense by letting A(f ) := f (a) and therefore have
that A∈Hom(C(ℝ),𝒜).

Extendend observables allows to handle quantities which are not naturally bounded and there-
fore cannot be represented by elements of the C∗-algebra.

Think for example to a Gaussian random variable X . A Gaussian random variable is not an
element of a C∗-algebra since X can take arbitrarily large values. However if we look at X has a
∗-homomorphism by letting X(f ) := f (X) for any f ∈C(ℝ) then X is a well defined observable.
In this case it has a concrete realisation on L2(ℙ) and if we take v(ω)=1 we have that

⟨v ,X(f )v⟩=𝔼[f (X)].

11



Commutative setting: representation Q0 of an abelian C∗ algebra 𝒜 on an Hilbert space ℋ .

𝒜 =Cb
0(ℝn,ℂ), ℋ =L2(ℝn,ℂ)

a(x)∈𝒜 , h(x)∈ℋ

Q0(a)h=a(x)h(x)

Q0(e iαx)h= e iαxh(x)

Norm on 𝒜 is the uniform norm on Cb
0(ℝn,ℂ). This representation is faithful ker(Q0)=0.

Suppose that we have a cyclic vector h0∈ℋ .

ℋ0={Q0(a)h0,a∈𝒜}, ℋ0=ℋ .

Theorem 4. Under the hypothesis ℋ0=ℋ the system (ℋ ,𝒜 ,Q0) is isomorphic to (L2(X , ℂ, μ),
C∞

0 (X ,ℂ),m) where X is a locally compact Hausdorff space, μ is a measure on X and C∞
0 is the set

of continuous functions going to zero at infinity and m is the multiplication operator.

Proof. By Gelfand–Naimark𝒜 ≈C∞
0 (X ,ℂ)where X is the space of characters (i.e. pure, positive

states on 𝒜) equipped with the weak-* topology. □

Remark 5. In the case where 1∈𝒜 then X is compact, so 𝒞∞
0 (X)=𝒞0(X).

We can takeℋ =ℋGNS where the state generating the GNS construction is ωh0(a)=⟨h0,Q0(a)h0⟩.
Here ωh0 is a positive functional on 𝒜 . ωh0 is continuous wrt. the ‖⋅‖∞ norm where we iden-
tify 𝒜 ≈C∞

0 (X ,ℂ). So ωh0 defines a measure on X since is in (C∞
0 (X ,ℂ))∗ (the dual space, i.e. the

space of bounded measures). Moreover it is a non-negative measure. We call it μ and have that

ℋGNS→L2(X ,μ)

U (Q0(a)h0)=a(x)∈L2(X ,μ)

This is an isomorphism where Q0 corresponds to the multiplication m.

Let us note that we have that ℝn↪X and actually X is a compactification of ℝn which we are
not able to work with explicitly.

5 The Weyl algebra
Let's go back to a representation of the canonical commutation relations in Weyl form, i.e. to a
pair of two unitary representations U ,V on an Hilbert space H of the additive group of the reals,
i.e.

U (t)U (s)=U (t + s), U (t)∗=U (−t),

and similarly for V , satisfying

U (t)V (s)=V (s)U (t)exp(ist), s, t ∈ℝ. (6)
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Note that we can form the Weyl operators (W (z))z∈ℂ defined for z=α + iβ ∈ℂ as

W (α + iβ)= e iαβ/2e iαQe iβP .

One can check that W (z) is unitary for any z ∈ℂ and that

W (z)W (zʹ)= e iIm⟨z,zʹ⟩W (z+zʹ), z,zʹ ∈ℂ (7)

where ⟨z,zʹ⟩= z̄zʹ is the Hermitian scalar product of ℂ (a one dimesional complex Hilbert space).
All we are going to say generalises easily to (W (z))z∈K for finite dimensional Hilbert spaces K
and strongly continuous unitary operators (W (z))z∈K such that (7) is satisfied.

Remark that ω(z, zʹ)= Im⟨z, zʹ⟩ is antisymmetric i.e. ω(z, zʹ)=−ω(zʹ, z) and that ω(z, zʹ)=0 for
all z implies zʹ =0 (i.e. ω is non-degenerate).

Let W̃ (z,λ)= e iλW (z) for λ∈ℝ then

W̃ (z,λ)W̃ (zʹ,λʹ)=W̃ (z+zʹ,λ+λʹ + Im⟨z,zʹ⟩),

which means that the (W̃ (z,λ))z,λ give a unitary representation of the Heisenberg group ℍ ≈
ℂ×ℝ with composition (z,λ)(zʹ,λʹ)=(z+zʹ,λ+λʹ + Im⟨z,zʹ⟩). It a non-commutative group since
ω is not symmetric.

Theorem 6. (Von Neumann) Regular irreducible representations of the (finite dimensional) Weyl
relations are all unitarily equivalent, i.e there is only one up to isomorphism.

Remark 7. This theorem is fundamental because allows to use the most convenient represen-
tation to study the QM of finitely many quantum degrees of freedom (given by Weyl relations).
Historically QM was developed independently by Schrödinger and Heisenberg (with Born and
Jordan), then Dirac ('20) showed (formally) that the two approaches were unitarily equivalent.
And later on Von Neumann ('30-'40) closed the matter by showing that there are no other pos-
sible representations. The theorem is false in infinite dimensions (and for physically motivated
reasons).

Proof. (one dimensional case) Let us introduce the operator

P :=�
ℝ2
dαdβe−(|α |

2+|β|2)/4e iαβ/2e iαQe iβP =�
ℂ
e−|z|2/4W (z)dzdz̄

which is well defined as a strong integral, i.e when computed on vectors ψ ∈H (regularity is
needed here, at least). We can check that P ≠0 by observing that

W (−w)W (z)W (w)= e iIm⟨z,w⟩W (−w)W (z+w)= e iIm⟨z,w⟩e iIm⟨−w,z+w⟩W (z)= e i2Im⟨z,w⟩W (z)

and looking at

W (−w)PW (w)=�
ℂ
e−|z|

2/4W (−w)W (z)W (w)dzdz̄=�
ℂ
e−|z|

2/4e i2Im⟨z,w⟩W (z)dzdz̄

Assume that P =0, so we have W (−w)PW (w)=0 and for any vector ψ ∈H we will have for any
w ∈ℂ

0=�
ℂ
e−|z|

2/4e i2Im⟨z,w⟩⟨ψ ,W (z)ψ⟩dzdz̄
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by Fourier transformwith respect to both real and imaginary part of w we deduce that e−|z|
2/4⟨ψ ,

W (z)ψ⟩=0 for almost all z ∈ℂ and by continuity of this function we have that ⟨ψ ,W (z)ψ⟩=0
for all z, and ψ but this is in contradiction with W (0)=1. So P ≠0.

With a tedious but elementary computartion with Fubini theorem and Gaussian integrals one
can check that (exercise)

PW (w)P = e−|w |2/4P , w ∈ℂ

so in particular this says that P 2=P and since is clear by definition that P ∗=P we have that that P
is a non-trivial projection (it cannot be P =1). So let ψ0 be a unit vector in Im(P) so that Pψ0=ψ0.

By irreducibility the linear space𝒟 :=span{W (z)ψ0:z∈ℂ} is dense inH since any element of the
C∗-algebra generated by (W (z))z∈ℂ can be approximated by linear combination of W (z)s. We
have also that ψ0 is the only eigenvector of P since if φ is another one orthogonal to ψ0 we have

⟨φ,W (z)ψ0⟩= ⟨Pφ,W (z)Pψ0⟩= ⟨φ,PW (z)Pψ0⟩= e−|w |2/4⟨φ,ψ0⟩

so we learn that ⟨φ,W (z)ψ0⟩=0 for all z but then ⟨φ,ψ⟩=0 for all ψ ∈𝒟 and this implies that
φ=0. We learned also that there is a state ω such that

ω0(W (z))= ⟨ψ0,W (z)ψ0⟩= e−|w |2/4.

Therefore we conclude that on any irreducible Weyl system there is a state ω such that

ω0(W (z))= e−|z|2/4

(this relation define ω0 on the full C∗-algebra, because any element can be approx. by linear
comb of W s).

Now if (H , (W (z))z∈ℂ) and (H ʹ, (W ʹ(z))z∈ℂ) are two irreducible regular representations of the
Weyl algebra we can construct a unitary operator U :H →H ʹ by extending by linearity the
equality

UW (z)ψ0=W ʹ(z)ψ0́

to the full 𝒟 and observe that U is unitary since

⟨UW (z)ψ0,UW (w)ψ0⟩= ⟨W ʹ(z)ψ0́,W ʹ(w)ψ0́⟩= ⟨ψ0́,PW ʹ(−z)W ʹ(w)Pψ0́⟩

=e−iIm⟨z,w⟩⟨ψ0́,PW ʹ(w −z)Pψ0́⟩= e−iIm⟨z,w⟩e−|w−z|2/4= ⟨W (z)ψ0,W (w)ψ0⟩

therefore is bounded and can be extended to a unitary operator on the whole H . This show that
the two representations of the Weyl relations are unitarily equivalent. □

The regular state ω0 such that

ω0(W (z))= e−|z|2/4

is called Fock vacuum or vacuum state for the Weyl representation.

Since the representation of the Weyl relation is essentially unique we could think to use the one
we like (or the one more convenient).
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Remark 8. All we are saying generalises easily to (W (z))z∈K for finite dimensional Hilbert
spaces K and strongly continuous unitary operators (W (z))z∈K such that (7) is satisfied.

� Schrödinger representation. This is given on H =L2(ℝ) by taking

U (t)f (x)= e itxf (x), V (s)f (x)= f (x − s), f ∈H , t , s ∈ℝ.

Is this irreducible? If it is not irreducible then there exists two unit vectors f ,g∈L2(ℝ) such that
for all t , s ∈ℝ

0= ⟨f ,U (t)V (s)g⟩=�
ℝ
f̄ (x)e itxg(x − s)dx .

But then if this is true for any t we have that (by Fourier transform) | f̄ (x)g(x − s)|=0 for almost
every s and x , by squaring and integrating in x , s we have

0=�dx�ds| f̄ (x)g(x − s)|2= ‖f ‖L2
2 ‖g‖L2

2 =1

so we have a contradiction and this proves that the Schrödinger representation is irreducible.

Therefore there must exist a vector ψ0∈L2(ℝ) such that

⟨ψ0, e−its/2U (t)V (s)ψ0⟩=exp�−1
4(s

2+ t 2)�, s, t ∈ℝ

and by taking s=0 we have

�|ψ0(x)|2e itxdx =exp((((((((− t
2

4 ))))))))

which means that |ψ0(x)|2 is a Gaussian function (actually the density of a 𝒩 (0, 1/2) random
variable), namely

|ψ0(x)|2=
1

(π)1/2
e−x

2

this determines ψ0 up to a phase factor: ψ0(x)= e if (x)
1

(π)1/4e
−x 2/2. However

exp((((((((−s
2+ t 2
4 ))))))))= ⟨ψ0, e−its/2U (t)V (s)ψ0⟩= e−its/2�dxe itx e−if (x) 1

(π)1/4
e−x 2/2e if (x−s)

1
(π)1/4

e−(x−s)
2/2

= e−its/2

(π)1/2
�dxe it (x+s/2)e−if (x+s/2)e−(x+s/2)

2/2e if (x−s/2)e−(x−s/2)
2/2

= e−s
2/4

(π)1/2
�dxe−x 2

e itxe i( f (x−s/2)− f (x+s/2))

so we have

1
(π)1/2

�dxe itxe i( f (x−s/2)− f (x+s/2))e−x 2=exp((((((((− t
2

4 ))))))))
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Now is better because this is saying that the function

1
(π)1/2

e i( f (x−s/2)− f (x+s/2))e−x
2

is the density of a Gaussian 𝒩 (0, 1/2) so it is equal to 1
(π)1/2e

−x 2 and we conclude that f =0, so
we have proven that, in the Schrödinger representation we have

ψ0(x)=
e−x

2/2

π 1/4 .

�Gaussian representation.We can introduce the unitary transformation (ground state trans-
formation)

J :L2(ℝ)→L2(γ)

where γ is the Gaussian measure with mean zero and variance 1/2 by letting

(Jψ)(x)=ψ(x)/ψ0(x), x ∈ℝ.

Then we have the images U ʹ,V ʹ of the Weyl pair U ,V given by (for f ∈L2(γ))

U ʹ(t)f (x)=(JU (t)J −1f )(x)=ψ0(x)−1U (t)(ψ0f )(x)= e itxf (x)

V ʹ(s)f (x)=(JV (s)J −1f )(x)=ψ0(x)−1V (s)(ψ0f )(x)=ψ0(x)−1ψ0(x − s)f (x − s)

=exs−s2/2f (x − s)

One can check directly that this gives indeed a strongly continuous representation of the Weyl
relation on L2(γ). This is called the Gaussian representation and is useful because there is a nice
basis for L2(γ) given by polynomial functions, the Hermite basis (hn(x))n�0 (indeed note that
polynomials are in L2(γ) and that one can perform a Gram-Schmidt ortogonalisation procedure
of the family (xn)n�0 which is a separating family for L2(γ) by Stone-Weierstrass) and every
hn(x) has monomial of highest degree n.

� Reducible (regular) representations of Weyl relations.

Assume now that (W (z))z∈ℂ does not act irreducibly onH then the range of P is not one dimen-
sional. However in general we have that for any ψ ,φ ∈H

⟨W (z)Pφ,W (zʹ)Pψ⟩= ⟨φ,PW (z)∗W (zʹ)Pψ⟩= f (z,zʹ)⟨Pφ,Pψ⟩

where we used that there exists a function f such that f (z, zʹ)P = PW (z)∗W (zʹ)P and that
does not depend on the specific representation. This means that I can compute it in any
representation, in particular if we denote ψ0

♯ the vacuum vector of the Schrödinger represen-
tation and by (W ♯(z))z∈ℂ the Weyl operators in the Schrödinger representation we have ⟨ψ0

♯,
P ♯W ♯(z)∗W ♯(zʹ)P ♯ψ0

♯⟩L2(ℝ)= f (z,zʹ) and

⟨W (z)Pφ,W (zʹ)Pψ⟩H = ⟨W ♯(z)P ♯ψ0
♯,W ♯(zʹ)P ♯ψ0

♯⟩L2(ℝ)⟨Pφ,Pψ⟩Im(P) (8)
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therefore we can introduce a unitary operator J :L2(ℝ)⊗Im(P)→H defined by

J(W ♯(z)ψ0
♯⊗Pφ)=W (z)Pφ.

Remark 9. Let us recall that if K1,K2 are two Hilbert spaces there is a canonical notion of
product of them, which is the Hilbert space K1⊗K2 obtained by completing the span of all the
monomials of the form {v ⊗w:v ∈K1,w ∈K2}with respect to the Hermitian scalar product define
on monomials by

⟨v1⊗w1,v2⊗w2⟩K1⊗K2 := ⟨v1,v2⟩K1⟨w1,w2⟩K2,

and extended by linearity (one has to check that this is a positive definite quantity, but for
general results the product of positive definite kernels is a positive definite kernel).

Since {W ♯(z)ψ0
♯}z∈ℂ span a dense subset of L2(ℝ) (by irreducibility of the Schrödinger rep.) and

{Pφ}φ∈H =Im(P) as Hilbert space, then J is well defined on all L2(ℝ)⊗Im(P) and by construction
it is isometric on H by (8). It remains to check that it is surjective. Let φ ∈ Im(J) then we must
have for any vector of the form W (z)PW (−z)ψ since these are surely in the image of J , so for
any z ∈ℂ and ψ ∈H we have

0= ⟨φ,J(W ♯(z)ψ0
♯⊗PW (−z)ψ)⟩= ⟨φ,W (z)PW (−z)ψ⟩

recalling the definition of P we have

0=�
ℂ
e−|w |2/4⟨φ,W (z)W (w)W (−z)ψ⟩dwdw̄ =�

ℂ
e−|w |2/4e−2Im⟨z,w⟩⟨φ,W (w)ψ⟩dwdw̄

since this has to be zero for any z ∈ℂ we deduce by Fourier transform that ⟨φ,W (w)ψ⟩=0 for
a.e. w but is also continuous in w so it is zero for all w ∈ℂ and then also for any ψ ∈H . By taking
w =0 and ψ =φ we deduce that ‖φ‖=0 so φ =0. In this way we proved that J is surjective and
therefore that it is unitary.

Corollary 10. Any regular representation ((W (z))z∈ℂ,H) of the Weyl relations is unitarily
equivalent to the representation ((W ♯(z))z∈ℂ,L2(ℝ)⊗K) where K =PH and W ♯(z) acts trivially
on K and as the Schrödinger representation on L2(ℝ), i.e.

W ♯(z)(ψ ♯⊗ψ ♮)=(W ♯(z)ψ ♯)⊗ψ ♮, z ∈ℂ,ψ ♯∈L2(ℝ),ψ ♮∈K .

We know that the only regular irreducible representation on a Hilbert space H of the Weyl
relations is given by a state such that

ω(W (z))= e−|z|2/4.

This state corresponds to a cyclic vector ψ0∈H by means of the relation ω(a)= ⟨ψ0,aψ0⟩ which
defines a state on ℒ(H), we have also that the weak closure of the Weyl algebra (W (z))z∈ℂ is
the whole ℒ(H).

Moreover any state with the same expectation of the Weyl operators give rise to a representa-
tion (via GNS construction) which is unitarily equivalent with the Schrödinger representation,
in particular it is irreducible.
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How do reducible representations looks like? I want to give an example. The easiest way to
come up with a reducible representation is to that two copies L2(ℝ) ⊗ L2(ℝ) = L2(ℝ2) of the
Schrödinger representation and define Weyl operators

(W̃ (s+ it)f )(x1,x2)=(e its/2Ũ (s)Ṽ (t)f )(x1,x2)

=e its/2e is(ax1+bx2)f (x1−at ,x2+bt)= e its/2U1(as)U2(bs)V1(at)V2(−bt)

where (U1,V1) and (U2,V2) are Weyl pairs acting independenlty on the two factors of L2(ℝ)⊗
L2(ℝ), so they commute among them. We can check that they satisfy the Weyl relations

W̃ (s+ it)W̃ (s ʹ + it ʹ)= e its/2U1(as)U2(bs)V1(at)V2(−bt)e it ʹs ʹ/2U1(as ʹ)U2(bs ʹ)V1(at ʹ)V2(−bt ʹ)

=e its/2e it ʹs ʹ/2(U1(as ʹ)U2(bs ʹ)V1(at ʹ)V2(−bt ʹ))(U1(as)U2(bs)V1(at)V2(−bt))×

×e−i(−bt)(bs ʹ)−i(at)(as ʹ)+i(bs)(−bt ʹ)+i(as)(at ʹ)

=e i(b
2s ʹt−a2s ʹt−b2st ʹ+a2st ʹ)W̃ (s+ it)W̃ (s ʹ + it ʹ)

=e−i(b2−a2)Im[(s+it)(s ʹ+it ʹ)]W̃ (s ʹ + it ʹ)W̃ (s+ it)

iff a2−b2=1. This also implies that the operators W̃ are unitary, indeed

(e its/2U1(as)U2(bs)V1(at)V2(−bt))∗= e−its/2V2(bt)V1(−at)U2(−bs)U1(−as)

=e−its/2e i(−as(−at))e i(−bs(bt))U1(−as)U2(−bs)V1(−at)V2(bt)

=e−its/2e i((a
2−b2)st)U1(−as)U2(−bs)V1(−at)V2(bt)=W̃ (−s− it).

In this way we can construct a family of Weyl pairs. Let Ψ0=ψ0⊗ψ0 the tensor product of the
two vacuum states, then

⟨ψ0⊗ψ0,W̃ (s+ it)(ψ0⊗ψ0)⟩L2(ℝ2)= e i(a
2−b2)ts/2⟨ψ0,U1(as)V1(at)ψ0⟩L2(ℝ)⟨ψ0,U2(bs)V2(−bt)ψ0⟩L2(ℝ)

=�ψ0, e ia
2ts/2U1(as)V1(at)ψ0�L2(ℝ)�ψ0, e−ib

2ts/2U2(bs)V2(−bt)ψ0�L2(ℝ)

=⟨ψ0,W (as+ iat)ψ0⟩L2(ℝ)⟨ψ0,W (bs− ibt)ψ0⟩L2(ℝ)

=e−|as+ait |2/4e−|−bt+bis|2/4= e−(a
2+b2)|s+it |2/4= e−(1+2b

2)|s+it |2/4.

We have proven the following:

Theorem 11. For any Q�1/2 there exists a state ωQ on the Weyl algebra such that

ωQ(W (z))= e−Q|z|2/2.
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Moreover we know that for Q =1/2 is pure (because it corresponds to the Schrödinger model) and
for Q >1/2 it is not.

Let us show concretely that the representation given by W̃ on L2(ℝ2) is not irreducible. Con-
sider the operators

(W ♯(s+ it)f )(x1,x2)= e its/2U1(bs)U2(as)V1(−bt)V2(at)=W1(bs− ibt)W2(as+ iat)

and note that

W̃ (s ʹ + it ʹ)W ♯(s+ it)=W1(as+ iat)W2(bs− ibt)W1(bs− ibt)W2(as+ iat)

=e iIm⟨as+iat ,bs−ibt⟩e iIm⟨bs−ibt ,as+iat⟩|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
=1

W1(bs− ibt)W2(as+ iat)W1(as+ iat)W2(bs− ibt)

=W ♯(s+ it)W̃ (s ʹ + it ʹ)

so the two families commute. In particular the Stone–von Neumann projector P ♯ associated to
the Weyl system W ♯ satisfies

P ♯W̃ (z)=W̃ (z)P ♯

and therefore (W ♯(z))z∈ℂ is not an irreducible representation since P ♯ is a non-trivial self-
adjoint operator.

Moreover if ψ0
♯ ∈ L2(ℝ2) is a unit vector such that P ♯ψ0

♯ = ψ0
♯ then the space K =

{W ♯(z)ψ0
♯:z ∈ℂ}L

2(ℝ2) is invariant under the action of W̃ (z) and we have that {W̃ (z)K : z ∈ℂ}
is dense in L2(ℝ2).

Question 1. It is a fact that there not exists states on the Weyl algebra for which

ωQ(W (z))= e−Q|z|2/2,

with Q <1/2. How to prove it?

Remark 12. Aster the lecture, Jaka came up with the following idea to prove it. Unfortunately,
it uses unbounded operators and analytic vectors, which we haven't discussed. The idea is to
prove that if Q <1/2 then this clashes with the Heisenberg commutation relations. It goes as
follows.

Consider

ωc(W (z))= e−
1
4c|z|

2
, c ∈ [0, 1).

This is an analytic state so we can work in its GNS representation without worrying about
any unbonudedness problems since the vacuum will be an analytic vector for Q,P . Using the
definitions

Q = 1
i
d
dt �t=0

W (t), P = 1
i
d
dt �t=0

W (it),
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we can use the two-point function

ωc(W (z)W (w))= e−iIm(zw)e−
1
4c|z+w |2

to compute the dispersions ΔQ,ΔP : obviously the expectation values will be 0, so we just need

ωc(Q2) = − d
dt �t=0

d
ds �s=0

e−
1
4c(t+s)

2
= c
2 ,

ωc(P 2) = − d
dt �t=0

d
ds �s=0

e−
1
4c(t+s)

2
= c
2 .

Thus ΔQΔP =
c
2 , violating Heisenberg's uncertainty principle.

6 Dynamics on a canonical pair
So far we described the kinematics, that is the structure of the space of observables which holds
at a specific time, because we imagine to perform a measurement described by 𝒜 on a state ω.

In order to do predictions one has to correlate the measurements on the same system at different
times: we have a model which given information from the past allows us to predict the future.
(that's one of the basic goals of physics).

Example 13. Let us start from an example. Note that if (W (z))z∈ℂ is an irreducible Weyl
system on some Hilbert space H then also

(W̃t(z)=W (e itz))z∈ℂ

is a Weyl system for any t ∈ℝ. Then it must be that there exists a unitary operator Ut such that

UtW̃t(z)Ut
∗=W (z), t ∈ℝ,z ∈ℂ.

Moreover we can define an automorphism of the Weyl algebra by letting αt(W (z))=W (e itz)
(i.e. a map of the Weyl algebra in itself which respects the ∗-operation and the algebraic rela-
tions in the C∗-algebra, and as a consequence is an isometry). This is an example of dynamics,
i.e. the introduction of a time evolution in our description of a physical system.

Let us obseve that α2π(W (z))=W (z) so α2π = id. So the dynamics is periodic of period 2π , we
will see that it corresponds to the quantum motion of an harmonic oscillator.

The time and dynamics enters into the model via a group (αt)t of (∗-)automorphisms of 𝒜 ,
which have the following meaning ω(αt(a)) is the measurement of the observable a at the time
t . α0=id. αt+s=αt ∘αs, i.e. is a representation of the additive group of ℝ onto automorphisms of
the C∗-algebra 𝒜 .

We can let α act on the linear functional by duality: (αt∗φ)(a) :=φ(αt(a)) and then this gives a
group of linear transformations on linear functionals on 𝒜 and is easy to see that it preserves
the states of 𝒜 .

Suppose that αt∗ω is not pure, then it can be decomposed into two states αt∗ω=λω1+(1−λ)ω2 but
then ω=α−t

∗ αt∗ω=λα−t
∗ ω1+(1−λ)α−t

∗ ω2 so ω is not pure either. Therefore the dynamics preseves
pure states.
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To proceed we need some assumption on the automorphism, essentially its compatibility with
the representation space under consideration.

Fix a specific setting (ℋ ,𝒜̃ ,Q̃0)where 𝒜̃ is a general C∗-algebra and Q̃0 is a representation inℋ .

Definition 14. Let (αt)t∈ℝ a set of C∗-automorphisms of 𝒜̃. We call α a regular dynamics, if

i. (αt)t∈ℝ is a group wrt. t, i.e. α0=id and αt ∘αs=αt+s for any t , s ∈ℝ

ii. the map t ↦ αt is weakly continuous, i.e. for any state ω and for any a ∈ 𝒜̃ the map t ↦
ω(αt(a)) is continuous.

Define Q̃t(a) := Q̃(αt(a)) for a∈ 𝒜̃ .

Definition 15. The set {U (t)}t∈ℝ ⊂ℬ(ℋ) is a unitary group of strongly continuous operators,
if U (t)U (s)=U (t + s) and U (t)∗=U (−t) and if the map t↦U (t) is weakly (and thus strongly)
continuous.

Theorem 16. Assume that there exists a state ωh0(αt(a)) =ωh0(a) for all t ∈ℝ and a ∈ 𝒜̃ and
(αt)t is a regular dynamics of 𝒜̃, then if ℋ is the GNS representation space associated with ωh0

and h0∈ℋ is the corresponding cyclic vector, then there exists a unitary strongly continuous group
(U (t))t∈ℝ on ℋ such that

Q̃t(⋅)=U (t)Q̃0(⋅)U (−t)

and also U (t)h0=h0.

Lemma 17. Suppose that we have a contraction V (t), i.e. ‖V (t)h‖� ‖h‖, such that V (0)=1 and
V (t) is weakly continuous in t at zero, then it is strongly continuous at zero.

Proof. We have

0� ‖V (t)h−h‖ℋ2 = ‖V (t)h‖ℋ2 + ‖h‖ℋ2 −2Re⟨V (t)h,h⟩ℋ �2‖h‖ℋ2 −2Re⟨V (t)h,h⟩ℋ

so weak continuity at zero is enough for strong continuity at zero. □

Proof. (of the Theorem 16)

ℋ0={Q0(a)h0|a∈ 𝒜̃}, ℋ0=ℋ ,

Let's define

U0(t)(Q0(a)h0)=Qt(a)h0=Q0(αt(a))h0

We first prove that U0(t) is an isometry

⟨U0(t)(Q0(a1)h0),U0(t)(Q0(a2)h0)⟩= ⟨Q0(αt(a1))h0,Q0(αt(a2))h0⟩

=⟨h0,Q0(αt(a1))∗Q0(αt(a2))h0⟩= ⟨h0,Q0(αt(a1
∗a2))h0⟩=ωh0(αt(a1

∗a2))

=ωh0(a1
∗a2)= ⟨h0,Q0(a1

∗a2)h0⟩= ⟨Q0(a1)h0h0,Q0(a2)h0⟩
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So U0(t) is an isometry on ℋ0 so it is bounded on ℋ0 and can be extended by continuity to
ℋ0=ℋ . It remains to prove that it form a group. α0=1⇒U0(0)= Iℋ and

U0(t)U0(s)(Q0(a)h0) = U0(t)(Q0(αs(a))h0) = (Q0(αt(αs(a)))h0) = (Q0(αt+s(a))h0) = U0(t +
s)(Q0(a)h0)

so U0(t)U0(s)=U0(t + s) on ℋ0 and therefore on all ℋ . It remains to prove that h0 is invariant,
but of course U0(t)h0=U0(t)(Q0(1)h0)=Q0(αt(1))h0=h0. We also have that it is weakly con-
tinuous

⟨(Q0(a)h0),U0(t)(Q0(b)h0)⟩= ⟨h0,Q0(a∗αt(b))h0⟩=ωh0(a∗αt(b))

and ωh0(a∗ ⋅ ) is a continuous functional on 𝒜 and therefore t ↦ωh0(a∗αt(b)) is continuous,
which proves that U0(t) is weaky continuous in ℋ0 and then strongly continuous and can be
extended as a strongly continuous group in ℋ . Note finally that

Q̃t(a)Q̃0(b)h0= Q̃t(aα−t(b))h0=U0(t)(Q0(aα−t(b))h0)=U0(t)(Q0(a)Q0(α−t(b))h0)

=U0(t)Q0(a)U0(−t)Q0(b)h0

so this proves that Q̃t(a)=U0(t)Q0(a)U0(−t). □

Remark 18. Without the hypothesis that the state is invariant, then this construction is not
true in general anymore. Take for example𝒜 commutative, i..e C∞

0 (ℝ2) and consider an Hilbert
space L2(ℝ2,μ) where

μ(dx)= e−x 2/2dx +δ0(dx)

and the usual moltiplication and take αt(f (x))= f (x−t). But here there is no unitary group asso-
ciated to α . Indeed take the state ωμ(a)=∫a(x)μ(dx). Consider the translated state ωμ(αt(⋅)),
then GNS representation of it lives on L2(ℝn,μt)where μt=Tt∗μ the pull forward of μ by the trans-
lation operator. In order to have a unitary transformation we need that μt has to be absolutely
continuous wrt. μ, but this is not the case.

7 Through the mirror
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In this lectures we will require always to have a unitary implementation of the dynamics (αt)t∈ℝ
for (ℋ ,𝒜 ,Q0), i.e. to have a strongly continuous group of unitary operators (U (t))t∈ℝ so that
Qt(⋅)=Q0(αt(⋅))=U (t)Q0(⋅)U (−t).

Recall that we have proven the following link between unitary groups and representations of
C(ℝ):

Theorem 19. Consider an Hilbert space ℋ, a strongly continuous unitary group (U (t))t∈ℝ on ℋ,
then there exists a unique C∗-representation X of Cb

0(ℝ,ℂ) on ℋ such that

i. X(e it ⋅)=U (t)

ii. If fn→ f pointwise and supn ‖fn‖<∞ then X(fn)→X(f ) weakly.

Which could be considered a C* version of the Fourier transform. We want now to do the same
for certain semigroups. This essentially is the C* analogon of the Laplace transform.

Definition 20. {K(t)}t∈ℝ+
⊂−ℬ(ℋ). We say that K(t) is a strongly continuous semigroup of self-

adjoint contractions if

i. K(0)=1, K(t)K(s)=K(t + s), for t , s�0.

ii. K(t)=K(t)∗,

iii. t↦K(t) is strongly continuous

iv. ‖K(t)h‖� ‖h‖,t �0.

Theorem 21. Assume that K is a strongly continuous semigroup of self-adjoint contractions then
there exists a unique representation X of Cb

0(ℝ+) on ℋ such that

i. X(e−t ⋅)=K(t)

ii. If fn→ f pointwise and supn ‖fn‖<∞ then X(fn)→X(f ) weakly.

To prove this theorem we need few more definitions.

Definition 22. If G:ℝ→ℂwe call G positive definite if for any λ1,...,λk∈ℂ and t1,..., tk∈ℝwe have

�
i, j=1

k

λiλ̄jG(ti− tj)�0

Definition 23. We say that F :ℝ+→ℂ is totally monotone if for any λ1, ...,λk∈ℂ and t1,... , tk∈ℝ+
we have

�
i, j=1

k

λiλ̄jF(ti+ tj)�0.
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Take U a unitary group onℋ . For any h∈ℋ we define FU(t ,h)=⟨U (t)h,h⟩. If K is a self-adjoint
contration semigroup we define FK(t ,h)= ⟨K(t)h,h⟩.

Theorem 24. Let U and K as before, then FU is positive definite and FK is totally monotone.

Proof. Consider K , the case of U is similar. Take λ1, .. .,λk∈ℂ and t1, ... , tk∈ℝ+ and just compute

0���
i

λiK(ti)h,�
i

λiK(ti)h�= �
i, j=1

k

λiλ̄jFK(ti+ tj)

using the fact that K is self-adjoint and a semigroup. □

Theorem 25. (Bochner) G is a continuous positive definite function iff there exists a bounded
positive measure μ on ℝ such that

G(t)=�
ℝ
e itxμ(dx).

Theorem 26. (Bernstein) F is a bounded totally monotone function iff there exists a bounded pos-
itive measure μ on ℝ+ and a constant C �0 such that

F(t)=C�
ℝ+
e−txμ(dx).

Remark 27. These results can be generalises in a more abstract setting by replacing ℝ and ℝ+
with other topological groups/semigroups and exponentials with characters.

Lemma 28. Assume that F is a bounded, totally monotone function, then

a) For any a>0, −ΔaF is bounded totally monotone with ΔaF(t)=F(t +a)−F(t).

Proof. F �0, a, t �0

(((((( F(2t) F(t +a)
F(t +a) F(2a) ))))))

is positive definite, so its determinant is positive and

F(t +a)� F(2t)F(2a)�

Then (starting with a=0)

F(t)�F(0)1/2F(2t)1/2�F(0)3/4F(4t)1/4� ⋅ ⋅ ⋅�F(0)(2
n−1)/2nF(2n t)1/2n�F(0)(2

n−1)/2nC1/2n

and so we conclude that F(t)�F(0). Take λ1, . . . ,λk ∈ℂ and t1, . . . , tk ∈ℝ+ and define

G(a)=�
i, j

n

F(a+ ti+ tj)λiλ̄j
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and consider other points σ1, . . . ,σn∈ℂ and a1, . . . ,an∈ℝ+ then

�
i, j

k

G(ai+aj)σiσ̄j=�
i, j

n

�
r ,s

k

F(ai+aj+ tr + ts)λrλ̄sσiσ̄j�0

using the fact that F is totally monotone. So G is also totally monotone and as a consequence
G(a)�G(0) and G(0)−G(a)�0 or otherwise

�
i, j

n

(−ΔaF(ti+ tj))λiλ̄j=�
i, j

n

(F(ti+ tj)−F(a+ ti+ tj))λiλ̄j�0

so −ΔaF is bounded and totally monotone. □

Corollary 29. If F is bounded and totally monotone, for any a1, . . . ,an∈ℝ+

(−1)nΔa1⋅ ⋅ ⋅ΔanF

is totally monotone and therefore (−1)nΔa1⋅ ⋅ ⋅ΔanF �0.

Theorem 30. (Krein–Milman) Let X be a locally convex Hausdorff topological vector space and
let K ⊂−X be a compact convex subset, then the set E(K) of extreme points of K is non-void and for
any y ∈K there exists a probability measure νy on E(K) such that

y =�
E(K)

xνy(dx)

where the integral is understood in the weak sense, i.e. for any λ∈X ∗ we have (Pettis integral)

λ(y)=�
E(K)

λ(x)νy(dx).

Recall that locally convex means that there is a base of the topology composed by convex sets.
For example ℝ(0,+∞) with the product topology is a locally convex and Hausdorff.

Proof. (of Bernstein theorem) We prove now that if F is bounded and totally monotone there
exists a positive measure μ on ℝ+ such that F(t)=∫ℝ+

e−txμ(dx). The rest of the claim is lest as
an exercise. Consider the space 𝒞 ⊂−ℝ(0,∞) such that

𝒞 ={F ∈ℝ(0,∞),F �0: for all a1, . . . ,an∈ℝ+ (−1)nΔa1⋅ ⋅ ⋅ΔanF �0}

Note that 𝒞 is closed for the pointwise convergence and it is convex, but not compact. In par-
ticular this means that for F ∈𝒞 we have F(t1)−F(t2)�0 if t1� t2 and we let F(0+)=limt↓0F(t)
by monotone limit. In principle we could have F(0+)=+∞. F is bounded iff F(0+)<∞. Since
ΔaΔaF �0 we have

1
2F(t)+

1
2F(t +2a)�F(t +a)
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and this means that F is midpoint convext. On the other hand, for any 0 < c < d we have that
0�F(d)�F(c) so F is bounded in [c,d]. It is lest as an exercise to prove that if F is midpoint
convex and bounded then F is continuous in (c, d) (Hint: show that F : [−δ , δ]→ℝ midpoint
convex and if F has a discontinuity in 0 then it is unbounded). By this result, F is continuous
on ℝ+. Consider a subset K ⊂−𝒞 as follows K = {F ∈𝒞 : F(0+ )=1}. This is now a closed convex
set and K ⊂ [0, 1]ℝ+ which is a compact space (always wrt. to the pointwise convergence). By
Krein–Milman this means that for any y∈K we can write it as a convex combination of extreme
points. What are these extreme points E(K) of K? For any F ∈K we have that exists a∈ℝ+ such
that F(a)>0 and 1=F(0)>F(a)>0 unless F =1 everywhere. In the second case 1∈E(K) since
it is the biggest element of K and therefore cannot be decomposed in a convex combination of
other elements. In the other case

F(t)= F(t +a)
F(a) F(a)+ −ΔaF(t)

1−F(a) (1−F(a))

so F(t +a)/F(a)∈K ⊂−𝒞 so this implies that if F ∈E(K) we need to have F(t +a)=F(t)F(a). This
is true to all a for which 1 > F(a) > 0. Since F is continuous and a solution of that functional
equation, but all these solutions are of the form F(t)=exp(−st) for some s ∈ℝ+. Then if F ∈K
there exists a probability measure μ on ℝ+ such that

F(t)=�
ℝ+
e−stμ(ds).

This proves the key claim in the theorem if F is bounded and F ∈K . However is clear that if F
is totally monotone, then F ∈𝒞 and if 0< F(0+ )<∞ we have that F(t)/F(0+ ) is bounded and
>0 and in K . □

Lemma 31. For any h ∈ℋ and t �0,

FK(t ,h)=�
ℝ+
e−txμh(dx)

where μh(ℝ+)= ‖h‖2.

Proof. FK is bounded because |FK(t , h)| � ‖Kh‖ ‖h‖ � ‖h‖2 and totally monotone, so it has this
representation note that F(0,h)= ‖h‖2. □

Lemma 32. There is only one C∗ representation X0 of C∞
0 (ℝ+,ℂ) such that

X0(e−t ⋅)=K(t)

Proof. Consider the set ℰ =spanℂ{e−tx, t �0}⊂C∞
0 . Moreover ℰ is a ∗-subalgebra on C∞

0 and we
define

X00:ℰ→ℬ(ℋ)

as X00(e−tx)=K(t) and then extend by linearity to all ℰ. X00 is a ∗-homomorphism since K is a
semigroup. Moreover for f =∑iλie

−tjx we have

⟨h,X00(f )h⟩=�
i

λiFK(ti,h)=�
i

λi�ℝ+
e−tixμh(dx)=�

ℝ+
f (x)μh(dx)
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so by using that X00(f ) is self-adjoint

|⟨X00(f )h,X00(f )h⟩|= |⟨h,X00(f 2)h⟩|� ‖f 2‖∞‖h‖2= ‖f ‖∞2 ‖h‖2,

and , we have that ‖X00(f )‖� ‖f ‖∞. As exercise we leave to prove that ℰ is dense in C∞
0 (ℝ+, ℂ)

(Stone-Weierstrass and a localization argument). Then we can extend X00 from ℰ to C∞
0 by

continuity with the operator norm. □

Up to now we proved that:

1. There exists a unique ∗-homomorphism X :C∞
0 (ℝ+, ℂ)→ℬ(ℋ) where C∞

0 (ℝ+, ℂ) is the set
of continuous functions going to zero at infinity.

2. For any h ∈ℋ there exists a unique positive measure μh on ℝ+ such that μh(ℝ+)= ‖h‖2 and

⟨K(t)h,h⟩=�
ℝ+
e−txμh(dx).

3. For any f ∈C∞
0 (ℝ+,ℂ) we have

⟨X(f )h,h⟩=�
ℝ+
f (x)μh(dx).

We introduce a measure

μh1,h2 := 1
4�
k=0

3

ikμh1+(i)kh2

by polarisation and we have

⟨X(f )h1,h2⟩=�
ℝ+
f (x)μh1,h2(dx).

Lemma 33. We have that

dμX(f )h1,h2

dμh1,h2
= f (x)

Proof. The measure μh1,h2 can be characterised by

⟨K(t)h1,h2⟩=�
ℝ+
e−txμh1,h2(dx)

and we have

⟨K(t)X(f )h1,h2⟩=�
ℝ+
e−txμX(f )h1,h2(dx)=�

ℝ+
e−txf (x)μh1,h2(dx)

so by identification of Laplace transforms we have the claim. □

Proof. (of Theorem 19) Define the linear operator X̃(f ) by

⟨X̃(f )h1,h2⟩=�
ℝ+
f (x)μh1,h2dx
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for all h1,h2∈ℋ . We have

‖X̃(f )‖ℬ(ℋ)= sup
‖h1‖=‖h2‖=1

��
ℝ+
f (x)μh1,h2(dx)�� ‖f ‖∞ sup

‖h1‖=‖h2‖=1
�μh1,h2(ℝ+)�<∼ ‖f ‖∞

so X̃(f ) is bounded. Moreover one can show easily that ⟨X̃(f )h1,h2⟩=⟨h1,X̃(f ∗)h2⟩. The approx-
imation property is quite easy to prove since if fn→ f pointwise and the family is bounded
then by dominated convergence

⟨X̃(fn)h1,h2⟩=�
ℝ+
fn(x)μh1,h2dx→�

ℝ+
f (x)μh1,h2dx = ⟨X̃(f )h1,h2⟩

so we have weak convergence. Moreover if f ∈Cb
0(ℝ+) then there exists (fn)n�0⊂C∞

0 (ℝ+) such
that fn→ f pointwise and supn ‖fn‖<∞ (simply by multiplying f with a sequence of dilations of
a given bounded functions of compact support). So there can be only one such operator which
extends X from C∞

0 . We have to prove that X̃ is an homomorphism. Take f ,g ∈Cb
0(ℝ+, ℂ) and

consider two approximating sequences (fn)n,(gn)n⊂−C∞
0 (ℝ+) then taking n→∞

⟨X̃(fgm)h1,h2⟩← ⟨X̃(fngm)h1,h2⟩= ⟨X̃(fn)X̃(gm)h1,h2⟩→ ⟨X̃(f )X̃(gm)h1,h2⟩

so taking m→∞ we get ⟨X̃(fg)h1,h2⟩= ⟨X̃(f )X̃(g)h1,h2⟩. This concludes the proof by taking
X = X̃ . □

Now we have seen that if (U (t))t∈ℝ is a strongly continuous unitary group this is equivalent
to have an representation XU of Cb

0(ℝ,ℂ) in ℬ(ℋ) and if (K(t))t�0 is a self-adjoint, strongly
continuous contraction semigroup, then we have a representation XK of Cb

0(ℝ+, ℂ) on ℬ(ℋ).
We want to look into the relation between these two objects.

Definition 34. We say that (U (t))t∈ℝ (as before) has positive energy for each f ∈Cb
0(ℝ,ℂ) such

that supp(f )⊂−(−∞,0) we have that XU(f )=0.

Remark 35. Assume that f1, f2∈Cb
0(ℝ,ℂ) such that f1= f2 on [0,∞) then if U has positive energy

then XU(f1)=XU(f2).

Lemma 36. U has positive energy iff for any h ∈ℋ μUh is supported on ℝ+= [0,∞).

Proof. ⟨XU(f )h1,h2⟩=∫ℝf (x)μ
h(dx) if the measure is supported on ℝ+ then X(f )=0 if supp(f )⊂−

ℝ<0. On the other hand if supp(f ) = (−∞, 0) then ∫ℝ f (x)μ
h(dx) = 0 from which we get that

supp(μh)⊂−ℝ+. □

Remark 37. If (U (t))t∈ℝ has positive energy and g ∈Cb
0(ℝ+, ℂ) then we can define XU(g) in a

unique way as follows: we take g̃ ∈Cb
0(ℝ,ℂ) such that g̃=g on ℝ+ and we define XU(g)=XU(g̃).

This definition is a good one since the value do not depends on the extension g̃, indeed if ĝ is
another extension then g̃ − ĝ is supported on (−∞,0) and XU(ĝ)=XU(g̃).

Theorem 38. Assume (U (t))t∈ℝ is a strongly continuous unitary group with positive energy, then
K(t) =XU(e−t ⋅) is a strongly continuous self-adjoint contraction semigroup and also XU =XK on
Cb

0(ℝ+,ℂ). The converse is true, i.e. if we have K and we define U (t)=XK(e it ⋅), then (U (t))t∈ℝ is
a strongly continuous unitary group with positive energy and XK =XU.
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Proof. From e−t1se−t2s=e−(t1+t2)s we have K(t1)K(t2)=K(t1+ t2) and the other properties follows
easily, moreover by dominated convergence ⟨h1,K(t)h2⟩→ ⟨h1,K(s)h2⟩ if t → s and strong
continuity follows since K is a contraction, i.e. ‖K(t)h‖2= ⟨h,K(2t)h⟩�‖e−2t ⋅‖Cb

0(ℝ+)μ
h(ℝ+)= ‖h‖2.

The reverse implication is lest as exercise. □

We want to justify now the name of “positive energy”. This is not fundamental in the following
but will give a better grasp of the connection with standard physical intuition.

Let𝒟H be a subspace ofℋ such that h∈𝒟H iff t↦U (t)h is strongly differentiable in 0. For any
h ∈𝒟H we define

Hh= 1
i limt→0

U (t)h−h
t ∈ℋ .

Is simple to prove that H is a linear operator H :𝒟H →ℋ . For generic U , the operator H is not
bounded, which implies that H cannot be extended as a continuous operator on all ℋ . H is an
unbounded operator and 𝒟H is called the domain of H .

Lemma 39. h ∈𝒟H iff

�
ℝ
x 2μh,U(dx)<∞, and then ‖Hh‖2=�

ℝ
x 2μh1,h2,U(dx).

If h1∈𝒟H and h2∈ℋ then

�
ℝ
|x |�μh1,h2,U �(dx)<∞, and ⟨Hh1,h2⟩=�

ℝ
xμh1,h2,U(dx).

Proof. Step 1. For any h1∈𝒟H and h2∈H

�
ℝ
|x |�μh1,h2,U �(dx)= sup

f ∈Cc0(ℝ,ℂ),‖f ‖�1
�
ℝ
xf (x)μh1,h2,U(dx)= sup

f ∈Cc0(ℝ,ℂ),‖f ‖�1
⟨X(xf (x))h1,h2⟩

�‖h2‖H((((((( sup
f ∈Cc0(ℝ,ℂ),‖f ‖�1

‖X(x f (x))h1‖)))))))1/2
� ‖h2‖H((((((((((( sup

f ∈Cc0(ℝ,ℂ),‖f ‖�1
�
ℝ
(x f (x))2μh1,h1,U(dx))))))))))))

1/2
�

Ch1‖h2‖H

But this implies that there exists h1́ such that ⟨h1́,h2⟩=∫ℝxμ
h1,h2,U(dx). Now we want to prove

that h1́=Hh1

� 1
it(U (t)−1)h−h1́,

1
it(U (t)−1)h−h1́�= � 1

it(U (t)−1)h�
2
+ ‖h1́‖2−2Re� 1

it(U (t)−1)h,h1́�

=�
ℝ((((((21−cos(tx)

t 2
+x 2−2sin(tx)t x))))))||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
G(t ,x)

μh1(dx)

Now |G(t ,x)|�Cx 2 is uniformly bounded and pointwise converge to zero as t→0, so by Lebesgue
dominated convergence we conclude that this quantity goes not zero. So we have that if ∫
x 2μh(dx)<∞ we have that U (t)h is strongly differentiable in zero. On the other hand, if U (t)h
is strongly differentiable then

sup
t∈(−1,1)

� 1
it(U (t)−1)h�

2
=C <∞

29



and in particular

�x 2μh(dx)=2�liminf
t→0

1−cos(tx)
t 2

μh(dx)� liminf
t→0

2� 1−cos(tx)
t 2

μh(dx)=liminf
t→0

� 1it(U (t)−1)h�
2
<

C.

The rest of the proof is lest as exercise. □

Theorem 40. 𝒟H is dense inℋ and h1,h2∈𝒟(H) we have ⟨Hh1,h2⟩=⟨h1,Hh2⟩, so H is symmetric

Proof. If h ∈ℋ define hℓ =∫0
ℓU (s)hds we prove that hℓ ∈𝒟H : indeed

dμhℓ
dμh

= 1
x 2(e

ihx −1)(e−ihx −1)

then

�x 2μhℓ(dx)�C�μh(dx)<∞

and hℓ ∈𝒟H .

�e itxμhℓ(dx)=�U (t)�
0

ℓ
U (s1)hds1,�0

ℓ
U (s2)hds2�=�

[0,ℓ]2
�
ℝ
e i(t+s1+s2)xμh(dx)ds1d2

and by Fubini we can exchange the integrals and obtain

�e itxμhℓ(dx)=�e itx 1
x 2(e

ihx −1)(e−ihx −1)μh(dx)

and by identification of Fourier transforms. We have ‖hℓ /ℓ −h‖→0 as ℓ→0, we have

‖hℓ /ℓ −h‖2= �1ℓ�
0

ℓ
(U (s)−1)hds�

2
� sup
s∈[0,ℓ]

‖(U (s)−1)h‖=o(ℓ)

by strong continuity. The symmetry is quite simple since

⟨Hh1,h2⟩= lim
t→0

�U (t)−1
it h1,h2�= lim

t→0
�h1,

U (−t)−1
−it h2�= ⟨h1,Hh2⟩.

□

Remark 41. Is possible to prove that (H ,𝒟H) is self-adjoint, i.e. H ∗ =H . (given the natural
definition of the adjoint of a densely defined unbounded operator)

If h1,h2∈𝒟H we define ℰ(h1,h2)= ⟨Hh1,h2⟩. If h1∈𝒟H and ‖h‖ℋ =1 then we define ℰ(h,h) to
be the energy of the state h ∈ℋ .

Recall that (ℋ ,𝒜 ,Q0) is our quantum space and if h∈ℋ gives the vector state ωh(a)= ⟨Q0(a)h,
h⟩. So the energy is an extension of this formula for the unbounded operator H which formally
is the derivative of the time-evolution group U . We hadQt(a)=U (−t)Q0(a)U (t). If it is possible
to take the derivative wrt. to t then we obtain

∂tQt(a)=
1
i [H ,Qt(a)]
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(this has to justified).

We have that (h1,h2)↦ℰ(h1,h2) is an Hermitian form (i.e. linear in the first and antilinear in
the second variable).

Theorem 42. U has positive energy iff ℰ(h,h)�0 for all h ∈𝒟H.

Proof. If U has positive energy, we saw that μh is supported in ℝ+ and we have

ℰ(h,h)=�
ℝ
xμh,U(dx)=�

ℝ+
xμh,U(dx)�0.

Assume now that ℰ is non-negative definite and assume that U has not positive energy, there-
fore there exists h∈ℋ such that μh has some support on (−∞,0). We can assume that supp(μh)⊂
(−∞,−c) for some c >0 since we can consider the vector XU(f )h with supp(f )⊂ (−∞,−c) and
dμX(f )h= f dμh. So now taking hℓ =∫0

ℓU (s)hds and

μhℓ(dx)= 1
x 2 |e

iℓx −1|2μh(dx).

Let d > c such that μ([−d, −c])>0. Note that hℓ ∈𝒟H and

ℰ(hℓ ,hℓ)=�
ℝ
xμhℓ(dx)=�

ℝ
x

1
x 2 |e

iℓx −1|2μh(dx)<�
[−d ,−c]

1
x |e

iℓx −1|2μh(dx)

and if ℓ is small enough this quantity is negative. □

Recall the definitions

FU(t ,h)= ⟨U (t)h,h⟩=�
ℝ
e itxμh,U(dx),

FK(t ,h)= ⟨K(t)h,h⟩=�
ℝ+
e−txμh,K(dx).

Theorem 43. The function FK is holomorphic when t ∈ℂ and Re(t)>0 and it is continuous when
Re(t)�0. Moreover, we have that

FU(s,h)=FK(is,h)=lim
y↓0

FK(is+y,h).

Proof. If Re(t1)>0 take ε ∈ℂ with |ε|<Re(t1) then

|F(t1+ ε,h)|= ��
ℝ+
e−t1xe−εsμh,K(dx)���

ℝ+
e−Re(t1)xe−|ε |sμh,K(dx)<∞,

and by monotone convergence the series

�
n

|ε|n�
ℝ+
e−t1x

x n

n! μ
h,K(dx)
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is convergent and so F has a convergent power series expansion in the claimed domain and
continuity derives from the dominated convergence theorem. Moreover

lim
y↓0

FK(is+y,h)=�
ℝ+
e isxμh,K(dx)=FU(s,h)

when U is defined so that μh,K =μh,U . □

Remark 44. We can define the generator H ʹ of K similarly as we defined the generator H of
U . Namely 𝒟H ʹ is defined as the set of vectors h ∈ℋ such that K(t)h is strongly differentiable
in zero and define

H ʹh=−lim
t↓0

K(t)h−h
t .

But if U and K are related so that XU =XK then H ʹ =H and 𝒟H =𝒟H ʹ.

Consider now ℋ =L2(ℝn, dx). 𝒜 =Cb
0(ℝn,ℂ) and (Q0(a)h)(x)=a(x)h(x). Define

K(t)h=ρt ∗h= 1
(2πt)n/2�e−|x−y |

2/(2t)h(y)dy.

Theorem 45. (K(t))t�0 is a strongy continuous, self-adjoint contraction semigroup.

Proof. Let ℱ (h)=∫ℝne ikxh(x)dx the Fourier transform. Recall Plancherel's theorem

�
ℝn
h1(x)h2(x)dx = 1

(2π)n�
ℝn
ℱ (h1)(k)ℱ (h2)(k)dk

and that ℱ (a ∗b)=(ℱa)(ℱb). Moreover ℱ (ρt)(k)=exp(−t |k|2/2). Now

‖K(t)h‖L2
2 = 1

(2π)n�
ℝn
|ℱ (ρt ∗h)(k)|2dk= 1

(2π)n�
ℝn
exp(−t |k|2)|ℱ (h)(k)|2dk

�
1

(2π)n�
ℝn
|ℱ (h)(k)|2dk= ‖h‖L2

2

so K is a contraction. Moreover

‖K(t)h−h‖L2
2 = 1

(2π)n�
ℝn
(1−exp(−t |k|2/2))2|ℱ (h)(k)|2dk→0

as t→0, so it is strongly continuous. Additionally it is self-adjoint since

⟨K(t)h1,h2⟩=
1

(2π)n�
ℝn
exp(−t |k|2/2)2ℱ (h1)(k)ℱ (h2)(k)dk= ⟨h1,K(t)h2⟩
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and the semigroup property derives from

ℱ (K(t)K(s)h)(k)=exp(−t |k|2/2)exp(−s |k|2/2)ℱ (h)(k)=exp(−(t +s) |k|2/2)ℱ (h)(k)=ℱ (K(t +
s)h)(k).

□

Take f ∈C∞∩Lp for any p�1. Then in L2(ℝn) we have

lim
t↓0

ℱ((((((K(t)f − f
t ))))))(k)=lim

t↓0

e−tk
2/2−1
t ℱ (f )(k)=−k2ℱ (f )(k)=ℱ (Δf )(k)

so H =−Δ and one can prove that 𝒟H =H 2. Moreover ℰ(h,h)=∫ℝn |∇h|2dx �0. So the semigroup
has positive energy (it was already clear from the fact that it is a contraction).

So now

FK(t ,h)=�
ℝ2n

e−|x−y |
2/2t

(2πt)n/2 h(x)h(y)dxdy

and for h ∈L2∩L1 we have the explicit representation

FU(s,h)=FK(is,h)=�
ℝ2n

e−|x−y |2/2(is)

(2πis)n/2 h(x)h(y)dxdy

where (i)n/2= eπin/4 given the kind of limit we had to perform. We conclude therefore that for
h ∈L2∩L1

(U (s)h)(x)=�
ℝn

e−|x−y |2/2(is)

(2πis)n/2 h(y)dy.

This is the model of the free particle in ℝn, i.e. a particle not interacting with any external
system. In this case (U (t))t∈ℝ is a unitary group on L2(ℝn) and the expectation of any observ-
able Qt(a) on the state ωh evolves according to the equation

ωt
h(a)= ⟨Qt(a)h,h⟩= ⟨U (−t)Q0(a)U (t)h,h⟩= ⟨Q0(a)U (t)h,U (t)h⟩.

8 Wightman and Schwinger functions

We work now with the data (ℋ ,𝒜 ,Q0,U (t)) where (U (t))t is a positive energy strongly con-
tinuous unitary group, or equivalently (K(t))t a self-adjoint, strongly continuous, contraction
semigroup. We saw that the given of U is equivalent to the given of K .

Definition 46. We say that h0∈ℋ is a ground state for U iff U (t)h0=h0.

Theorem 47. h0 is a ground state for U iff one of the following equivalent conditions hold:

1. μh0(dx)=δ0(dx)
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2. K(t)h0=h0

3. h0∈𝒟H and Hh0=0

4. h0∈𝒟H and ℰ(h0,h0)=0

Proof. Exercise. □

Remark 48. The name ground state comes from the fact that h0 is the state of minimal energy
of the system (i.e. the zero energy, in our normalization).

Definition 49. h0 a cyclic ground state if

span{U (t1)Q0(a1)U (t2)Q0(a2)⋅ ⋅ ⋅h0}

is dense in ℋ.

A cyclic ground state allows to reconstruct all the Hilbert space from expectations of time evo-
lutions of observables.

Indeed any ωh(Qt(a)) can then be approximated by linear combinations of expressions of the
form

⟨Qt1(a1)⋅ ⋅ ⋅Qtn(an)h0,h0⟩

for suitable t1, . . . , tn since we used the fact that h0 is invariant under U .

Assume now that we are given a cyclic ground state.

Definition 50. Wightman functions are defined as

𝕎k,𝔸k(t1, . . . , tk)= ⟨Qt1(a1)⋅ ⋅ ⋅Qtn(an)h0,h0⟩

where 𝔸k=(a1, . . . ,ak)∈𝒜k.

Lemma 51. 𝕎k,𝔸k is invariant wrt. to time translations, namely

𝕎k,𝔸k(t1, . . . , tk)=𝕎k,𝔸k(t1+ s, . . . , tk+ s)

for all s ∈ℝ.

Proof. By invariance of the ground state we have

𝕎k,𝔸k(t1, . . . , tk)= ⟨Qt1(a1)⋅ ⋅ ⋅Qtn(an)h0,h0⟩

=⟨Qt1(a1)⋅ ⋅ ⋅Qtn(an)U (s)h0,U (s)h0⟩

=⟨U (−s)Qt1(a1)U (s)U (−s)⋅ ⋅ ⋅U (−s)Qtn(an)U (s)h0,h0⟩
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and since U (−s)Qt1(a)U (s)=Qt1+s(a) we have the result. □

We observe also that we can define the (reduced) function

Wk,𝔸k(ξ1, . . . , ξk−1)=𝕎k,𝔸k(t , t + ξ1, . . . , tk+ ξk−1)= ⟨Q0(a1)U (ξ1)Q0(a2)U (ξ2)⋅ ⋅ ⋅Q0(ak)h0,h0⟩

for ξ1, . . . , ξk1∈ℝ. We have the property that

𝒲k,𝔸k(t1, . . . , tk)=Wk,𝔸k(t2− t1, . . . , tk− tk−1).

Definition 52. We consider a set of functions W̃k,⋅(⋅):𝒜k×ℝk−1→ℂ. We say that W̃k,𝔸k satisfy
Axiom W1 (compatibility conditions) if the following properties hold

1. 𝔸k=(a1, . . . ,ak)∈𝒜k and (t1, . . . , tk−1)∈ℝk−1, we have

W̃k,𝔸k(t1, . . . , ti−1, 0, ti+1, . . . , tk−1)=W̃k−1,𝔸̃k−1
(t1, . . . , ti−1, ti+1, . . . , tk−1)

where 𝔸̃k−1=(a1, . . .ai−1,aiai+1,ai+2, . . . ,ak)∈𝒜k−1.

2. 𝔸k−1=(a1, . . . ,ak−1)∈𝒜k−1 and Tk−1=(t1, . . . , tk−1)∈ℝk−1, we have

W̃k,(a1, . . . ,ai−1,1𝒜,ai, . . . ,ak−1)(t1, . . . , tk)=W̃k−1,𝔸k−1(t1, . . . , ti−2, ti−1+ ti, ti+1, . . . , tk−1).

3. 𝔸k=(a1, . . . ,ak)∈𝒜k and Tk−1=(t1, . . . , tk−1)∈ℝk−1 we have

W̃k,𝔸k(Tk−1)=W̃k,θ𝔸k(θ̄(Tk−1))

where θ(𝔸k)=(ak∗ ,ak−1∗ , . . . ,a1
∗ ) and θ̄(Tk−1)=(−tk−1, −tk−2, . . . , −t2, −t1).

Lemma 53. Reduced Wightman functions satisfy these compatibility conditions (i.e. Axiom W1).

Proof. Easy exercise. □

Let now introduce the Fréchet space 𝒮(ℝk) (locally convex topological vector space) such that
f ∈𝒮(ℝk) iff f ∈C∞(ℝk) and ‖f ‖n,α = supx∈ℝk |(1 + |x |)nDαf (x)|<∞ where n � 0 and α = (α1, . . . ,
αk)∈ℕ0

k with Dαf = ∂α1

∂x1
α1 ⋅ ⋅ ⋅

∂αk

∂xk
αk . We can consider the dual 𝒮 ʹ(ℝk)=(𝒮(ℝk))∗, that is the space of

linear functionals T ∈𝒮(ℝk)→ℂ such that there exists n,α for which |T(f )|�CT‖f ‖n,α. Recall
also that the Fourier transform ℱ :L1(ℝk)→C0(ℝk) is defined by

ℱf (y)=�
ℝk
e ik⋅yf (x)dx

and such that ℱ :𝒮(ℝk)→𝒮(ℝk) and the map is continuous wrt. to the topology 𝒮(ℝk) and
invertible with

ℱ −1f (y)= 1
(2π)k

�
ℝk
e−ik⋅yf (x)dx .
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Then if T ∈𝒮 ʹ(ℝk) we can define ℱ (T)=T ∘ℱ −1.

Definition 54. W̃k,⋅(⋅) satisfy Axiom W2 (i.e. it is a Fourier transform of a distribution with
support in ℝ+

k−1) if W̃k,𝔸k(t1, . . . , tk−1) is continuous in t1, . . . , tk−1 and W̃k,𝔸k =ℱ (Tk,𝔸k) for some
Tk,𝔸k∈𝒮 ʹ such that

|Tk,𝔸k(f1⊗ ⋅ ⋅ ⋅ ⊗ fk−1)|�Ck�
ℓ=1

k−1

‖fℓ‖L∞(ℝ+)�
ℓ=1

k

‖ak‖𝒜 . (9)

What means that T has support on ℝ+
k? This means that if f ∈𝒮(ℝk) and supp(f )⊂ℝk−1\(ℝ+)k−1

then T(f )=0.

Remark 55. The equation (9) is equivalent to

��
ℝk−1

W̃k,𝔸k(t1, . . . , tk−1)g1(t1)⋅ ⋅ ⋅gk−1(tk−1)dt1⋅ ⋅ ⋅dtk−1�<∼ C̃k�
ℓ=1

k−1

‖ℱ −1(gℓ)‖L∞(ℝ+)�
ℓ=1

k

‖ak‖𝒜 .

for g1, . . . ,gk−1∈𝒮(ℝ). Indeed recall that ℱ (Tk,𝔸k)=W̃k,𝔸k and

ℱ (Tk,𝔸k)(g)= ⟨W̃k,𝔸k,g⟩=�
ℝk−1

W̃k,𝔸k(t1, . . . , tk−1)g(t1, . . . , tk)dt1⋅ ⋅ ⋅dtk−1

but ℱ (Tk,𝔸k)(g)=Tk,𝔸k(ℱ −1(g)) and calling ℱ −1(g)= f and from this one can conclude.

Lemma 56. The Wightman functions satisfy Axiom W2.

Proof. Recall that from U we can construct homomorphisms XU :Cb
0(ℝ,ℂ)→ℬ(ℋ) such that

XU(e it ⋅)=U (t) and which is strongly continuous with respect to pointwise sequential conver-
gence in bounded sets. So for any g ∈𝒮(ℝ) we can define Ug=∫ℝg(t)U (t)dt =XU(ℱg). Indeed

⟨XU(ℱg)h1,h2⟩=�ℱg(x)μh1,h2(dx)=��g(t)e itxdtμh1,h2(dx)=�g(t)�e itxμh1,h2(dx)dt

=�g(t)⟨U (t)h1,h2⟩dt .

Now

�Wk,𝔸k(t1, . . . , tk)g1(t1) ⋅ ⋅ ⋅ gk(tk) = ⟨Q0(a1)U (t1)Q0(a2)U (t2) ⋅ ⋅ ⋅ Q0(ak)h0,

h0⟩g1(t1)⋅ ⋅ ⋅gk−1(tk−1)dt1⋅ ⋅ ⋅dtk

=⟨Q0(a1)U (g1)Q0(a2)U (t2)⋅ ⋅ ⋅U (gk−1)Q0(ak)h0,h0⟩

=⟨Q0(a1)XU(ℱ (g1))Q0(a2)U (t2)⋅ ⋅ ⋅XU(ℱ (gk−1))Q0(ak)h0,h0⟩

which can be bounded by

‖Q0(a1)‖⋅ ⋅ ⋅‖Q0(ak)‖ ‖XU(ℱ (g1))‖⋅ ⋅ ⋅‖XU(ℱ (gk−1))‖
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which then gives readily the result using the fact that U has positive energy so

‖XU(f )‖� ‖f ‖L∞(ℝ+).

□

Let us consider now our last axiom. Recall that we defined θ(𝔸k)=(ak∗ ,ak−1∗ ,...,a1
∗ ) and θ̄(Tk−1)=

(−tk−1, −tk−2, . . . , −t2, −t1).

For 𝔸k1=(a1, . . . ,ak1) and 𝔸k1ʹ =(a1́, . . . ,ak2ʹ ) then we let

𝔸k1𝔸k2ʹ =(a1,a2, . . . ,ak1a1́, . . . ,ak2ʹ )∈𝒜k1+k2−1

Definition 57. The functions W̃k,⋅(⋅):𝒜k×ℝk−1→ℂ satisfy Axiom W3 (Hilbert-space positivity)
if for any k ∈ℕ0 and any j1, . . . , jk ∈ℕ, any Tn−1, j=(t1,(n−1, j), . . . tn−1,(n−1, j)) and λn, j ∈ℂ and 𝔸n, j=
(a1,(n, j), . . .an,(n, j))∈𝒜n where j� jn and n�k we have

�
n1+n2=1

k

�
h1=1

jn1
�
h2=1

jn2
λn1,h1λn2,h2W̃n1+n2−1,θ(𝔸n2,h2)𝔸n1,h1

(θ̄(Tn2−1,h2),Tn1−1,h1)�0.

Example: if k=1 we have only

�
h1=1

j1

�
h2=1

j2

λh1λ̄h2W̃1,ah2
∗ ah1= �

h1=1

j1

�
h2=1

j2

λh1λ̄h2⟨Q0(ah2
∗ )Q0(ah1)h0,h0⟩

=� �
h1=1

j1

λh1Q0(ah1)h0, �
h2=1

j2

λh2Q0(ah2)h0��0.

Another example gives

0�λλ̄W̃2,(a2
∗ ,a1

∗a1,a2)(t1,−t1)=⟨Q0(a2
∗ )U (t1)Q0(a1

∗ a1)U (−t1)Q0(a2)h0,h0⟩=‖Q0(a1)U (−t1)Q0(a2)h0‖2

Lemma 58. Wightman functions satisfy Axiom W3.

Proof. Let

H = �
n1=1

k

�
h1=1

jn1
λn1,h1Q0(a1,(n1,h1))U (t1,(n1−1,h1))⋅ ⋅ ⋅U (tn−1,(n1−1,h1))Q0(an1,(n1,h1))h0

and using ⟨H ,H⟩�0 and the definition of Wightman functions we get the claim. □

Summarizing, we have shown that the reduced Wightman functions (Wk,𝔸k)k statisfy three
basic properties

a) W1 – compatibility condition (encodes the fact that Q0 is a C∗-representation and that U is
a unitary group)
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b) W2 – tempered distribution axiom (encodes the fact that U is strongly continuous with
positive energy)

c) W3 – Hilbert space positivity (encodes the fact that the scalar product is Hermitian and
positive)

The next set is to give the idea of the proof of equivalent properties S1,S2,S3 for the Schwinger
functions (which are like Wightman functions but with K in place of U ) and then we prove that
if we are given functions W 1,W 2,W 3 or S1,S2,S3 then we can come back and obtain the data
of (ℋ ,Q0,U ) or (ℋ ,Q0,K) of the Hilbert space, representations Q0,K or U .

Definition 59. Schwinger functions, k ∈ℕ and 𝔸k=(a1, . . . ,ak)∈𝒜k, t1, . . . , tk−1�0 and let

Sk,𝔸k(t1, . . . , tk−1)= ⟨Q0(a1)K(t1)Q0(a2)K(t2)⋅ ⋅ ⋅K(tk−1)Q0(ak)h0,h0⟩.

Recall that θ(𝔸k)=(ak∗ ,...,a1
∗ ) and θ̄(Tk−1)=(−tk−1,−tk−2,...,−t1). We introduce now also another

map on times as θ̂(Tk−1)=(tk−1, tk−2, . . . , t1). We will need also the composition 𝔸k ⋅𝔸kʹʹ =(a1, . . . ,
aka1́, . . .akʹʹ ).

Definition 60. We say that the set of functions (S̃k:𝒜k ×ℝ+
k−1→ℂ)k satisfy the axiom S1 (or

compatibility condition)

1. S̃k,𝔸k(t1,..., ti−1,0, ti+1,..., tk−1)= S̃k−1,𝔸̃k
(t1,..., ti−1, ti+1,..., tk−1)where 𝔸̃k=(a1,...,aiai+1,...,ak) and

S̃k,(a1, . . . ,λai+μbi, . . . ,ak)(t1, . . . , tk−1)=λS̃k,(a1, . . . ,ai, . . . ,ak)(t1, . . . , tk−1)+μS̃k,(a1, . . . ,bi, . . . ,ak)(t1, . . . , tk−1)

2. S̃k,(a1, . . .ai−1,1,ai, . . . ,ak)(t1, . . . , tk−1)= S̃k−1,𝔸k−1(t1, . . . , tk−1)

3. S̃k,𝔸k(Tk−1)= S̃k,θ(𝔸k)(θ̂(Tk)) which is due to the fact that K(t)∗=K(t).

Lemma 61. The Schwinger functions satisfy Axiom S1

Let T ∈𝒮 ʹ(ℝk−1) supported in ℝ+
k−1=(ℝ+)k−1, i.e. T(f )=T(f ʹ) when f = f ʹ on ℝ+

k−1, i.e. functions
which behave on ℝ+

k−1 but arbitrarily elsewhere. For example s↦ e−ts belongs to 𝒮(ℝ+) and

(s1, . . . , sk−1)↦ e−t1s1⋅ ⋅ ⋅−tk−1sk−1

is in 𝒮(ℝ+
k−1). We define the Laplace transform ℒ(T)=G(t1, . . . , tk−1) as

G(t1, . . . , tk−1)=T((s1, . . . , sk−1)↦ e−t1s1⋅ ⋅ ⋅−tk−1sk−1).

If f ∈L1

ℒ(f )(t)=�
0

∞
e−tsf (s)ds.
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Definition 62. Let (S̃k)k as before. We say that they satisfy Axiom S2 (or that they are Laplace
transform of a tempered distribution) if ∃Tk,𝔸k such that S̃k,𝔸k=ℒ(Tk,𝔸k) and for all g1, . . . ,gk−1∈
𝒮(ℝ+)

��
ℝ+
k−1
S̃k,𝔸k(t1, . . . , tk−1)g(t1)⋅ ⋅ ⋅gk−1(tk−1)dt1⋅ ⋅ ⋅dtk−1���

ℓ=1

k−1

‖ℒgℓ‖L∞(ℝ+)�
ℓ=1

k−1

‖ak‖𝒜 . (10)

Theorem 63. The inequality (10) implies that S̃k,𝔸k is the Laplace transform of a distribution.

Proof. For a proof see the book of B. Simon “The P(φ)2 Euclidean Quantum Field Theory”,
Chap. 2 Sect. 2.2. □

Lemma 64. The Schwinger functions, satisfy Axiom S2.

Proof. Similar to the analogous statement for Wightman functions. The essential step is to
observe that

�
ℝ+
k−1
Sk,𝔸k(t1, . . . , tk−1)g(t1)⋅ ⋅ ⋅gk−1(tk−1)dt1⋅ ⋅ ⋅dtk−1

=⟨Q0(a1)XK(ℒg1)⋅ ⋅ ⋅XK(ℒgk−1)Q0(ak)h0,h0⟩

where XK is the homomorphism generated by K as we introduced few lectures ago. □

Remark 65. We proved that Sk,𝔸k =ℒ(Tk,𝔸k), moreover Tk,𝔸k for k = 2 is a measure (easy to
see) from the definition. For k>2 is not a measure but a poly-measure (i.e. is a measure in each
components, but not jointly).

Remark 66. We have that the reduced Schwinger functions Sk,𝔸k are holomorphic in {Re(ti)>0:
i=1, . . . ,k}⊂ℂk and continuous in {Re(ti)�0: i=1, . . . ,k}, moreover we have

Wk,𝔸k(s1, . . . , sk−1)=Sk,𝔸k(is1, . . . , isk−1)

where the r.h.s is defined as the limit

Sk,𝔸k(is1, . . . , isk−1)= lim
λ1, . . . ,λk−1→0+

Sk,𝔸k(λ1+ is1, . . . ,λk−1+ isk−1).

This follows directly from the fact that Sk,𝔸k is the Laplace transform of a tempered distribution
supported on ℝ+

k−1.

Definition 67. Let (S̃k)k as before. They satisfy Axiom S3 (or reflection positivity) if for k ∈ℕ,
j1, . . . , jk ∈ℕ and Tn−1, j=(t1,(n−1, j), . . . , tn−1,(n−1, j))∈ℝ+

n−1 and λn, j ∈ℂ (n�k on j� jn)

�
n1,n2=1

k

�
h1=1

jn1
�
h2=1

jn2
λn1,h1λn2,h2Sn1+n2−1,θ(𝔸n2,h2)⋅𝔸n1,h1

(θ̂(Tn2−1,h2),Tn1−1,h1)�0
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This property derives from the fact that the Hilbert scalar product is Hermitian and positive
definite, that Q0 is a representation and that K is self-adjoint (which is linked with the form of θ̂).

Lemma 68. The Schwinger functions satisfy Axiom S3.

Now the important result, the reconstruction theorem.

Definition 69. We say that S̃k,⋅ ⋅:𝒜k ×ℝ+
k−1→ℂ is linear in 𝒜 (or satisfies Axiom S0) if for all

a1, . . . ,ak ∈𝒜 and t1, . . . tk−1∈ℝ+ if the map

a↦ S̃k,(a1, . . . ,ai−1,a,ai+1, . . . ,ak)(t1, . . . , tk−1)

is linear in a∈𝒜.

Theorem 70. If S̃k,⋅ ⋅:𝒜k ×ℝ+
k−1 →ℂ satisfy Axioms S0,S1,S2,S3 we have that there exists an

Hilbert space ℋ, a representation Q0 of 𝒜 in ℬ(ℋ) and a self-adjoint, strongly continuous semi-
group (K(t))t�0 on ℋ and a vector h0 ∈ℋ cyclic wrt. Q0,K and invariant, i.e. K(t)h0 = h0 (in
other words, h0 is a ground state), such that S̃k,𝔸k(Tk−1) are the Schwinger functions generated by
(ℋ ,Q0,K ,h0).

Remark 71. An analogous theorem holds for families (W̃k,𝔸k)k satisfying W1,W2,W3, from
which one can construct data (ℋ ,Q0,(U (t))t,h0) for which they are the Wightman functions.

Proof. Let ℱ be the free algebra generated by the symbols Q̃0(a) and K̃(t) where a ∈𝒜 and
t ∈ℝ+ equipped with the relations

i. Q̃0(a)Q̃0(b)= Q̃0(ab), λQ̃0(a)+μQ̃0(b)= Q̃0(λa+μb) for a,b∈𝒜 and λ,μ ∈ℂ

ii. Q̃0(1𝒜)=1ℱ

iii. K̃(t1)K̃(t2)= K̃(t1+ t2)

iv. K̃(0)=1ℱ

By definition ℱ is the complex vector space generated by the words of the form
Q̃0(a)Q̃0(b)K̃(t)⋅ ⋅ ⋅Q̃0(c)K̃(t ʹ) which then is extended to an algebra by justapposition of the
linear generators and then we take the quotient wrt. the relations listed above. Introduce a
useful notation: if Tk−1 = (t1, . . . , tk−1) ∈ ℝ+

k−1 and 𝔸k = (a1, . . . , ak) ∈𝒜k, we call 𝔽k(Tk−1, 𝔸k) =
Q̃0(a1)K̃(t1)⋅ ⋅ ⋅K̃(tk−1)Q̃0(ak)∈ℱ . Using the previous relations we have that if A∈ℱ then

A=�
n=1

k

�
h=1

jn

λn,h𝔽n(Tn−1,h,𝔸n−1,h)

for some λn,h,Tn−1,h,𝔸n−1,h (in general not in a unique way). On ℱ we define the scalar product
⟨∗, ∗⟩ℱ by

⟨𝔽k(Tk−1,𝔸k), 𝔽k ʹ(Tkʹ−1ʹ ,𝔸ḱ)⟩ℱ = S̃k+k ʹ−1,θ(𝔸kʹʹ )⋅𝔸k(θ̂(Tkʹ−1ʹ ),Tk−1)
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and extend it by linearity to all ℱ in the first component and by antilinearity in the second
component. This definition is well posed since (S̃k,𝔸k)k satisfy the compatibility conditions of
Axiom S1 and moreover by the last of the property in Axiom S1 we have that the form ⟨∗,
∗⟩ℱ is Hermitian and for Axiom S3 that this scalar product is positive definite. We define the
linear subspace 𝒩 ={A∈ℱ , ⟨A,A⟩ℱ =0} and we define ℋ0=ℱ \𝒩 as a vector space. On ℋ0 we
define ⟨[A],[B]⟩ℋ=⟨A,B⟩ℱ which is well defined by the Cauchy–Schwartz inequality and where
[A]∈ℋ0 denotes the class of A ∈ℱ . Moreover we let ℋ the completion of ℋ0 with respect to
this non-degenerate scalar product ⟨, ⟩ℋ (which is stricly positive on ℋ0−{0}). We let h0=[1ℱ].
We define 𝕂(t):ℱ →ℱ linear such that

𝕂(t)(𝔽k(Tk−1,𝔸k)) := K̃(t)𝔽k(Tk−1,𝔸k)=𝔽k+1((t ,Tk−1),(1𝒜 ,𝔸k)).

We have that 𝕂(t)𝕂(s)=𝕂(t + s) and 𝕂(0)=1. Moreover 𝕂t is symmetric wrt. the scalar pro-
duct on ℱ (this is a consequence of Axiom S1), indeed

⟨𝕂(t)(𝔽k(𝕋k−1,𝔸k)), 𝔽h(Th−1ʹ ,𝔸h)⟩= ⟨𝔽k+1((t ,Tk−1),(1𝒜 ,𝔸k)), 𝔽h(Th−1ʹ ,𝔸h)⟩

=Sk+h−1,θ(𝔸h́)(1𝒜,𝔸k)(θ̂(Th−1ʹ ),(t ,Tk−1))=Sk+h−1,θ((1𝒜,𝔸h́))𝔸k(θ̂(t ,Th−1ʹ ),Tk−1)

=⟨𝔽k(𝕋k−1,𝔸k),𝕂(t)𝔽h(Th−1ʹ ,𝔸h)⟩

and this extends by linearity to deduce the symmetry for 𝕂(t).

Next, we have that

⟨𝕂(t)A,A⟩= ⟨𝕂(t /2)A,𝕂(t /2)A⟩�0

moreover by repeated use of Cauchy–Schwartz we also have

⟨𝕂(t)A,A⟩�(⟨𝕂(2t)A,A⟩)1/2(⟨A,A⟩)1/2< ⋅ ⋅ ⋅ <(⟨𝕂(2nt)A,A⟩)1/2n(⟨A,A⟩)1−1/2n

By Axiom S2 we know that ⟨𝕂(2nt)A,A⟩ can be written as a sum of the form

⟨𝕂(2nt)A,A⟩= �
k,𝔸k

Sk,𝔸k(2nt , t1, . . . , tk−2)

where everything does not depends on n and is uniformly bounded so the quantity ⟨𝕂(2nt)A,A⟩
is bounded uniformly in n. So

⟨𝕂(t)A,A⟩�C1/2n(⟨A,A⟩)1−1/2n

and taking n→∞ we have

⟨𝕂(t)A,A⟩� ⟨A,A⟩

so 𝕂(t)𝒩 ⊂𝒩 and 𝕂(t) is well defined on ℋ̂ and we let K0(t)[A]= [𝕂(t)A]. We have that for
all t �0

⟨K0(t /2)[A],K0(t /2)[A]⟩= ⟨K0(t)[A], [A]⟩� ⟨[A], [A]⟩
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so K0(t) is a contraction for all t �0 so it extends toℋ as K . It is also self-adjoint and a (K(t))t�0
is a semigroup. For the strong continuity of the family (K(t))t�0 we observe that the Schwinger
functions are continuous at least when considered as a functions of one of the time variables
(fixing all the other parameters). This is enough to prove that t↦K(t) is weakly continuous
and then strong continuity follows since it is a contraction.

We define a linear map ℚ(a):ℱ →ℱ as ℚ(a)A= Q̃0(a)A. It is a representation of 𝒜 on ℱ (this
follows from the relations we imposed on the algebra ℱ ). We have that is a ∗-represenation:

⟨ℚ(a)A,B⟩ℱ = ⟨A,ℚ(a∗)B⟩ℱ

this can be proved by looking at the definition of the Hermitian form. Moreover on can show
ℚ(a)𝒩 ⊂𝒩 so that we can define the operator on ℋ̂ . Define the linear functional on𝒜 : LA(a)=
⟨ℚ(a)A,A⟩ℱ . It is positive since

LA(bb ∗)= ⟨ℚ(bb ∗)A,A⟩ℱ = ⟨ℚ(b)ℚ(b ∗)A,A⟩ℱ = ⟨ℚ(b ∗)A,ℚ(b ∗)A⟩ℱ �0.

Therefore it is continuous and its norm on 𝒜 ∗ is given by LA(1𝒜)= ⟨A,A⟩ℱ so if A∈𝒩 then LA=
0. From this, in particular we have 0=LA(b ∗b)= ⟨ℚ(b)A,ℚ(b)A⟩ℱ so Q(b)A∈𝒩 for any b∈𝒜 .
We can then pass to the quotient and define Q00(a)[A]=[ℚ(a)A]. We have also ‖Q00(a)[A]‖ℱ �
‖a‖𝒜‖[A]‖ℱ so Q00 is bounded and can be extended to ℋ as a C∗-homomorphism. We let h0=
[1ℱ] and by S1 prove that it is invariant. □

Remark 72. We can replace S2 by S2' which is the property that S̃k,⋅ ⋅:𝒜k × ℝ+
k−1 →ℂ are

bounded and continuous in each of the time variables separately. This implies that all together
(S0,S1,S2,S3) are equivalent to (S0,S1,S2',S3). (Of course S2 is not equivalent to S2').

9 The Ornstein–Uhlenbeck process

We want now to construct Schwinger functions starting from a stochastic process.

We fix a probability space (Ω,ℱ ,ℙ) and consider a Gaussian process X :ℝ×Ω→ℝ, that is such
that for all ξ1,...,ξk∈ℝ we have that (Xξ1,...,Xξk) is a k-dimensional Gaussian. A Gaussian process
is characterised by its mean and covariance function. We let 𝔼[Xξ]=0 for all ξ ∈ℝ and

Cov(Xξ ,Xξ ʹ)=𝔼[XξXξ ʹ]=
1
2θe

−θ |ξ−ξ ʹ|, ξ , ξ ʹ ∈ℝ.

If S̃k,⋅ ⋅:𝒜k ×ℝ+
k−1→ℂ then we define extended functions 𝒮̃k,⋅ ⋅:𝒜k ×ℝ+

k →ℂ such that, if ξ1�
ξ2� ⋅ ⋅ ⋅ �ξk we let

𝒮̃k,𝔸k(ξ1, . . . , ξk)= S̃k,𝔸k(ξ2− ξ1, ξ3− ξ2, . . . , ξk− ξk−1)

and if ξ1, . . . , ξk are general then we let

𝒮̃k,𝔸k(ξ1, . . . , ξk)= 𝒮̃k,𝔸k(ξσ(1), . . . , ξσ(k))

where σ ∈Sn is the permutation such that ξσ(1)<⋅⋅⋅<ξσ(k). Note that to a family 𝒮̃ invariant under
translation and permutation of the time variables it associated a unique family S̃ and viceversa.
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We choose now 𝒜 =Cb
0(ℝ) and let

𝒮̃k,𝔸k(ξ1, . . . , ξk)=𝔼[a1(Xξ1)⋅ ⋅ ⋅ak(Xξk)]

when ξ1� ⋅⋅⋅�ξk and the extended via permuations as above. This is a symmetric function which
is invariant under translation of the time variables, so we can identify the functions S̃ and have

S̃k,𝔸k(t1, . . . , tk−1)=𝔼[a1(X0)a2(Xt1)a3(Xt1+t2)⋅ ⋅ ⋅ak(Xt1+⋅ ⋅ ⋅+tk−1)]

=𝔼[a1(Xt)a2(Xt+t1)a3(Xt+t1+t2)⋅ ⋅ ⋅ak(Xt+t1+⋅ ⋅ ⋅+tk−1)]

By construction S0,S1 are true and depend only on the linearity of expectations. For S1 we
observe that, for example,

S2,(a1,a2)(0)=𝔼[a1(X0)a2(X0)]=𝔼[(a1a2)(X0)]=S1,(a1a2)

and similarly for all the other conditions of S1. S2' is true, as easily seen from the definition
thanks to convergence in law to prove continuity observing that

(Xξ1, . . . ,Xξi−1,Xξ ,Xξi+1, . . . ,Xξk)→→→→→→→→→→→→→→→
law

(Xξ1, . . . ,Xξi−1,Xξi,Xξi+1, . . . ,Xξk)

if ξ → ξi since the covariance function is continuous in each variable and the characteristic
functions converge (by Lévy's theorem this implies convergence in law), and using

|S̃k,𝔸k(t1, . . . , tk−1)|� ‖a1‖⋅ ⋅ ⋅‖ak‖,

for the boundedness.

Consider now:

Sk+h−1,θ(𝔸h́)𝔸k(θ̂(Th−1ʹ ),Tk−1)

=𝔼[aʹh
∗ (X−th−1ʹ −th−2ʹ −⋅ ⋅ ⋅−t1́)⋅ ⋅ ⋅aʹ2

∗(X−t1)aʹ1
∗(X0)a1(X0)a2(Xt1)⋅ ⋅ ⋅ak(Xt1+⋅ ⋅ ⋅+tk−1)]

Consider also the transformation ℝ of the process X defined as ℝ(X)t =X−t. Then

Sk+h−1,θ(𝔸h́)𝔸k(θ̂(Th−1ʹ ),Tk−1)=𝔼[aʹh
∗ (ℝ(X)t1́+⋅ ⋅ ⋅+th−1ʹ )⋅ ⋅ ⋅aʹ1

∗(ℝ(X)0)a1(X0)a2(Xt1)⋅ ⋅ ⋅ak(Xt1+⋅ ⋅ ⋅+tk−1)]

We denote F ∈𝒞cyl
0 (ℝℝ+,ℂ) if F is a cylindric continuous function, i.e. if there exists k and ξ1, . . . ,

ξk ∈ℝ+ such that there exists unique continuous F̃ :ℝk→ℂ such that F(X)= F̃(Xξ1, . . . ,Xξk).

Theorem 73. (S̃k)k satisfy Axiom S3 iff for any F ∈𝒞cyl
0 (ℝℝ+,ℂ) we have that

𝔼[F(X)F(ℝX)]�0.

Proof. Only a sketch. The implication ⇐ is the most important for us. Consider

F(X)=�
n=1

k

�
h=1

jn

λn, ja1,n, j(X0)a2,n, j(Xt1). . .an,n,h(Xt1,n,h+⋅ ⋅ ⋅+tn,n,h).
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Note now that

�
n1,n2=1

k

�
h1,h2=1

jn1, jn2
λn1,h1λ̄n2,h2Sn1+n2−1,θ(𝔸n2,h2)𝔸n1,h1

(θ̂(t1,n1,h1. . .t1,n1,h1)⋅ ⋅ ⋅)=𝔼[F(X)F(ℝ(X))]�0.

by hypothesis. The converse is also true because the functions of the form a1(x1)⋅ ⋅ ⋅ak(xk) are
dense in C∞

0 (ℝk) and this last algebra is dense in Cb
0(ℝk) wrt. the pointwise convergence with

uniform bounds. □

Definition 74. A process X̃ such that for all F ∈Ccyl
0 (ℝℝ+, ℂ) we have 𝔼[F(X)F(ℝ(X))]�0 it is

called a reflection positive process.

Lemma 75. Consider (Y1,Y2) taking values in ℝn1×ℝn2 which are Gaussian random variables with
covariance

Cov(Y )=(((((( B11 B12
B21 B22 ))))))

with Bi, j=Cov(Yi,Yj). Then Y1 given Y2 is a Gaussian random variable and the conditional covari-
ance is given by

Cov(𝔼(Y1|Y2))=B11−B12B22
−1B21

we are assuming that B22 is non-singular.

Proof. Exercise. □

Lemma 76. If η1, . . . ,ηh�0 and ξ1, . . . , ξk�0 then Y1=(X−η1, . . . ,X−ηh) is conditionally independent
of Y2=(Xξ1, . . . ,Xξk) given X0, where X is the OU process above.

Proof. We have by simple inspection

Cov((Y1,Y2,X0))=((((((((((((((
((((((((
(
( C1 B1

T D1
T

B1 C2 D2
T

D1 D2 1/2θ )))))))))))))
))))))))))
)

with

D1=((((((((e
−θη1

2θ , . . . , e
−θηh

2θ )))))))), D2=((((((((e
−θξ1

2θ , . . . , e
−θξk

2θ ))))))))
and

(B1)i, j=
e−θ(ηi+ξj)

2θ .

So

Cov((Y1,Y2)|X0)=(((((((( C1 B1
T

B1 C2 ))))))))−(2θ)(D1,D2)T(D1,D2)
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with

(D1,D2)T(D1,D2)=((((((((((((
D̃1 B1

T

B1 D̃2 ))))))))))))
so finally one has

Cov((Y1,Y2)|X0)=((((((((((((
C̃1 0
0 C̃2 ))))))))))))

for some matrices C̃1, C̃2. The important observation is that the antidiagonal is zero. (check as
exercise). From this form of the covariance this implies that Y1,Y2 are independent given X0. □

We are going now to prove

Theorem 77. The OU process X is reflection positive.

Proof. Take F ∈Ccyl
0 (ℝℝ+,ℂ), so F = F̃(Xξ1, . . . ,Xξk) with ξ1, . . . , ξk�0 as above. By the conditional

independence (annd the complex-linearity of the expectation) we have

𝔼[F(X)F(ℝ(X))]=𝔼[𝔼[F(X)F(ℝ(X))|X0]]

=𝔼[𝔼[F(X)|X0]𝔼[F(ℝ(X))|X0]]

Now we observe that X is invariant wrt. reflections so

𝔼[F(ℝ(X))|X0]=𝔼[F(ℝ(X))|ℝ(X0)]=𝔼[F(X)|X0]

and we obtain

𝔼[F(X)F(ℝ(X))]=𝔼[|𝔼[F(X)|X0]|2]�0. □

As a consequence we obtain that (𝒮̃k)k satisfy axioms S0,S1,S2,S3 and by the reconstruction the-
orem there exists (ℋ ,Q0, (K(t))t�0,h0) such that (𝒮̃k)k are the associated extended Schwinger
functions.

Now we are interested in explicitly describing these objects in this particular situation.

In this case we can prove that the free algebraℱ introduced in the reconstruction is isomorphic
to the algebra ℱX ⊂−Cc0(ℝℝ+,ℂ) by identifying

Q̃0(a0)K̃(t1)Q̃0(a1)⋅ ⋅ ⋅K̃(tk−1)Q̃0(ak)

with

a0(X0)a1(Xt1)⋅ ⋅ ⋅ak(Xt1+⋅ ⋅ ⋅+tk−1)

and extending this map by linearity. We leave as an exercise to prove the isomorphism (as
algebras). Under this ispomorphis if F ,G ∈ℱX then we also have that the Hermitian form ⟨⟩ℱ
can be represented probabilistically as

⟨F ,G⟩ℱX =𝔼[F(X)G(ℝ(X))]
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which we know to be non-negative and Hermitian. Let 𝒩X :={F ∈ℱX |⟨F ,F ⟩ℱX =0}⊂−ℱX

Remark 78. If F ∈ℱX then there exists a version 𝔼[F |X0] which belongs to ℱX , indeed the
conditional expectation can be written as 𝔼[F |X0]=F(LFX0) for soem linear map LF depending
on F

Lemma 79. We have

F −𝔼[F |X0]∈𝒩X

Proof. Observe that

𝔼[(F −𝔼[F |X0])(F(ℝ(X))−𝔼[F |X0])]

=𝔼[𝔼[(F −𝔼[F |X0])(F(ℝ(X))−𝔼[F |X0])|X0]]

=𝔼[𝔼[(F −𝔼[F |X0])|X0][(F(ℝ(X))−𝔼[F |X0])|X0]]=0

since clearly 𝔼[(F −𝔼[F |X0])|X0]=0. □

So from an algebraic point of view we have that ℋ̂ =ℱX \𝒩X is just Cb
0(ℝ,ℂ) where the map

ℱX → ℋ̂ is just the conditional expectation F ↦𝔼[F |X0]. That ℋ̂ = Cb
0(ℝ, ℂ) is clear since

𝔼[a0(X0)|X0]=a0(X0) so it is a surjective mapping. Moreover the scalar product can be written

⟨f ,g⟩ℋ̂ =𝔼[f (X0)g(X0)]=�
ℝ
f (z)g(z) e−θz

2/2

(2π /θ)1/2dz|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
μθ(dz)

and as a consequenceℋ =L2(ℝ,ℂ,μθ)moreover (Q0(a)f )(z)=a(z)f (z). Recall now that 𝕂(t)F =
K̃(t)A which under our isomorphism it is send to a translation of the time variable:

𝕂(t)F(X)=F(Xt+⋅).

In particular 𝕂(t)f (X0)= f (Xt) and we have

(K(t)f )(X0)=𝔼[𝕂(t)f (X0)|X0]=𝔼[f (Xt)|X0]

This conditional expectation can be written explicitly since Cov(Xt,X0)=(2θ)e−θt and so

Xt = e−θtX0+(1− e−2θt)1/2Nθ

where Nθ ∼𝒩 (0, 1/2θ) and it is independent of X0, then

K(t)f (z)=𝔼[f (Xt)|X0=z]=𝔼[f (e−θtz+(1− e−2θt)1/2Nθ)]=�
ℝ
f (e−θtz+(1− e−2θt)1/2y)μθ(dy).

Obviously h0= 1 ∈L2(ℝ,ℂ, μθ). From the explicit expression of (K(t))t�0 one can check again
that it is a stronly continuous contraction semigroup. This is called the Ornstein–Uhlenbeck
semigroup.
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This is not what is done usually in quantum mechanics since the usual space there is taken to be
L2(ℝ,λ) where λ is the Lebesgue measure, not μθ. The map connecting the two representations
is

f ∈ℋ̂→ f̃ (z)= f (z) e−θz
2/4

(2π /θ)1/4 ∈ℋ̃ =L2(ℝ,λ)

Let's compute the generator H of K(t):

−Hf (z)= lim
t→0

K(t)f (z)− f (z)
t = lim

t→0
�
ℝ
f (e−θtz+(1− e−2θt)1/2y)− f (z)

t μθ(dy)

By Taylor expansion:

=lim
t→0

�
ℝ

f ʹ(z)((e−θt −1)z+(1− e−2θt)1/2y)+ 1
2 f ʹʹ(z)((e

−θt −1)z+(1− e−2θt)1/2y)2+O(t 3/2)
t μθ(dy)

and since μθ has zero first moment we have

=lim
t→0

�
ℝ

f ʹ(z)(e−θt −1)z+ 1
2 f ʹʹ(z)((1− e

−2θt)1/2y)2+O(t 3/2)
t μθ(dy)

=lim
t→0

f ʹ(z)(−θt)z+ 1
2 f ʹʹ(z)(1− e

−2θt)(1/2θ)+O(t 3/2)
t =−θf ʹ(z)+ 1

4 f ʹʹ(z)

so on ℋ̂ we have

Hf (z)=θf ʹ(z)− 1
4 f ʹʹ(z)

and the same operator on ℋ̃ has the form

H̃f (z)=−θz2f̃ (z)− 1
4Δ f̃ (z)

and this is usually called the Schrödinger representation of the harmonic oscillator, indeed note
that

H̃ = 1
4P

2+Q2θ
2

2

which if interpreted classically is the Hamiltonian of the harmonic oscillator.

Therefore we have proven that the quantum mechanical harmonic oscillator is related via the
reconstruction theorem with the Ornstein–Uhlenbeck process.

10 Euclidean processes
In this section we take a state space M and a stochastic process (Xt)t∈ℝ taking values in M and
take 𝒜 a subset of the continuous functions on M large enough (so that 𝒜 characterise the
measures on M) and we define the Schwinger functions as before, i.e. as

𝒮k,𝔸k(ξ1, . . . , ξk)=𝔼[a1(Xξ1)⋅ ⋅ ⋅ak(Xξk)]
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and we will show that the properties

S0. Linearity in a∈𝒜

S1. Compatibility conditions

S2. Laplace transform of a positively supported distribution

S2'. Boundedness and continuity in t

S3. Reflection positivity.

become suitable probabilistic properties of (Xt)t∈ℝ. We are then going to characterise some
classes of processes which have these properties (and therefore which give rise to quantum
mechanical dynamics).

Why it is simpler to use this strategy (to construct QM models)? Essentially because proba-
bilistic tools are usually easier to use/more powerful than functional analityc tools in Hilbert
spaces. So the probabilistic model should be considered a special and versatile representation of
a quantum system.

We consider now 𝒜 ⊂Cb
0(M) where M is topological space.

We introduce now Axiom N (Nelson positivity).

Definition 80. A family (Sk)k is Nelson positive is for all t1, . . . , tk−1∈ℝ+ there exists μt1, . . . ,tk−1 a
Radon probability measure on Mk such that

Sk,(a1, . . . ,ak)(t1, . . . , tk−1)=�
Mk
a1(x1)⋅ ⋅ ⋅ak(xk)μt1, . . . ,tk−1(dx1⋅ ⋅ ⋅dxk)

Remark 81. In particular, if a1, . . . ,ak�0 in 𝒜 i.e. ai=bibi∗ then

Sk,(a1, . . . ,ak)(t1, . . . , tk−1)=�
Mk

|b1(x1)⋅ ⋅ ⋅bk(xk)|2μt1, . . . ,tk−1(dx1⋅ ⋅ ⋅dxk)�0.

This justify the name of positivity.

On M we need to assume also that

(*). 𝒜⊗k (the linear combination of functions of the form a1(x1)⋅ ⋅ ⋅ak(xk)) generates Cb
0(Mk; ℂ)

with respect to the topology of pointwise convergence with uniform bounds.

For example, this holds, if M =ℝm and𝒜 is the space of continuous functions vanishing at ∞ on
M ,

Theorem 82. (Sk)k satisfy Axioms (N, S1, S2, S3) is equivalent to the existence of a stochastic
process X :Ω×ℝ→M such that

1.

𝒮k,𝔸k(ξ1, . . . , ξk)=𝔼[a1(Xξ1)⋅ ⋅ ⋅ak(Xξk)]

2. (Xξ1, . . . ,Xξi, . . . ,Xξk)→ (Xξ1, . . . ,Xξ , . . . ,Xξk) in law as ξi→ ξ ∈ℝ.

3. For any s∈ℝ we have that (Xs+t)t∈ℝ has the same law of X, i.e. the law of X is invariant under
translation
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4. Recall that ℝ(X)t =X−t and that F ∈Ccyl
0 (ℝℝ+;ℂ) with F(X)= F̃(Xξ1, . . . ,Xξk), then we have that

𝔼[F(X)F(ℝ(X))]�0,

i.e. the process X is reflection positive.

Proof. The direction ⇐ is the same in the case M =ℝ and X the OU process, we did in the last
lectures. The reverse direction ⇒ goes as follows. If there exists a process satisfying condition
1 using the technical hypothesis (∗) we can prove 2,3,4. Indeed if 𝒮 satisfies Axiom S0,S1,S2,S3
the process X satisfies 4 for F =∑mλma1,m(x1)⋅ ⋅ ⋅ak,m(xk) but by (∗) the functions of this form
are dense in Ccyl

0 (Mℝ+, ℂ) with respect to the pointwise convergence with uniform bounds so
4 follows from dominated convergence theorem. For 2 we do the the case involving only one
function:

𝒮1,(a1)(ξ1)=𝔼[a1(Xξ1)]

but S2ʹ implies limξ1→ξ𝒮1,(a1)(ξ1)=𝒮1,(a1)(ξ)=𝔼[a1(Xξ)] but they are dense in Cb
0(M ,ℂ) and one

can argument the convergence in law. For 3 one uses the fact that the function are invariant
under translations and (∗). It remains now to prove 1, i.e. the existence of such a process. By N
we have that

Sk,(a1, . . . ,ak)(t1, . . . , tk−1)=�
Mk
a1(y1)⋅ ⋅ ⋅ak(yk)μt1, . . . ,tk−1(dy1⋅ ⋅ ⋅dyk)

for some Radon probability measure μt1, . . . ,tk−1. We consider the process (Xξ)ξ with marginals
given by μt1, . . . ,tk−1. The law of X is unique (if exists) because of (∗). By Axiom S1 (compatibility
conditions), in particular the fact that𝒮k,(a1, . . . ,ai−1,1,ai+1, . . .ak)(ξ1,...,ξk)=𝒮k−1,(a1, . . . ,ai−1,ai+1, . . .ak)�ξ1,...,
ξi, . . . , ξk� and this implies that (μTk)Tk are a compatible family of finite dimensional marginals,
and by Kolmogorov's extension theorem there exists a probability measure ℙ on Ω=Mℝ witth
the product σ-algebra and with marginals given by μξ1, . . . ,ξk. So we can take on Ω the process X :
Mℝ×ℝ→M given by X(ω)(t)=ω(t). □

The most difficult of the conditions is the reflection positivity. There is no “easy” way to check
for it, however is a quite robust property which pass easily to the limit. In this second property
it lies its usefulness.

Situations in which one can check easily for reflection positivity are two. The first is when
dealing with Gaussian processes, then second in when dealing with Markov processes.

We focus today on the Gaussian case. Let M =ℝm and 𝒜 =Cb
0(M;ℂ) and Xt a Gaussian process

taking values in ℝm with mean zero. For α ∈ℝm we can define α ⋅Xt=∑αiXt
i. A Gaussian process

is uniquely characterised by its covariance function

r ij(t , s)=𝔼[Xt
iXs

j].

If X satisfies condition 3 then we have that r ij(t , s) is only a function of t − s, i.e. r ij(t , s)= r ij(t −
s). The continuity in distribution is equivalent to require that t↦ r i, j(t) is continuous. This can
be verified using the characteristic function (exercise). What about reflection positivity?

Theorem 83. If X is a reflection positive process then for all α1, . . . ,αk∈ℂ and ξ1, . . . ,ξk∈ℝ we have

�
i, j=1

k

⟨αi, r(ξi+ ξj)ᾱj⟩ℝm�0. (11)
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Proof. We prove in the scalar casem=1 andM =ℝ, the general case follows similarly. We con-
sider fn∈𝒜→x in ℝ and such that |f (x)|� |x |, e.g. fn(x)=(−n)∨(x ∧n). Let Fn(x)=∑iαifn(Xξi),
then

0�𝔼[Fn(X)Fn(ℝ(X))]= �
i, j=1

k

αiα j̄𝔼[fn(Xξi)fn(X−ξj)]→ �
i, j=1

k

⟨αi, r(ξi+ ξj)ᾱj⟩ℝm

by Lebesgue dominated convergence theorem. □

Theorem 84. (Wick's theorem) Let (Y1, . . . ,Yk) be a centred Gaussian vector, then for r even and
i1, . . . , ir chosen among {1, . . . ,k} we have

𝔼[Yi1⋅ ⋅ ⋅Yir]= �
{(i, j)}

�
(i, j)∈{(i, j)}

𝔼[YiYj]

where {(i, j)} run over the perfect matches of {i1, . . . , ir}. If r is odd then the expectation is zero.

Proof. Let Σi, j=𝔼[Yi,Yj] and we have that the moment generating function is given by

𝔼[eα ⋅Y]= e
1
2⟨α ,Σα⟩

then

𝔼[Yi1⋅ ⋅ ⋅Yir]=
∂r

∂αi1⋅ ⋅ ⋅∂αir
�
α=0

𝔼[eα ⋅Y]= ⋅ ⋅ ⋅ = �
{(i, j)}

�
(i, j)∈{(i, j)}

𝔼[YiYj].

□

Lemma 85. Let (Y1,...,Yk) be Gaussian with mean zero, then there are polynomials pN(x)∈C0(ℝk,
ℝ) indexed by N ={i1, . . . , ir} with r even or odd of the form

pN(x)=xi1⋅ ⋅ ⋅xir − �
M :M<N

cMpM(x)

where M is of degree less then N. These polynomials are orthogonal wrt. the Gaussian measure, i.e.

𝔼[pN(Y )pM(Y )]=0

for deg(N)≠deg(M).

Proof. If the covariance matrix Σ is non-singular we apply a form Gram–Schmidt orthogonal-
isation. For Σ general we can find a subset of the Gaussians whose covariance is non-singular
and express the rest of the random variables by linear combinations of this subset and use the
previous method. □

The lemma on orthogonal polinomials holds actually for any random variable (for which poli-
nomials are integrable). In the Gaussian case we can prove that the polynomial depends only on
the variables we are considering. Let us give here the version of the lemma that we are going
to actually use.
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Lemma 86. Let (Y1,...,Yk) in ℝk be Gaussian random variables. Use N ={i1,..., ir} for multiindices.
There exists polynomials pN(yi1, . . . ,yir) such that

pN(yi1, . . . ,yir)=yi1⋅ ⋅ ⋅yir + lower order polynomial.

and

𝔼[pN(Yi1, . . . ,Yir)pN ʹ(Yi1́, . . . ,Yir ʹʹ )]=0

if r ≠ r ʹ. Moreover introducing the notion of Wick product we have: the Wick product is :Yi1⋅ ⋅ ⋅Yir:
=pN(Yi1, . . . ,Yir) which is characterised by the properties

∂
∂Yij

:Yi1⋅ ⋅ ⋅Yir: =:Yi1⋅ ⋅ ⋅Yij⋅ ⋅ ⋅Yir:, 𝔼[:Yi1⋅ ⋅ ⋅Yir: ]=0.

Note that :Yi: =Yi.

Proof. The proof is based on Wick's theorem. If Q1,Q2 are two polynomials Q1(Yi1, . . . ,Yir) and
Q2(Yj1, . . . ,Yjℓ) then

𝔼[Q1(Yi1, . . . ,Yir)Q2(Yj1, . . . ,Yjℓ)]=�
p,q

𝔼[YipYjq]𝔼[[[[[[[[(((((((( ∂
∂Yip

Q1(Yi1, . . . ,Yir)))))))))(((((((( ∂
∂Yjq

Q2(Yj1, . . . ,Yjℓ)))))))))]]]]]]]]

which can be proven by integration by parts on monomials and then extended by linearity. We
want to prove now that

𝔼[:Yi1⋅ ⋅ ⋅Yir::Yj1⋅ ⋅ ⋅Yjℓ: ]=0

for r ≠ ℓ . The proof is by induction on r + ℓ , when r + ℓ =1 we have 𝔼[:Yi: ]=𝔼[Yi]=0. Otherwise
we use the above formula to have

𝔼[:Yi1⋅ ⋅ ⋅Yir::Yj1⋅ ⋅ ⋅Yjℓ: ]=�
p,q

𝔼[YipYjq]𝔼�:Yi1⋅ ⋅ ⋅Yip⋅ ⋅ ⋅Yir::Yj1⋅ ⋅ ⋅Yjq⋅ ⋅ ⋅Yjℓ:�=0

using the induction hypothesis. □

Theorem 87. Assume that the covariance r satisfies

�
i, j=1

k

⟨αi, r(ti+ tj)ᾱj⟩ℝm�0. (12)

for all αi∈ℂ and ti∈ℝ. Then X is a reflection positive process.

Proof. The first step is to prove that reflection positivity holds for polynomials and then
extended to arbitrary functions. Take a cylindrical polynomial Q(X)= Q̃(Xξ1, . . . ,Xξk) for some
k � 1 and ξ1, . . . , ξk ∈ℝ. This polynomial can be expanded in Wick products (since they span
the space of all polynomials). We consier the scalar case, the vector case just involve heavier
notation. We have

Q̃(Xξ1, . . . ,Xξk)=� λi1, . . . ,ir:Xξi1⋅ ⋅ ⋅Xξir:
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with λi1, . . . ,ir ∈ℂ. Note that if we let :Xξi1⋅ ⋅ ⋅Xξir: =f (X) then :X−ξi1⋅ ⋅ ⋅X−ξir: =f (ℝ(X)) since the
covariance is invariant under reflections. Then

𝔼[Q(X)Q(ℝ(X))]=� λi1, . . . ,ir λj1, . . . , jℓ𝔼[:Xξi1⋅ ⋅ ⋅Xξir::X−ξj1⋅ ⋅ ⋅X−ξjℓ: ]

=� λi1, . . . ,ir λj1, . . . , jℓ �
pairings (iq, jp)

� r(ξiq+ ξjp)

where we use that if r = ℓ we have

𝔼[:Xξi1⋅ ⋅ ⋅Xξir::Xξj1⋅ ⋅ ⋅Xξjℓ: ]=�
q,p

𝔼�XξqX−ξp�𝔼�:Xξi1⋅ ⋅ ⋅Xξq⋅ ⋅ ⋅Xξir::Xξj1⋅ ⋅ ⋅X−ξp⋅ ⋅ ⋅Xξjℓ:�

and proceeding with this we obtain the equality above. We have now to show that the above
expression is positive, we know that the matrix (r(ξiq + ξjp))p,q is positive definite and so the
above expression can be written as ⟨v1,v2⟩⊕i=1

deg(Q)(ℝk)⊗ℓ where on the vector space ⊕i=1
deg(Q)(ℝk)⊗ℓ we

consider the scalar products where on ℝk we consider the product

�
i

αiα j̄r(ξi+ ξj)

while on (ℝk)⊗ℓ we use the tesorization of this scalar product, i.e. for p1⊗ ⋅ ⋅ ⋅ ⊗pℓ ∈(ℝk)⊗ℓ we let

⟨p1⊗ ⋅ ⋅ ⋅ ⊗pℓ ,p1⊗ ⋅ ⋅ ⋅ ⊗pℓ⟩= �
pairings (iq, jp)

� ⟨piq,pjp⟩

and finally we identify

v1=(λ1, . . . ,λk)⊕ (λ1,2,λ1,3. . .)⊕ ⋅ ⋅ ⋅ ∈⊕i=1
deg(Q)(ℝk)⊗ℓ .

Then we deduce that ⟨v1, v1⟩⊕i=1
deg(Q)(ℝk)⊗ℓ � 0 since it is a positive definite scalar product on

⊕i=1
deg(Q)(ℝk)⊗ℓ . We conclude that 𝔼[Q(X)Q(ℝ(X))]�0.

Nowwe approximate exp(iαXξj) by polynomials and then we can extend the positivity to convex
linear combinations of complex exponentials on ℝk. But these are dense in Cb

0(ℝk,ℂ) and there-
fore we can extend the reflection positivity to all functions in Ccyl

0 (ℝℝ+,ℂ). □

Theorem 88. A gaussian process X satisfies conditions (1, 2, 3, 4) iff r is continuous, translation
invariant and such that eq. (12) holds. In the scalar case this holds iff r is completely monotone and
bounded and translation invariant.

Recall that complete monotonocity is exaclty the condition eq. (12) in the scalar case and this
implies that there exists a positive and bounded measure μ on ℝ+ such that

r(t)=�
0

∞
e−|t |sμ(ds).

Recall that

r(t)= 1
2θe

−θ |t |
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is the covariance of the Ornstein–Uhlenbeck process. So the theorem says that the reflection
positive Gaussian processes are positive combinations of OU processes.

For example, if μ is a sum of Dirac deltas in (θk)k then one can obtain a Gaussian process with
covariance r taking the sum of independent OU processes with parameter θk.

Let us now give a look at reflection positivity for Markovian processes.

Definition 89. A process (Xt)t∈ℝ is Markovian if F ∈Ccyl
0 (M[t ,+∞],ℂ) then for all ξ1, . . . , ξk� t

𝔼[F(X)|Xt,Xξ1, . . . ,Xξk]=𝔼[F(X)|Xt]

almost surely.

Definition 90. The process X is said to be symmetric with respect to time reflections if ℝ(X) has
the same law as X.

Lemma 91. If X is Markovian then F ∈Ccyl(M[t ,+∞), ℂ) and G ∈Ccyl(M(−∞,t], ℂ) then F(X) and
G(X) are conditionally independent given Xt.

Proof. Assuming that G(X)= G̃(Xξ1, . . . ,Xξk) with ξ1, . . . , ξk� t we have

𝔼[e iαF(X)e iβG(X)|Xt]=𝔼[𝔼[e iαF(X)|Xt,Xξ1, . . . ,Xξk]e
iβG(X)|Xt]

=𝔼[𝔼[e iαF(X)|Xt]e iβG(X)|Xt]=𝔼[e iαF(X)|Xt]𝔼[e iβG(X)|Xt]

so this proves conditional independence. □

Theorem 92. Let X be a Markovian process symmetric with respect to time reflections, then it is
reflection positive.

Proof. Take F ∈Ccyl(Mℝ+,ℂ) then by the above lemma

𝔼[F(X)F(ℝ(X))]=𝔼[𝔼[F(X)F(ℝ(X))|X0]]=𝔼[𝔼[F(ℝ(X))|X0]𝔼[F(X)X0]]

=𝔼[𝔼[F(ℝ(X))|X0]𝔼[F(X)X0]]

=𝔼[𝔼[F(ℝ(X))|ℝX0]𝔼[F(X)X0]]=𝔼[ |𝔼[F(X)X0]|2]�0,

where we used that the law is invariant under time reflection. □

The converse implication of the above lemma is also true. Note that the OU process has exactly
this property and therefore it means that the OU process is Markovian and since it is symmetric
wrt. time reflections we have another proof that that OU process is reflection positive.
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If we want to prove the other properties required for the reconstruction theoremwe need that X
is continuous in distribution and that it is invariant (in law) under translations. These properties
can be obtained analysing the transition kernel of the Markov process.

Let us remark that Xt as an M-valued random variable has a law ν =Law(Xt) which is indepen-
dent of t ∈ℝ. Then we can build ℋ =L2(ν), with h0=1 and K(t)f ∈L2(ν) is given explictly by

𝔼[f (Xt)|X0]=(K(t)f )(X0).

The proof is essentially the same we gave for the OU process. The key observation is that if
F ∈Ccyl(Mℝ+;ℂ) we have that

𝔼[(F(X)−𝔼[F(X)|X0])(F(ℝ(X))−𝔼[F(ℝ(X))|X0])]=0

by Markov property and symmetry under reflections. This allows to identify ℋ =L2(ν) and Q0
is given by multiplication : Q0(a)f =a(x)f (x).

Consider a Gaussian process with r(0)=𝕀, then X is Markovian iff r(t +s)=r(t)r(s) (as matrices)
for t , s � 0. More generally r(t , s)= r(t , u)r(u, s) for all s �u � t . So in particular, in the scalar
case the process is reflection positive iff it is an OU process.

To construct reflection positive processes which are Markovian but not Gaussian we can take
the solution (Xt)t of a stochastic differential equation of the form

dXt =
∇ρ(Xt)
2ρ(Xt)

dt +dWt,

where ρ ∈C2(ℝm, ℝ>0) and ∫ρ(x)dx =1. And take Law(Xξ1, . . . ,Xξk) to be given by the solution
of the SDE starting at Xξ1 with law ρdx . One can check that this is a consistent assignment
of finite dimensional distributions giving a continuous, stationary (i.e. invariant in law under
translation), Markov process which is moreover invariant under time reflection. Therefore it
defines a reflection positive process to which the reconstruction theorem can be applied. In the
case where ρ is Gaussian, then X is the OU process. However if ρ is not Gaussian this proce-
dure gives a large class of reflection positive processes and therefore a large class of quantum
dynamics where the Hamiltonian operator H has the form

H =−Δ+V (x)

for some function V .

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

The course ends here.
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