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The quantum particle
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We want now to construct a physical system (observables+states) that encodes Heisenberg's
indetermination principle

Au()Au(p) = (1)

o S

for the position g and momentum p of a particle and other experimental observations.



The C*-algebra of observables &/ should contain the C*-algebra @ of all the bounded functions
f(q) of the position g and the C*-algebra & of all the bounded functions g(p) of the velocity (or
momentum) p but I need to rule out that g, p commutes otherwise I violate Heisenberg principle
unless I restrict the set of states. But restricting the set of states is mode difficult than dealing
with a non-commutative algebra because we have more structure on & than on §.

So we postulate that [a, b] #0 at least for some a€ @ and b€ 9 and we let &/ to be the smallest
C algebra containing the abelian subalgebras @, &. In order for this to describe a single degree
of freedom we require that (@) R and (%) ~R.

We want to explore how non-commutativity is related to the indetermination principle (1) and
also to the notion of “complementarity”. Complementary observables are somehow observ-
ables which do not allow simultaneous measurement, that is if we are able to have states in
which one of the is completely detemined, then the other has to be completely “undetermined”.
Think about the Stern-Gerlach experiment and the measurement of the magnetic moment in
two orthogonal directions.

Let us see what we can get from (1). Observe that if a, b€ of and self-adjoint then
(a+iAb)* (a+idb)=0
for any A€R and if w is a state we have
0<w((a+iAb)* (a+iAb)) = w(a?) + Aw(b?) + idw(ab- ba),
therefore we need to have, letting [a,b] =ab-ba,
(il b)) 2(w(a?) 2 (w (b)) "2
Therefore in any C* algebra we have the (Schrodinger—Robertons) relation

Au(@)Au(b)> 7

w(i[a,b])l.

If we want to implement Heisenberg's principle for a pair of complementary observables g, p a
way is to require that i[p, q] is constant element of </:

[g.p]=ih, (2)

These are called canonical commutation relations Heisenberg's matrix mechanics consist in a
model where g, p are matrices satisfying the above relation. First problem: these cannot be finite
dimensional matrices, indeed if they were we could take the trace over the vector space C" they
acts on and get

Tr([q.p])=)  (en[q.pleny=0.  Tr(ih)=ihn....

n

not very nice. Moreover they cannot implemented even in an abstract C* algebra, indeed if g,
pE s, then

[q".p]=ihng"!



and therefore by the C* condition
nhllql" = nhllg" N =likng" I=1[q" plI<2lplligl"

which implies |Ip|lliqll = nk/2 if ||qll #0. This is true for any n and so either ||p|| or ||g| has to be
infinite.

This somehow is to be expected because “the position” is not really a bounded observable. We
cannot really talk about the position of the particle as an element of a C*-algebra but it is ok if
the think to any bounded function of g and an element of the C" algebra. So we need to avoid to
talk about g and talk instead of a C* algebra @ which plays the role of the algebra of functions of
the position, that is has to be a commutative C* algebra without unit (in order to allow for non-
compact spectrum).

At this point is not clear how to single out an algebra of observables which satisfies something
like the indetermination principle.

The discussion in this part is inspired by the following papers:

« Accardi, Luigi. “Some Trends and Problems in Quantum Probability.” In Quantum Probability
and Applications to the Quantum Theory of Irreversible Processes, edited by Luigi Accardi,
Alberto Frigerio, and Vittorio Gorini, 1055:1-19. Lecture Notes in Mathematics. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 1984. https://doi.org/10.1007/BFb0071706.

+ Ohya, Masanori, and Dénes Petz. Quantum Entropy and Its Use. Texts and Monographs in
Physics. Berlin; New York: Springer-Verlag, 1993.

« Schwinger, Julian. “Unitary Operator Bases.” Proceedings of the National Academy of Sci-
ences 46, no. 4 (April 1, 1960): 570-79. https://doi.org/10.1073/pnas.46.4.570.

1 Non-commutativity and probability

To start simpler we consider first system which possess “finitely many” pure states. Think about
the two states in the Stern—-Gerlach experiment.

Let us assume we have two observables a, b which generates & and such that o(a), o(b) are
finite.

We would like to inquire about the “most indeterminate” relative position of a and b inside the
C*-algebra of = C*(a, b) they generate. First of all it is clear that since o (a) is finite, let's say with
n elements, we can find function (px€ C(R))k-1,...,n such that pr(x) €[0,1] and Y] _, pi(x) =1
for all x€R and pi(x)p;(x) = O, for all x€ o (a). Let 7 := pr(a) and observe that by construction

Zﬂ,?=1, s = Sk k,t=1,....n,
k=1

i.e. (7f)k form a partition of unity in self-adjoint projections. We let (ﬂ,f’ )k=1,....m the analogous
objects associated to b where m is the size of o(b). Clearly there exists constants (ai)x such that
f(a)=3%f (ax)xf for any f€ C(R) and similarly for b so we need that [, nP]#0 for some k="
in order to have a non-commutative algebra. We have w(f(a)) =Y, f (ax) w(xf) for any state w.
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Let us assume that C*(a) and C*(b) are maximal abelian subalgebras in o/. Then observe that
the observable ), 7¢ nlnf commutes with any element in C*(a) and therefore it should belong
to it. As a consequence there exist complex numbers ( pZ %), such that

a_b_a_ bla__a
Z T T = E De k-
k k

Since the Lh.s. is positive on any state and there exist states (wj) such that wg (') = 5, we have
that ()« is a basis of C*(a), that ( pf’, %), are uniquely determined and that

bl bl bl
Pex 20, Z Pf,l?zz Prr=1.
k ¢

Therefore we have a set of probabilities ( pz ',f) ¢ Which are generated intrinsically by the non-
commutativity of the algebra, even before we consider the states on that algebra.

That is the matrix (pf, ‘,f) . ¢ is bistochastic. This shows that, as soon as we allow for non-com-
mutativity, some “randomness” is already built into our algebra of observables.

For any state w we can construct a new state

w(h) =) w(rihrf)
k
and now observe that

o(f(2)=0(f(a), "(f(b)=) f(bo(rintad)=> f(br)pre(nf)
k.t ¢,k

b bl
so w*(m;) = kaf’,fa)(rr,f).
We can attempt the following interpretation of this formula: the matrix ( pZ e )1, gives the prob-
ability of observing given values of b under the condition that we have preliminarily measured

a specific (but unspecified) value for a and therefore changed the state w into a new state w* in
which a has a specific value, i.e. is a convex combination of states multiplicative on C*(a).

2 Complementary observables in finite quantum system

We want now to devise observables a, b for which the matrix pZ " is as uniform as possible,
meaning that if we have measured a then there is no particular knowledge on b. We call these
observables “complementary”. We require also that either a or b provides an as complete as
possible description of the physical system, i.e. that C*(a) and C'(b) are maximally abelian.
Without loss of generality we can assume that o(a) ={0,...,n-1} for some integer n=2.

Consider still systems with finitely many pure states. All the observables have to take only
finitely many values, let say n. So we can assume that they have all the same spectrum with n
points and to be given by

= {Yk — eZm'k/n}k:O """ el

We want to construct an algebra of two non-commuting observables u, v where both have the

same spectrum (as above) and they are complementary, and for that we mean here that we are
viu_

trying to impose that p, =1/n for any k, ¢.



There is no loss of generality to restrict to operators in Hilbert space, they have to be unitary
because 'c$={z€C:|z|=1} and is clear we need at least a space of dimensions n otherwise we
cannot accomodate the n different eigenvalues I'. By abuse of language u, v the representatives
of u, v in the space Z(C"). Let (i)« be the eigenvectors of u, i.e.

UPk=YrPk

and then take
V@K = Pk+1

with k+ 1 understood modulus n. Now observe that uvgr= @it = Yi+10k+1= Vi1V Pk = (Yiks1/
Yx)vugy for any k=0,...,n-1so

uv=e?mMmyy, (3)
If we assume that u, v generate the algebra of observables then this fixes the full algebraic struc-
ture. Observe also that u"=v"=1.

Remark 1. Note that we could have defined v@i= a1 for some ¢ €S and then we would have
v"=qa" and we could have let also u@y = Byrpk for some S€S$ and then we would have u" ="
This preserves the commutation relation (3) but changes the spectra of u, v.

Remark 2. Observe also that (3) implies that u"v=vu" and also v*u=uv" so the elements u",
v" belongs to the center (i.e. the elements which commutes with all the others) of the algebra
generated by u, v. If we assume that u, v generate each of them a maximally abelian subalgebra
then we can conclude from the commutation relation only that u”, v?€C. From this one can see
that any irreducible representation of the commutation relation is n dimensional.

In particular

n-1
0=(yc'w)"-1=(yc'u-1)) (ri'w)’
=0

and from this we deduce that sy := n‘lzg;g (yi'u)’ satisfies urf'= yprf so mf is the orthogonal
projection on the span of ¢, indeed one can check that ()" = x¢ and n¢nf = S . So we have
also u= ZZ;(I) Yek. For v we can proceed in the same way and define 7. Now let's compute
> Ty using (3) and get

viu_u_ u_v u_l _ _

Zp[Jkﬂk—anﬂ[nk—n, t=1,...,n-1
k k

so as required we have p, ¥=1/n. So we confirm that our choice of algebraic structure give

indeed a maximally complementary pair of observables.

We want now to argue that u, v are sufficient to generate all Z(C") (i.e. all the nx n complex
matrices). Let X € Z(C") and observe that the operator

1 ky =37l K
Y=?Zu v Xviu®,
k.t



satisfy uY =Yu and vY =Yv so Y commutes with all the algebra generated by u, v (this actu-
ally depends only on the commutation relation (3)). Then this means that Y is a multiple of
the identity, because since it commutes with u we must have Y =3,y but then Y=vYv'=
YR VEVIEV =Y Yy and this implies that yi = i, that is Y = A1 for some 1€ C so we can
construct a linear functional p such that p(X) = A and by thinking a bit is clear that p: £ (C") —C
is a actually a positive linear functional (think about it, is clear from the definition of Y) and
p(1) =1. The definition of Y implies easily that for any X € Z£(C")

X= Z ukvip((uk vy X)
k.t

that is (uv%), is an orthornomal basis of Z(C") with respect to the non-degenerate scalar
product (X, Y)=p(X"Y). So in particular the algebra generated by u, v span all the n x n complex
matrices.

This proves that the representation we gave is irreducible and therefore the pure states of this
algebra are exactly the vector states of this representation. So to describe all the possible states
is enough to restrict to states of the form

(X)) =Tren[ pr(X)],

where p€ Z(C") is a density matrix (i.e. p=0, Trca(p) =1) and 7 is the concrete representation
of this algebra that we have analyzed. So the pure states are those for which w(X) =(¢, 7(X) ¢
for some unit vector in C", i.e. p has to be of rank one. All the pure states of this quantum
system are described by a ray in C" i.e the set {eielﬁ: 0€C,|yll=1}. This is very different from
the commutative case where two observables u, v with each n different values have has possible
pure states the n? different values of the pair.

The ray ¢ is called the wave-function of the system and it provides a complete description as
we saw. However it is so only because it parametrizes the set of all pure states. Irreducible
representations are like “charts” that we use to compute over the manifold of all the possible
states of a physical (quantum) system.

We have completely classified this quantum system.

3 Quantum degrees of freedom

Assume that n=n;n; for two integers ny, ny then there exist an alternative way to construct
two complementary set of observables which each of them is maximally abelian. For a=1,2,
make the same construction above with n, and obtain u,, v, € £ (H,) on the space H,=C"* and
consider the Hilbert space product H=C"=C" x C™ and let u,, v, act on this product in the

natural way so that u; and v; commutes with uy, v,. The operator u;, u, together generate an

abelian subalgebra and is maximal. Same for v;, v, moreover the monomials uflugzvflvzfz gen-

erates all Z(H), so this representation is irreducible. And by the same reasoning as above

we can show that p((,ri,‘:jg‘gzlg)z )=1/n, so these pairs of maximally commutative observables are

complementary.

So the full system £ (H) splits into two subsystems #(H;) and £ (H,) which do not interefere
with each other. They represent two physically kinematically independent quantum systems
o, A, whose observable algebras are generated resp. by (uy, v1) and (ug, v2). They could be
not really independent because like in classical probability independence is a notion linked to a
state.



We can proceed this way for any n by factorising into prime factors. So we could think of as
this construction when n is prime as giving very basic quantum systems.

Example, when n=2 we have u, v satisfying u?=v?=1and uv=—vu. Let o, =u, oy=v, 0= (~i)uv
unitary and hermitian matrices for which we can check that they satisfy the commutation rela-
tions

[01,02] = 2i03, [0, 03] =2i0y, [03,01]=2i0y,

and moreover any 2 x 2 complex matrix X can be written X = a + fo, + yo,, + é0,. The operators
(0, 0y, 07) are called Pauli matrices and describe a quantum degrees of freedom with only two
possible values, i.e. the abelian subalgebras have a spectrum with two points. This is the kind
of model suitable to model the Stern-Gerlach experiment.

These C'algebras (let's call them discrete canonical pairs) gives examples of very simple and
discrete quantum observables. In particular we could take a state on which u has a given value,
meaning that there exist states wy such that wg(u®) =e?"*/"forall £=1,...,n-1 (recall that u"=1).
These states are just given by

wr(a) =@k, apk)

where ¢ are the eigenfunctions of u. This means that wj is multiplicative on C*(u).

However we have also that it cannot be multiplicative on v (because u, v do not commue) and
actually

(V) = (@i, vipry =0,  ¢=1,...,n-1.

This means that they are uniformly distributed on the set {exp(27ik/n):k=0,...,n-1}.

Here their maximal complementary shows up in the fact that while one is completely deter-
mined, the other is uniformly distributed. So in some sense they can be considered the quantum
equivalent of discrete uniform random variables.

We would like now to take some limit n— co in order to produce in this way continuous analogs
of these algebras. This would give us an example of non-commutative C* algebra generated by
two abelian subalgebras with continuous spectrum.

The intuition we want to carry on is how we go from discrete uniform r.v. to continuous ones.
In particular imagine that X is a r.v. with continuous distribution described by a density p(x)
on R. I can imagine to approximate it in law by taking a discrete r.v. Xy such that X;=[X]; for
LeIN where [x]r=|Lx]|/L. Then we have for any continuous and bounded function f:R—R

E[f(X0)]= [ f([x]0)p(x)dx — [ f(x)p(x)dx=E[f(X)].

Let's try to implement the same procedure for a C*-algebra. The first observation is that if we
denote (uy, v,) a discrete canonical pair of degree n we have the following. We can take L*(T)
as Hilbert space where T=R\Z and represent each u, and v, as

unf (x) =exp(2mi[x]n) f (x), vof (x)=f(x-1/n), x€T.



One can check that uy, v, is a representation of the algebra we constructed above. In this way
we can embed all the operators (uy, v,)nso into Z(L*(T)).

We have to understand what plays the role of “continuous functions” in this context. We just
take monomials of the form ufv{ (they suffice to determine any other element of C*(up, v,) due

to their commutation relation). However is easy to see that ufv{— 1 in the weak topology of
L*(T). Somehow we need to look at high powers of u,, v, to see something interesting. We take
ty=n"?[s],2 and k,=n'?[t],12 and now consider

(o w8 21 = [ JalX)exp(2mikn [x]) gn(x — bu/ m)dx.
Note that we choose #p, k, in that particular way since the commutation relations reads

i 27i t
uﬁnvgnzezn’tkn[n/nvgnulrfnze ﬂl[s]nl/z[ ] 1/2 fn kn

so the choice of the factor n'/2

rescaling we have, for functions f;, g, supported on (-, ) and letting x=y/n

was due to the nice cancellation in the phase factor here. By
12

Fa(x)exp (2i[t] e[ x]an'?) gn(x = [s]pue/ n'/?)dx

kn, tn
(fo vy, gn)12(T) = f (-7,

=n‘1f(_7ml/2 ml/z)fn(y/nl/z)exp(zm[t]nuznl/z[y/nl/z] Yen((y=[s]2)/n?)dy

so to have a well defined limit we can take f,(x)=n"*f(n"%x) and g,(x) = n**g(n'%x) with f,

g€ C°(R) so that for n large enough we have

{foo Vi gnd o) = [ ) exp (il t]wen [ y/nV2),) g (y = [s] ) dy
so here now we can take the limit and obtain that
tim { f, wy"vi'gn) 2y = (s U (D V() ) ewy (4)
where (U, V) are two unitary groups acting on L*(R) as

U(t) f(y)=exp(2rity) f(y),  V(s)f(y)=f(y-s).

Unitary group means that U(t)"=U(-t), U(t)U(s)=U(t+s) for all t,s€R and U(0) =1. These
relations come from the formula for the convergence in law above.

Exercise 1. Justify that U, V are unitary groups. Actually try to prove it using only (4) and not the explicit form
of the operators.

Moreover they are weakly continuous, i.e. t+— (f,U(t)g) is continuous for all f,g€L*(R). Since
they are unitary they are also strongly continuous.

They satisfying the commutation relations

U(t)V(s)=e?™tV(s)U(t), t,s€ER. (5)



These commutation relations are called the Weyl form of the canonical commutation relations
and they are the implementation of the Heisenberg's commutation relations

[P,Q]=ih,

within the C*-framework (i.e. working only with bounded operators). The link between these
formulas comes from interpreting the two unitary groups as being generated by the self-adjoint
operators P,Qi.e. as

U(t)=exp(iQt), V(s) =exp(iPs),

and recalling that Baker-Campbell-Hausdorff forumula gives (under suitable conditions for
unbounded self-adjoint operators A, B with [ A, B] given by a scalar that)

Applying it formally to P, Q we have

o0t giPs _ ,I(Ps+Q1) +5[P.Q] e%[P’Q]ei(PerQt)’ oiPsgiQt _ ,I(P+Q0-5[P.Q) _ 3P.Q],i(Ps+Qr)

so that
eiQteiPs: eihsteiPseiQt’

so in my notations f=2.

Putting aside for the moment unbounded operators we obtained a pair of commutative C"* alge-
bras @, P given by @=C ((U(t))ser), P =C((V(s))ser) Which are concrete C* algebras on
L*(R). We denote of = C* (@, P).

The spectrum of @ and & can be identified with a subset of $c C. So they are like random
variables taking values on $ and they can be easily parametrized by real number. In particular
if w is a state on & then the function ¢t — w(U(t)) is continuous on R and positive definite and
normalized so it corresponds to probability measure on R, which we denote by y® this is the
law of @ on w. Similarly for . However @ and 9 do not commute.

The C*-algebra & is called the Weyl algebra. It is the fundamental example of two continuous
observables which do not commute and in some sense they show complementarity.

4 Unitary representations of R and generalized observables

Let us concentrate only on one of the families of unitaries, let's say (U(t))er. I want to look at it
at some kind of non-commutative Fourier transfrom (or characteristic function). It is giving me
information about an observable very much like the characteristic function give informations
about a random variable.

Assume that we the family (U(t))er is a family of bounded operators on an Hilbert space H
(giving a representation of R on H).



For any unit vector v€ H we can form the function ¢"(t) = (v, U(t)v), it is easy to show that
©"(0) =1, and ¢" is positive definite, i.e.

Z Adip¥(ti—1) 20  (A);<C, (t)iSR.

This are the same properties of the characteristic function of a measure, so by Bochner's the-
orem, there exist a measure p” on R so that

@ (t) =LRe”xpV(dx), teR.

In particular this defines a linear functional ¢” on C(R) by

As soon as we have extended ¢” continously we can define a «-representation Q of Cy(R) on
Z(H). For any f € Cy(R) define the operator Q(f) by the relation

v, Q(f)v)=¢"(f)
and its polarization. This define a bounded operator such that [|Q(f)llm) < fllo and Q(f)* =
Q(f) and Q is linear in f and Q(f)Q(g) = Q(fg) (by continuity is enough to check there rela-

tions of f€§'(R) and this case we have the more precise relation

O(f)= [U(Hf(t)dt

(remember that the r.h.s is defined as a weak integral). I would like to use f(x)=e™*, in order
to do this observe that for any v€ H

v QU)W = [ ov(t)f(tdt

looking at this formula is clear that if f,— f in such a way that the r.h.s. converges, so we can
take f,(x)=e"%e ™ “2m) 5o that

V. QU = [0 (1) fa(t)dt=2an )12 ¥ (1)e 9 2t — ¥ (s)

by continuity of ¢". So this suggest that we can define Q(e™*)=U(s).

Note also that if f,]f then the sequence ((v, Q(f,)v)), is monotone increasing since if f >0
then (v, Q(f)v) =0 so we can extend Q to all Cp(R). To check that the extension is unique the
following argument works.

Take now the family (h,(x)=exp(-nx?)), then by continuity of ¢" it is easy to prove that
Q(hn) = 1o(n).

Observe that if f€Cp(R) then h,f € Cy(R) and it follows that for any extension Q" of Q to Cy(R)
we have

Q' (hn)Q'(f) = Q' (hnf) = Q(hnf) = Q(hn) Q(f)

and taking limits we have Q'(f) = Q(f).

10



This argument proves the following theorem

Theorem 3. Any weakly-continuous one-parameter unitary group (U(t)), in £ (H) corresponds
to a C* algebra representation Q of Cp(R) on L (H).

It is suggestive to write f(Q)=Q(f) and think to f(Q) as a function computed on an operator
Q in such a way that the formula

U(t) =exp(itQ),
has now a sense.

We could of course associate to Q an unbounded linear operator O on a dense domain within H
in such a way that by Stone theorem Q is the generator of the group (U(t))er-

From the operational point of view such an homomorphism Q represent an observable in the
sense that we can measure its expectation value on any state @ and also we can see it as a
random variable with a law given by the linear functional

fr=o(f(Q)).

If we go back to the Weyl relation we now understand that they describe two observables P, Q
which satisfy the commutation relations

exp(itQ)exp(isP)=exp(2mist)exp(isP)exp(itQ).

Combining unbouded operators is a task of the same difficulty of combining two homomor-
phism or two unitary representations of R. There is no simple way to understand, for example,
the sum P + Q.

Tentantively in this course we take the attitude that an observable is really a *-homomorphism
of Cy(R) into either some abstract C*-algebra or into a C*-algebra of operators. This extends to
the non-commutative/quantum context the probabilistic notion of real random variable.

This is coherent with our modelisation which sees observables as self-adoint elements of a C*-
algebra in that if f:R— R then f(Q) is a self-adjoint operator.

From the point of the of Cralgebraic approach the homomorphism Q, P represents families of
observables which are then given by choosing a particular way f to measure the quantity Q so
that we have a definite observable Q(f), i.e. self-adjoint element of C". Let's call them extended
observables.

If ais a self-adjoint element of a C*-algebra & we can always via continuous functional calculus
associate to it an observable A in this extended sense by letting A(f) := f(a) and therefore have
that A€Hom(C(R), o).

Extendend observables allows to handle quantities which are not naturally bounded and there-
fore cannot be represented by elements of the C*-algebra.

Think for example to a Gaussian random variable X. A Gaussian random variable is not an
element of a C*-algebra since X can take arbitrarily large values. However if we look at X has a
x-homomorphism by letting X (f) := f(X) for any f€ C(R) then X is a well defined observable.

In this case it has a concrete realisation on L?(P) and if we take v(w) =1 we have that
v X(NHv=E[f(X)].
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Commutative setting: representation Q, of an abelian C* algebra &/ on an Hilbert space 7.
d=CyR"C), IH=I*(R"C)
a(x)ed, h(x)e#
Qo(a)h=a(x)h(x)
Qo) h= e ™h(x)

Norm on & is the uniform norm on Cj(R",C). This representation is faithful ker(Qp) =0.

Suppose that we have a cyclic vector hy€ 7.

Ho={Q(a)ho,a€ s},  To=F.

Theorem 4. Under the hypothesis %o = the system (¥, <, Q) is isomorphic to (L2(X,C, y),
CY%(X,C), m) where X is a locally compact Hausdor{f space, i1 is a measure on X and CJ, is the set
of continuous functions going to zero at infinity and m is the multiplication operator.

Proof. By Gelfand-Naimark &/ ~ C%(X,C) where X is the space of characters (i.e. pure, positive
states on &) equipped with the weak-* topology. O

Remark 5. In the case where 1€ ¢/ then X is compact, so €o(X) = €°(X).

We can take % = %°NS where the state generating the GNS construction is ©(a) = (ho, Qo (a) ho).

Here o™ is a positive functional on &. w" is continuous wrt. the |/l norm where we iden-

tify of ~ C%(X,C). So w™ defines a measure on X since is in (C%(X,C))* (the dual space, i.e. the
space of bounded measures). Moreover it is a non-negative measure. We call it 4 and have that

%GNS — LZ(X,,U)

U(Qo(a)ho) = a(x) €L*(X, p)

This is an isomorphism where Q, corresponds to the multiplication m.

Let us note that we have that R"— X and actually X is a compactification of R” which we are
not able to work with explicitly.

5 The Weyl algebra

Let's go back to a representation of the canonical commutation relations in Weyl form, i.e. to a
pair of two unitary representations U, V on an Hilbert space H of the additive group of the reals,
ie.

U)U(s)=U(t+s), U((t)'=U(-t),
and similarly for V, satisfying

U(t)V(s)=V(s)U(t)exp(ist), s, t€R. (6)
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Note that we can form the Weyl operators (W (z)) .ec defined for z=a +if€C as
W (a+ if) = ei@/2piaQq P,
One can check that W(z) is unitary for any z€ C and that
W()W(Z)=e™>OW(z+27), z7Z€C (7)

where (z,z) =27  is the Hermitian scalar product of C (a one dimesional complex Hilbert space).
All we are going to say generalises easily to (W (z)) ek for finite dimensional Hilbert spaces K
and strongly continuous unitary operators (W (z)),ex such that (7) is satisfied.

Remark that w(z,z') =Im(z, ') is antisymmetric i.e. w(z,z)=-w(Z,z) and that w(z,z") =0 for
all z implies z'=0 (i.e. w is non-degenerate).

Let W(z,A) = e*W (z) for A€R then
Wz, )W (Z,X)=W(z+2, A+ X +Im(z, 7)),
which means that the (W (z,1))., give a unitary representation of the Heisenberg group H~

C xR with composition (z,1)(z,A) =(z+z,A+ A +Im(z,z)). It a non-commutative group since
® is not symmetric.

Theorem 6. (Von Neumann) Regular irreducible representations of the (finite dimensional) Weyl
relations are all unitarily equivalent, i.e there is only one up to isomorphism.

Remark 7. This theorem is fundamental because allows to use the most convenient represen-
tation to study the QM of finitely many quantum degrees of freedom (given by Weyl relations).
Historically QM was developed independently by Schrédinger and Heisenberg (with Born and
Jordan), then Dirac ('20) showed (formally) that the two approaches were unitarily equivalent.
And later on Von Neumann ('30-'40) closed the matter by showing that there are no other pos-
sible representations. The theorem is false in infinite dimensions (and for physically motivated
reasons).

Proof. (one dimensional case) Let us introduce the operator
. ~(lalP+IBP) /4 iap/2 ,icQ ,ifP _ ~|2%/4 5
P: Ldeadﬁe e'ce!%e L: e W (z)dzdz

which is well defined as a strong integral, i.e when computed on vectors y € H (regularity is
needed here, at least). We can check that P #0 by observing that

W(—W) W(Z) W(W) — eiIm<z,w>W(_W) W(Z+ W) — eiIm(z,w)eiIm<—w,z+w)W(z> — ei21m<z,w)W(Z)
and looking at
W (-w)PW (w) = .fc e AW (—w) W (2) W (w)dzdz = jc: e 24 RImz W) Y7 (7)dzdz

Assume that P=0, so we have W (-w)PW (w) =0 and for any vector € H we will have for any
weC

0= f@ eI /4 gi2Imz ) ¥, W(z)¥)dzdz
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by Fourier transform with respect to both real and imaginary part of w we deduce that e 124 v,
W (z) ) =0 for almost all z€ C and by continuity of this function we have that (i, W (z)¢)=0
for all z, and ¢ but this is in contradiction with W (0)=1. So P #0.

With a tedious but elementary computartion with Fubini theorem and Gaussian integrals one
can check that (exercise)

PW(w)P=e™7p,  weC

so in particular this says that P?= P and since is clear by definition that P*= P we have that that P
is a non-trivial projection (it cannot be P=1). So let i, be a unit vector in Im(P) so that Py = .

By irreducibility the linear space &:=span{ W (z) {)y: z€C} is dense in H since any element of the
C*-algebra generated by (W (z)).ec can be approximated by linear combination of W (z)s. We
have also that i is the only eigenvector of P since if ¢ is another one orthogonal to 1)y we have

(0, W (2) o) = (Pp, W (2) P} = (9, PW (2) PYo) = "4 o, 1t

so we learn that (¢, W(z) ¥) =0 for all z but then (¢, ) =0 for all y €D and this implies that
@=0. We learned also that there is a state @ such that

wo(W (2)) = (Yo, W (2) Yoy = e 174,

Therefore we conclude that on any irreducible Weyl system there is a state w such that
wo(W (2)) =7

(this relation define w, on the full C*-algebra, because any element can be approx. by linear
comb of Ws).

Now if (H, (W (2))zec) and (H', (W'(z)).ec) are two irreducible regular representations of the
Weyl algebra we can construct a unitary operator U: H— H' by extending by linearity the
equality
UW (2) =W (2) %o
to the full & and observe that U is unitary since
(UW (2) Yo, UW (W) o) = (W' (2) Yoo, W' (w) Y0} = (Yo, PW' (=2) W' (w) PYo)
:e—iIm(z,w)< ')0(')’ PW(W _ Z)Plpo) — e—iIm(z,w)e—\w—z\2/4 =( W(Z) ')00’ W(W) ¢0>

therefore is bounded and can be extended to a unitary operator on the whole H. This show that
the two representations of the Weyl relations are unitarily equivalent. O

The regular state wp such that

wo(W (2)) =7

is called Fock vacuum or vacuum state for the Weyl representation.

Since the representation of the Weyl relation is essentially unique we could think to use the one
we like (or the one more convenient).
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Remark 8. All we are saying generalises easily to (W (z)) ek for finite dimensional Hilbert
spaces K and strongly continuous unitary operators (W (z)) ek such that (7) is satisfied.

» Schrodinger representation. This is given on H=L*(R) by taking
U f(x)=e™f(x),  V(s)f(x)=f(x-s), fEH,ts€R

Is this irreducible? If it is not irreducible then there exists two unit vectors f, g€ L*(R) such that
for all t,s€R

0=(LUMV(5)g)= [ f(x)eglx-s)dx

But then if this is true for any t we have that (by Fourier transform) | f (x)g(x - s)| =0 for almost
every s and x, by squaring and integrating in x, s we have

0= fdxfds|f(x)g(x— S)2=lIf12 gl =1

so we have a contradiction and this proves that the Schrédinger representation is irreducible.

Therefore there must exist a vector 1€ L*(R) such that

(1//0,e‘”S/zU(t)V(s)%)=exp<—%(sz+t2)>, s teR
and by taking s=0 we have

. 2
fl%(x)lze’txdx= exp(—z)

which means that |i/o(x)|? is a Gaussian function (actually the density of a .#°(0,1/2) random
variable), namely

—x2

e

o) = 5

1
(”)1/4

this determines 1 up to a phase factor: i(x) = e/ e~*"/2. However

s+ t? its/2 its/2 t 2 2
- - )% Sif ()= omx/2,1 1 =s)°/2
exP( 1 ) (Yo, e”™2U () V(s) Yoy =€ jdxe’x if (x G )1/4 x2pif (x=s r )1/46 ~(x=s

—lts/2
fdxelt(x+s/2 —if (x+5/2) e —(x+5/2)%/2 1f x-5/2) —(x $/2)%/2
( 1/2

mfdxe x? thet(fx s/2)-f(x+s/2))

so we have

1 jdxeitxei(f(x—s/z)—f(x+s/2))e—x2:eXp _t_z
()12 4
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Now is better because this is saying that the function

L i lrms/2)=f (x+s/2) px?

(”)1/2

is the density of a Gaussian #7(0,1/2) so it is equal to ﬁe‘x

we have proven that, in the Schrédinger representation we have

* and we conclude that f=0,s0

e—x2/2
Yo(x) =

» Gaussian representation. We can introduce the unitary transformation (ground state trans-
formation)

J:LA(R) — LA(y)
where vy is the Gaussian measure with mean zero and variance 1/2 by letting

(JP) () =¥ (x)/Yo(x),  x€R.

Then we have the images U’, V' of the Weyl pair U, V given by (for f€L%(y))
U'()f(x)=(JUMT ) (x) = ho(x) U (1) (of ) (x) =e™f (x)
V() f(x)=(TV()Tf) (x) = o() 7 V() (Yhof ) (x) = Yoo (%) " Yo (x = 5) f (x = 5)
=e* 2 (x - 5)

One can check directly that this gives indeed a strongly continuous representation of the Weyl
relation on L%(y). This is called the Gaussian representation and is useful because there is a nice
basis for L(y) given by polynomial functions, the Hermite basis (h,(x))us0 (indeed note that
polynomials are in L?(y) and that one can perform a Gram-Schmidt ortogonalisation procedure
of the family (x™),s¢ which is a separating family for L?(y) by Stone-Weierstrass) and every
h,(x) has monomial of highest degree n.

» Reducible (regular) representations of Weyl relations.

Assume now that (W (z)),ec does not act irreducibly on H then the range of P is not one dimen-
sional. However in general we have that for any ¢, p€ H

(W (2)Po, W (2)PY) = (9, PW (2) W () PY) = £ (2,2) (P, PY)
where we used that there exists a function f such that f(z,z)P=PW (z)*W(z')P and that
does not depend on the specific representation. This means that I can compute it in any
representation, in particular if we denote 1§ the vacuum vector of the Schrédinger represen-
tation and by (W*(z)).ec the Weyl operators in the Schrédinger representation we have (4,
P*W*(2)W*(2) Py 12r)= f(2.2) and
(W(2)Pp, W (2) PPy =(W* (2)P* Y5, W* (2) P Yi§) 12r) {Pps P )im(p) (8)
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therefore we can introduce a unitary operator : L*(R) @ Im(P) — H defined by
J(W*(2) Y6 ® Pp) = W (2) Po.

Remark 9. Let us recall that if Kj, K, are two Hilbert spaces there is a canonical notion of
product of them, which is the Hilbert space K; ® K, obtained by completing the span of all the
monomials of the form {ve w: v€Kj, w€ K3} with respect to the Hermitian scalar product define
on monomials by

(V1® Wi, V2 ® Wo) K 0K, "= { V1, V2) K, { W1, W2) Kys

and extended by linearity (one has to check that this is a positive definite quantity, but for
general results the product of positive definite kernels is a positive definite kernel).

Since {W*(z) Y% }.ec span a dense subset of L2(R) (by irreducibility of the Schrédinger rep.) and
{Pp} perr=Im(P) as Hilbert space, then 7 is well defined on all L*(R) ®Im(P) and by construction
it is isometric on H by (8). It remains to check that it is surjective. Let ¢ €Im(J) then we must
have for any vector of the form W (z)PW (-z) ¢ since these are surely in the image of 7, so for
any z€C and ¥ € H we have

0=(p, J(W*(2) Y58 PW (-2)¥)) =(p, W (2) PW (-2) )

recalling the definition of P we have
0= jc: e, W (2) W (w) W(-2))dwdw= jc: e~ /Ag2mz W W (1) Pydwdw

since this has to be zero for any z€ C we deduce by Fourier transform that (¢, W (w) ) =0 for
a.e. wbut is also continuous in w so it is zero for all we€C and then also for any € H. By taking
w=0 and ¢ = ¢ we deduce that ||¢||=0 so ¢=0. In this way we proved that ¥ is surjective and
therefore that it is unitary.

Corollary 10. Any regular representation ((W(z)).ec, H) of the Weyl relations is unitarily
equivalent to the representation ((W*(z))zec, L*(R) ® K) where K =PH and W*(z) acts trivially
on K and as the Schrodinger representation on L*(R), i.e.

Wi (2) (Y ey )= (W (2)y") ey’  z€C Y '€l*(R), Y €K.

We know that the only regular irreducible representation on a Hilbert space H of the Weyl
relations is given by a state such that

w(W(z))=e 4,

This state corresponds to a cyclic vector 1y € H by means of the relation w(a) = (¥, ayp) which
defines a state on £ (H), we have also that the weak closure of the Weyl algebra (W (z)) .ec is
the whole £ (H).

Moreover any state with the same expectation of the Weyl operators give rise to a representa-
tion (via GNS construction) which is unitarily equivalent with the Schrodinger representation,
in particular it is irreducible.
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How do reducible representations looks like? I want to give an example. The easiest way to
come up with a reducible representation is to that two copies L*(R) ® L*(R) = L*(R?) of the
Schrédinger representation and define Weyl operators

(W (s it) ) (31, 32) = (€2T() T (1) ) (31, 32)
=eit5/zei$(axl+bx2)f(x1 —at,xy+ bt) = e™2U;(as) Uy(bs) Vi(at) Vo (- bt)

where (Uy, ;) and (U,, V2) are Weyl pairs acting independenlty on the two factors of L?(R) ®
I*(R), so they commute among them. We can check that they satisfy the Weyl relations

W (s+it)W(s +it') =e™2U,(as) Uy(bs) Vi(at) Va(-bt) et S/2Us (as’) Uy(bs ) Vi(at’) Va(- bt)
—eit2eiS 12Uy (as') Up(bs') Vi(at ) Vi~ b)) (Us(as) Up(bs) Vi at) Va( - b)) »
x g~ i(=bt)(bs)-i(at)(as") +i(bs)(-bt)+i(as)(at))
=l (OIS S DSOS Y (i W (s 4 i)
e P IMIF SOV Yy (5 4 i YW (s+ if)
iff a®- b?=1. This also implies that the operators W are unitary, indeed
(e"2U1(as)Us(bs) Vi(at) Va(-bt)) = e "2 Vy(bt) Vi(-at) Up(~bs) U (-as)
=gits/2g1(=as(=at) pi(=bs(BO) 1, (_ g 5) Uy (- bs) Vi (—at) Va( bt)
=152 (@)D (_ a5\ Uy(~bs) Vi(-at) Va( bt) = W (-5 it).

In this way we can construct a family of Weyl pairs. Let ¥ = ¢ ® ) the tensor product of the
two vacuum states, then

(Yo Yo, W (s+it) (Y08 o) pzwey = €' 02 o, U(as) Vi(at) Yo 2wy Yo, Ua(bs) Va(=b1) Yod o)
=(Yo, €' 2U1 (as) Vi(at) o) gwy (Yo €7 U (bs) Va(=b1) Yo) 2(x
=(o, W (as+iat) o) rzwr)(Yo, W(bs—ibt) Yo)2(w)
:e—las+ait\2/4e—|—bt+bis|2/4: e—(a2+b2)\s+it|2/4= e—(1+2b2)|s+it\2/4'
We have proven the following:
Theorem 11. For any Q >1/2 there exists a state wg on the Weyl algebra such that
wo(W (z)) =e 9472,
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Moreover we know that for Q=1/2 is pure (because it corresponds to the Schrodinger model) and
for Q>1/2 it is not.

Let us show concretely that the representation given by W on L?(R?) is not irreducible. Con-
sider the operators

(WH(s+it) f) (x1,%2) = e™2U1(bs) Us(as) Vi(-bt) Vo( at) = Wi(bs - ibt) Wy(as+iat)
and note that
W (s +it YW*(s+it) = W (as+iat) Wy(bs—ibt) Wi(bs—ibt) Wy(as+ iat)

:eiIm(as+iat,bs—ibt)eilm<bs—ibt,as+iat)M/l(bs_ ibt) Wz(as+ iat)Wl(as+ iat)I/Vz(bs— ibt)
=1

=WH(s+it)W(s +it)

so the two families commute. In particular the Stone-von Neumann projector P* associated to
the Weyl system W* satisfies

P*W(z)=W(z)P*

and therefore (W*(z)).ec is not an irreducible representation since P* is a non-trivial self-
adjoint operator.

Moreover if y§ € L?(R?) is a unit vector such that P*y; = ¢ then the space K =

{(W*(2)Ys: ZEC}LZ(RZ) is invariant under the action of W (z) and we have that { W (z)K: z€C}
is dense in L?(R?).

Question 1. It is a fact that there not exists states on the Weyl algebra for which

wo(W(2))=e 0%,
with Q<1/2. How to prove it?
Remark 12. After the lecture, Jaka came up with the following idea to prove it. Unfortunately,
it uses unbounded operators and analytic vectors, which we haven't discussed. The idea is to

prove that if Q<1/2 then this clashes with the Heisenberg commutation relations. It goes as
follows.

Consider
1 P
w(W(z))= e"ZC‘le, c€[0,1).

This is an analytic state so we can work in its GNS representation without worrying about
any unbonudedness problems since the vacuum will be an analytic vector for Q, P. Using the
definitions

O==—| W(t), P=—ii W (it),

t=0
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we can use the two-point function

. _ _1 w2
wC(W(z)W(W)):e—tIm(zw)e FClz+wl

to compute the dispersions Ag, Ap: obviously the expectation values will be 0, so we just need

d d —lc(t+s)2 C

0l Q) = gl gl el
¢ dt|,_ods|._, 2
d d L 2 ¢

oy _ _d| d| deas?_c
0P =~ T 2

Thus ApAp= % violating Heisenberg's uncertainty principle.

6 Dynamics on a canonical pair

So far we described the kinematics, that is the structure of the space of observables which holds
at a specific time, because we imagine to perform a measurement described by < on a state w.

In order to do predictions one has to correlate the measurements on the same system at different
times: we have a model which given information from the past allows us to predict the future.
(that's one of the basic goals of physics).

Example 13. Let us start from an example. Note that if (W (z)).ec is an irreducible Weyl
system on some Hilbert space H then also

(Wi(2) =W (€"2))zec
is a Weyl system for any t€R. Then it must be that there exists a unitary operator U, such that
UWi(2)U;=W(z), t€R,z€C.

Moreover we can define an automorphism of the Weyl algebra by letting a;,(W (z)) = W (e'’z)
(i.e. a map of the Weyl algebra in itself which respects the «-operation and the algebraic rela-
tions in the C'-algebra, and as a consequence is an isometry). This is an example of dynamics,
i.e. the introduction of a time evolution in our description of a physical system.

Let us obseve that a,,(W(z)) = W(z) so az,=1d. So the dynamics is periodic of period 27, we
will see that it corresponds to the quantum motion of an harmonic oscillator.

The time and dynamics enters into the model via a group (a;); of (+-)automorphisms of &,
which have the following meaning w(a;(a)) is the measurement of the observable a at the time
t. ap=1d. a;.5=a;- as, i.e. is a representation of the additive group of R onto automorphisms of
the C*-algebra /.

We can let « act on the linear functional by duality: (a;¢)(a) := ¢(a(a)) and then this gives a
group of linear transformations on linear functionals on & and is easy to see that it preserves
the states of .

Suppose that «;w is not pure, then it can be decomposed into two states a;w=Aw; + (1 - 1) w, but
then w=ajw=Aa w1+ (1 - A)a’yw, S0 w is not pure either. Therefore the dynamics preseves
pure states.
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To proceed we need some assumption on the automorphism, essentially its compatibility with
the representation space under consideration.

Fix a specific setting (%, </, Q) where & is a general C*-algebra and Q, is a representation in %.

Definition 14. Let (a;)cr a set of C*-automorphisms of &f. We call « a regular dynamics, if
i. (ay)ser is a group wrt. t, ie. og=1d and a;-ats= a4 for any t,s€R

ii. the map t — a; is weakly continuous, i.e. for any state w and for any a€ o the map t —>
w(a(a)) is continuous.

Define O,(a):= O(a;(a)) for a€ .
Definition 15. The set {U(t)}ier<c B(H') is a unitary group of strongly continuous operators,

ifU)U(s)=U(t+s) and U(t) =U(-t) and if the map t — U(t) is weakly (and thus strongly)
continuous.

Theorem 16. Assume that there exists a state w"(a;(a)) = wM(a) for all t€R and a€d and
(ay); is a regular dynamics of <, then if I is the GNS representation space associated with "
and hy€ 7 is the corresponding cyclic vector, then there exists a unitary strongly continuous group
(U(t))ter on Z such that

Qi) =U()Qo(YU(-1)
and also U(t) hy= hy.

Lemma 17. Suppose that we have a contraction V (t), i.e. |V (t)hl<|hl, such that V(0)=1 and
V (t) is weakly continuous in t at zero, then it is strongly continuous at zero.

Proof. We have
0<IV(£)h=hlg =1V (t)hl% + k% - 2Re(V () h, hyz < 2| hll3 - 2Re(V (¢) h, h) 7

so weak continuity at zero is enough for strong continuity at zero. m

Proof. (of the Theorem 16)
Ho={0o(a)holaE A}, To=%,
Let's define
Un(t)(Qo(a) ho) = Or(a) ho= Qo(axe(a)) o

We first prove that Up(t) is an isometry
(Uo(t)(Qo(a1)ho), Up(t) (Qo(az) ho)) = (Qo(a(ar)) ho, Qo(ai(az) ) hod
=Cho, Qo(ar(a1))* Oo(ar(az)) ho) = (ho, Qo(ar(aiaz)) ho) = ™ (ay(araz))

=wh(ayay) = (ho, Qo(@raz) ho) = (Qo(a1) hoho, Qo(az) ho)
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So Uy(t) is an isometry on &) so it is bounded on %7 and can be extended by continuity to
o= . It remains to prove that it form a group. ay=1=> Uy(0) =I5 and

Us(£)Un(s) (Qo(a) ho) = Un(t) (Qo(as(a)) ho) = (Qo(at(ars(a))) ho) = (Qo(ass(a)) ho) = Up(t +
5)(Qo(a) ho)
so Up(t)Up(s) = Up(t+s) on #, and therefore on all . It remains to prove that hy is invariant,

but of course Up(t)ho= Up(t)(Qo(1)ho) = Oo(a;(1)) ho = ho. We also have that it is weakly con-
tinuous

((Qo(@)ho), Up()(Qo(b) o)) = Cho, Qo(a’ (b)) ho) = w™( @’ s (b))

and w"(a'-) is a continuous functional on & and therefore ¢+ w"(a'a;(b)) is continuous,
which proves that Uy(t) is weaky continuous in #} and then strongly continuous and can be
extended as a strongly continuous group in #. Note finally that

Qu(a)Qo(b) ho= Or(aa-1(b) ) ho=Uo () (Qo(aa-1(b)) ho) = Uo(#) (Qo(@) Qo(et-4(b)) o)
=Up(t) Qo(a) Us(~1) Qo(b) ho
so this proves that Q;(a) = Uy(t) Oo(a) Up(~1). m

Remark 18. Without the hypothesis that the state is invariant, then this construction is not
true in general anymore. Take for example & commutative, i..e C%(R?) and consider an Hilbert
space L%(R% p) where

p(dx) = e 2dx + So(dx)

and the usual moltiplication and take a;(f(x)) = f (x—t). But here there is no unitary group asso-
ciated to . Indeed take the state w¥(a) = [ a(x)p(dx). Consider the translated state w/(a.(-)),
then GNS representation of it lives on L*(R", j1;) where p,= T; 1 the pull forward of y by the trans-
lation operator. In order to have a unitary transformation we need that y; has to be absolutely
continuous wrt. y, but this is not the case.

7 Through the mirror
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In this lectures we will require always to have a unitary implementation of the dynamics (@;)er
for (#,4,Qp), i.e. to have a strongly continuous group of unitary operators (U(t)):er so that

(1) = Qo(a:(+)) = U () Q(-) U(~1).

Recall that we have proven the following link between unitary groups and representations of
C(R):

Theorem 19. Consider an Hilbert space 7, a strongly continuous unitary group (U(t))er on #,
then there exists a unique C'-representation X of Co(R,C) on % such that
i X(e™)=U(t)

ii. If f,— f pointwise and sup, || full < oo then X (fn) — X(f) weakly.

Which could be considered a C* version of the Fourier transform. We want now to do the same
for certain semigroups. This essentially is the C* analogon of the Laplace transform.

Definition 20. {K(t)}icr, S B (). We say that K(t) is a strongly continuous semigroup of self-
adjoint contractions if

i. K(0)=1, K(t)K(s)=K(t+s), fort,s=0.
ii. K(t)=K(t)",
iii. t — K(t) is strongly continuous
iv. |K(¢)hli< |hl,t=0.
Theorem 21. Assume that K is a strongly continuous semigroup of self-adjoint contractions then
there exists a unique representation X of Cy(R.) on  such that
i X(e")=K(t)

ii. If f,— f pointwise and sup, | fyll < co then X (f,) — X(f) weakly.
To prove this theorem we need few more definitions.

Definition 22. If G:R — C we call G positive definite if for any Ay,...,Ak€C and t,,..., t,€ER we have

k
Z AiZjG(ti— tj) =0

ij=1

Definition 23. We say that F:R. — C is totally monotone if for any Ai,...,Ax€C and t1,..., 1, €R,
we have

k
Z )Li)_LjF(ti+ tj) =0.

ij=1
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Take U a unitary group on #. For any h€ # we define Fy(t,h) =(U(t)h, h). If K is a self-adjoint
contration semigroup we define Fx(t, h) =(K(t)h, h).

Theorem 24. Let U and K as before, then Fy is positive definite and Fx is totally monotone.

Proof. Consider K, the case of U is similar. Take A;,...,At€C and ty,..., tx€R, and just compute

k
0< <Z AiK(ti)h:Z AiK(ti)h = Z AiZ]‘FK(ti+ tj)

i,j=1
using the fact that K is self-adjoint and a semigroup. O

Theorem 25. (Bochner) G is a continuous positive definite function iff there exists a bounded
positive measure i on R such that

G(t) =f]Reifxp(dx).

Theorem 26. (Bernstein) F is a bounded totally monotone function iff there exists a bounded pos-
itive measure p on R, and a constant C =0 such that

F(t) = Cf]&e‘tx,u(dx).

Remark 27. These results can be generalises in a more abstract setting by replacing R and R,
with other topological groups/semigroups and exponentials with characters.

Lemma 28. Assume that F is a bounded, totally monotone function, then

a) For any a>0, -A,F is bounded totally monotone with A,F(t)=F(t+a)-F(t).

Proof. F=0, a,t=0

( F(2t) F(t+a))
F(t+a) F(2a)

is positive definite, so its determinant is positive and

F(t+a)<{F(2t)F(2a)

Then (starting with a=0)
F(t) s1:;(0)1/21_7(2t>1/2s1:;(0)3/4F(4t)1/4S . sF(O)(2"*1)/2"1::(2nt)l/Z"s1_7(0)(2"71)/2” CI/Z"

and so we conclude that F(t) <F(0). Take Ay,...,At€C and fy,..., tx€R, and define
G(Cl) = Z F(a+ L+ tj)/li)_tj
i,j
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and consider other points oy,...,0,€C and ay,...,a,€R, then
k n k
Z G(a;i+aj)oi6j= Z Z F(ai+aj+t,+t)AA06;=0
i,j i,j 1,8

using the fact that F is totally monotone. So G is also totally monotone and as a consequence
G(a)<G(0) and G(0) - G(a) =0 or otherwise

Y (CAGF(ti+ 1)) Aidi= > (F(ti+ tj) = Fa+ ti+ 1)) Aid;=0
iJ

Lj
so —A,F is bounded and totally monotone. O
Corollary 29. If F is bounded and totally monotone, for any a,...,a,€R,
(-1)"Ag,- Ao F

is totally monotone and therefore (-=1)"A,---Ag,F = 0.

Theorem 30. (Krein—-Milman) Let X be a locally convex Hausdorff topological vector space and
let K< X be a compact convex subset, then the set E(K) of extreme points of K is non-void and for
any Y€K there exists a probability measure v’ on E(K) such that

y= fE(K)xvy(dx)
where the integral is understood in the weak sense, i.e. for any A€ X" we have (Pettis integral)

A(y) = fE(K)A(x) yY(dx).

Recall that locally convex means that there is a base of the topology composed by convex sets.

0,+00)

For example R with the product topology is a locally convex and Hausdorff.

Proof. (of Bernstein theorem) We prove now that if F is bounded and totally monotone there
exists a positive measure p on R, such that F(¢) = [ Re’”‘y(dx). The rest of the claim is left as
an exercise. Consider the space € <R(**) such that

& ={FER®®), F=0:forall ay,...,a,€R, (~1)"Ay---Ag F=0}
Note that € is closed for the pointwise convergence and it is convex, but not compact. In par-
ticular this means that for F € € we have F(t;) - F(#2) 20 if t; <1, and we let F(0+) =lim,|oF (1)

by monotone limit. In principle we could have F(0+ ) =+oco. F is bounded iff F(0+) <co. Since
AJAF =0 we have

%F(t)+%F(t+2a)2F(t+a)

25



and this means that F is midpoint convext. On the other hand, for any 0 < ¢ < d we have that
0<F(d)<F(c) so F is bounded in [c, d]. It is left as an exercise to prove that if F is midpoint
convex and bounded then F is continuous in (¢, d) (Hint: show that F:[-§, §] — R midpoint
convex and if F has a discontinuity in 0 then it is unbounded). By this result, F is continuous
on R,. Consider a subset K< & as follows K={F€%:F(0+)=1}. This is now a closed convex
set and K c [0,1]R* which is a compact space (always wrt. to the pointwise convergence). By
Krein—Milman this means that for any y€ K we can write it as a convex combination of extreme
points. What are these extreme points E(K) of K? For any F€ K we have that exists a€R, such
that F(a)>0and 1=F(0) >F(a) >0 unless F =1 everywhere. In the second case 1€ E(K) since
it is the biggest element of K and therefore cannot be decomposed in a convex combination of
other elements. In the other case

_F(t+a)

F(t)_ F(a) _AaF(t)

F(@)+ {25 (1~ F(@)

so F(t+a)/F(a) EK<E so this implies that if FEE(K) we need to have F(t+a)=F(t)F(a). This
is true to all a for which 1> F(a) > 0. Since F is continuous and a solution of that functional
equation, but all these solutions are of the form F(t) =exp(-st) for some s€R,. Then if FEK
there exists a probability measure p on R, such that

F(t) = f]&e‘sﬁu(ds).

This proves the key claim in the theorem if F is bounded and F € K. However is clear that if F
is totally monotone, then F€% and if 0 < F(0+ ) < oo we have that F(t)/F(0+) is bounded and
>0 and in K. O

Lemma 31. For any h€e # and t =0,

Fi(t,h) = LR e~ uh(dx)

+

where u"(R.) = hlI%

Proof. Fy is bounded because |Fx(t, h)|<|KA| ||Al < |h|?* and totally monotone, so it has this
representation note that F(0, h) = Il Aalf%. o

Lemma 32. There is only one C* representation Xy of Co(R,C) such that

Xo(e™")=K(t)

Proof. Consider the set &= spanc{e‘tx, t=20}c CY%. Moreover € is a «-subalgebra on C% and we

define

X()()I%—M%(%)

as Xoo(e ™) =K(t) and then extend by linearity to all &. X is a *-homomorphism since K is a

semigroup. Moreover for f=)" A,e”%* we have

(hXoo(f) W)=Y AFic(tuh) =" Aif, e ub(dx)= [ flx)put(dx)
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so by using that Xyo(f) is self-adjoint
|(Xoo(f) B Xoo(f) m)I=1¢h, Xoo(f2) I I ealll =11 U B2,
and , we have that || Xoo(f)l < flle. As exercise we leave to prove that & is dense in C%(R,,C)

(Stone-Weierstrass and a localization argument). Then we can extend Xy from & to CJ by
continuity with the operator norm. O

Up to now we proved that:

1. There exists a unique »-homomorphism X: C%(R,,C) — B (#) where CL(R,,C) is the set
of continuous functions going to zero at infinity.

2. For any h€ # there exists a unique positive measure x4 on R, such that y"(R,) = ||h||* and

K(t)hhy= [ e (dx).

3. For any f€C%(R,,C) we have

X(f)hh)= [}, fx)ut(dx).

We introduce a measure

h1 hz -k, hi+(i)*hy
42 H

by polarisation and we have
(X(f)h1, h2) = LR F(x) e (dx).

Lemma 33. We have that

dHX(f)hl,hz

W:f(x)

Proof. The measure p"" can be characterised by

(K(1)hs, b = [ e he(dx)

and we have

(KX (f)hi,hoy= [ e De(d) = [ e75f (o)t (dx)
so by identification of Laplace transforms we have the claim. O

Proof. (of Theorem 19) Define the linear operator X(f) b
K(f)hihoy = [, f(r)uhPdx
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for all hy, ho€ F. We have

IX(Dlsen = sup  |[o FEOM(d0)|<fle sup  [15(R)]2 1 fll
IPall=llhzll=1 * Ihll=lhzl=1

SO )~((f) is bounded. Moreover one can show easily that (X(f) hi, hy) = (hl,f((f*) hy). The approx-
imation property is quite easy to prove since if f, — f pointwise and the family is bounded
then by dominated convergence

K (fo) o, b = [ oo™ edx— [ f (o)t edoe=(X(f) s, o)

so we have weak convergence. Moreover if f€ Cj(R,) then there exists (f;)ns0c C%(R,) such
that f,— f pointwise and sup,||f,ll < oo (simply by multiplying f with a sequence of dilations of
a given bounded functions of compact support). So there can be only one such operator which

extends X from C%. We have to prove that X is an homomorphism. Take f, g€ C2(1R+,(E) and
consider two approximating sequences ( f;)n, (g1)nS CS(R,) then taking n— oo

(X (fgm)h1, ha) < (X (fugm) b1, B2y = (X (F) X (gm) b1, ha) — (X (F) X (gm) b1 h2)

so taking m — oo we get (X(f2)hy, hy) = (X(f)X(g)hy, hy). This concludes the proof by taking
X=X. o

Now we have seen that if (U(t))ser is a strongly continuous unitary group this is equivalent
to have an representation Xy of Cp(R,C) in B () and if (K(t))s is a self-adjoint, strongly
continuous contraction semigroup, then we have a representation Xx of Cj(R.,C) on B(¥).
We want to look into the relation between these two objects.

Definition 34. We say that (U(t))cr (as before) has positive energy for each f € C)(R,C) such
that supp(f) < (-00,0) we have that Xy(f)=0.

Remark 35. Assume that fi, € C(R,C) such that f;= f; on [0,00) then if U has positive energy
then Xy (fi) =Xu(f2).

Lemma 36. U has positive energy iff for any h€ I pl is supported on R, = [0,0).

Proof. (Xy(f)hi, hy)= f]Rf(x),uh(dx) if the measure is supported on R, then X (f)=0if supp(f)<
R.o. On the other hand if supp(f) = (-c0,0) then f]Rf(x),uh(dx) =0 from which we get that
supp(u™ <R.. O

Remark 37. If (U(t))er has positive energy and g€ Cj(R.,C) then we can define Xy(g) in a

unique way as follows: we take g€ Cj(R,C) such that §=g on R, and we define Xy;(g) = Xy ().
This definition is a good one since the value do not depends on the extension g, indeed if § is
another extension then g - g is supported on (-00,0) and Xy (§) =Xu(g).

Theorem 38. Assume (U(t)):er is a strongly continuous unitary group with positive energy, then
K(t)=Xy(e™") is a strongly continuous self-adjoint contraction semigroup and also Xy = Xk on
Ch(R,,C). The converse is true, i.e. if we have K and we define U(t) = X (e™"), then (U(t))ser is
a strongly continuous unitary group with positive energy and Xx = Xy.
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Proof. From e %25 = ¢~(1*%2)5 we have K (t;)K(t;) = K(t; + t,) and the other properties follows
easily, moreover by dominated convergence (hy, K(t)hz) — (hy, K(s)h,) if t — s and strong
continuity follows since K is a contraction, i.e. |[K(t)h|*=(h,K(2t)h)< ||e‘2t‘||cg(]R+)ph(]R+) =||hl%
The reverse implication is left as exercise. O

We want to justify now the name of “positive energy”. This is not fundamental in the following
but will give a better grasp of the connection with standard physical intuition.

Let D be a subspace of # such that h€ Dy iff t — U(t)his strongly differentiable in 0. For any
he Dy we define

Hh=Liim LR

lt—0 t

7.

Is simple to prove that H is a linear operator H: 9y — #. For generic U, the operator H is not
bounded, which implies that H cannot be extended as a continuous operator on all 7. H is an
unbounded operator and Py is called the domain of H.

Lemma 39. h€ Dy iff
f]szph’U(dx) <oo, andthen  |Hh|*= f]sz,uhl’hz’U(dx).
If hy€ Dy and h, € X then

f Sl (dx) <o, and (Hhy, hy) = f U (dx).

Proof. Step 1. For any h; € Dy and hy€ H

[l tU(dey = sup [ xf(x)ptV(dx) = sup (X (ef ()b ha)
FECIR,QO).IflIs1 FEQRL).IflIs1

/ 1/2
s||h2||H( sup ||X(xf(x))h1||)1 “< ||h2||H( sup LR(xf(x))zuhl’hl’U(dx)) <
FECAR,C),lIflIs1 FEQR,C),IflIs1

Chllhalln

But this implies that there exists h} such that (hj, hy) = [, [Rx/lhl’hz’U(dx). Now we want to prove
that h1=Hh,

(U= Dh= g U - Dh-hi) | U@ - Db

2 , 1 )
+|RI* - 2Re<E(U(t) -1)h, h1>

12 t
G(¥.x)

:fR(zl—cos(tx) +x2—25m(tx)x)yh1(dx)

Now |G(t,x)|< Cx?is uniformly bounded and pointwise converge to zero as t— 0, so by Lebesgue
dominated convergence we conclude that this quantity goes not zero. So we have that if [
x%u"(dx) < 0o we have that U(t)h is strongly differentiable in zero. On the other hand, if U(t)h
is strongly differentiable then

sup ,lt(U(t)—nth:cm

te(-1,1) It
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and in particular

[x2ut(dx) =2 liminf 295U h(dx) <liminf 2 Ls(tx)yh(dx)=1imian.l(U(t)—1)h 2
t—0 t t—0 t t—0 |1

C.

The rest of the proof is left as exercise. O

Theorem 40. Dy is dense in # and hy, h, € D(H) we have (Hhy, hy) =(hy, Hhy), so H is symmetric

Proof. If h€ # define h,= fOZU(s) hds we prove that h,€ Dy indeed

d he 1 i —ihx

ﬁzp(elhx_l)(e h _1)
then

[ xul(dx) < C[ ph(dx) <eo
and h,€ Dy.

. ¢ ¢ .
fe”x,uhf(dx) = <U( t)jo U(s;)hdsy, fo U(sz) hdsz> = j[o []J]Rel(t”””)xyh(dx)dsldz
and by Fubini we can exchange the integrals and obtain
itx, he itx 1 ihx -ihx
Jetuti(dn) = [ el (e 1) (e M- 1)ut(dx)

and by identification of Fourier transforms. We have ||h,/¢ - h|— 0 as { — 0, we have

2

1 ¢
e/ €= 2= Hﬂo (U(s)~1)hds

< sup [[(U(s)-1)hll=0(¢)
s€[0,¢]

by strong continuity. The symmetry is quite simple since

U(t)-1
it

t—0 it

(th,h2>=1im< hl,h2>=1im<h1,U(;.)_1h2>=<h1,Hh2>.
t—0 -

Remark 41. Is possible to prove that (H, Zy) is self-adjoint, i.e. H*=H. (given the natural
definition of the adjoint of a densely defined unbounded operator)

If hy, hy € Dy we define &(hy, hy) =(Hhy, hy). If h1 € Dy and | hllgz =1 then we define &(h, h) to
be the energy of the state h€ Z.

Recall that (%, 9/, Qy) is our quantum space and if h€ # gives the vector state »"(a) =(Qo(a)h,
h). So the energy is an extension of this formula for the unbounded operator H which formally
is the derivative of the time-evolution group U. We had Q;(a) =U(-t)Qy(a) U(t). If it is possible
to take the derivative wrt. to t then we obtain

9:01(a) = 7[H. Q:(a)]
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(this has to justified).

We have that (hy, hy) — &(hy, h2) is an Hermitian form (i.e. linear in the first and antilinear in
the second variable).

Theorem 42. U has positive energy iff &(h,h) =0 for all h€ Dp.
Proof. If U has positive energy, we saw that " is supported in R, and we have
&(h,h)= f xpu™Y(dx) = f xphY(dx) =

Assume now that & is non-negative definite and assume that U has not positive energy, there-

fore there exists h€ # such that " has some support on (~0,0). We can assume that supp(u") c
(-0, -c) for some ¢ >0 since we can consider the vector Xy (f)h with supp(f) c (-0, —c) and

dpXDh= fdu". So now taking h, = fO{]U(s) hds and
1
ph(dx) = —le™ - 1Pp(dx).
Let d > c such that u([-d,-c]) >0. Note that h,€ Dy and
- he — eltx _ < L i h
&(hehe) = [ ul(dx) = LRx 1Pt < [ e =1 dx)
and if ¢ is small enough this quantity is negative. O

Recall the definitions

Ful(t, h>=<U<t)h,h>=j itxhU (dx),

Fie(t,h) = (K(t)h, hy= IR+e‘txyh’K(dx).

Theorem 43. The function Fx is holomorphic when t €C and Re(t) >0 and it is continuous when
Re(t) 20. Moreover, we have that

Fy(s,h) =Fx(is, h) = li?qFK(is+ Vv, h).
y10

Proof. If Re(t1) >0 take e€C with |¢|]<Re(t;) then

IF(t;+¢, h)| - U]R e—t1xe—es’uh,K(dx)‘ < fR e—Re(n)xe—\eIsllh,K(dx) <00

and by monotone convergence the series
n
X
n -tx h,K
€ f e " —p™* (dx
Z' | R. 't (dx)
n
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is convergent and so F has a convergent power series expansion in the claimed domain and
continuity derives from the dominated convergence theorem. Moreover

lim Fy (is+y, h) = j eisX K (dx) = Fy (s, h)
ylo R,

when U is defined so that y»K =V, O

Remark 44. We can define the generator H of K similarly as we defined the generator H of
U. Namely Dy is defined as the set of vectors h€ # such that K(t)h is strongly differentiable
in zero and define

K(t)h-h

H' h=-lim
tl0 t

But if U and K are related so that Xy = Xx then H = H and @y =9y

Consider now # =L*(R",dx). o/ = Cp(R",C) and (Qy(a)h)(x) = a(x)h(x). Define

1

K(t)tht*hzw

fe“x‘y'z/(Z’)h(y)dy.

Theorem 45. (K(t)):0 is a strongy continuous, self-adjoint contraction semigroup.

Proof. Let #(h) = fweik"h(x)dx the Fourier transform. Recall Plancherel's theorem

Jh GO RG dx= e [ () () F ) (k)
and that F (ax b) = (Fa) (Fb). Moreover F (p;) (k) =exp(-t|k|*/2). Now

IK ()= g [ I (oo B) ()Pl = s [ exp (=11 (k) (k)P

sﬁfﬂzn'g(}l) (k)2dk = || hl|%

so K is a contraction. Moreover
_hi2, = 1 _ _ 2 2 2
IK(t)h— hilj2= (zﬂ)nf J(1-exp(-tlk®/2))*F (h)(k)|I*dk—0

as t— 0, so it is strongly continuous. Additionally it is self-adjoint since

(K (), ho) =ﬁfwexp(-t|k|2/z)29(hl)(k)s;r(hz)(k)dk: (K (t)h)
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and the semigroup property derives from

F(K(t)K(s)h)(k)=exp(-t|k/*/2)exp(-s|kl*/2)F (h) (k) =exp(-(t+s) |k*/2)F (h) (k) =F (K(t+
s)h) (k).

Take f€C®nL? for any p>1. Then in L*(R") we have

tim (<L) tim T ) (k) =R () (R = F A (B)
t}0 t to t

so H=-A and one can prove that @y = H?. Moreover &(h, h) = [p.IVh*dx>0. So the semigroup
has positive energy (it was already clear from the fact that it is a contraction).

So now

v 1l2
elx yl°/2t

FK(t, h) = ]RZ"(Zﬂ—lwh(x) h(y)dxdy

and for h€ [?n L' we have the explicit representation

—x—vy|? i
e lx=yl*/2(is)

(27is)"/?

Fu(s, h) = Fx(is, h) =th h(x)h(y)dxdy

where (i)"2=¢™"* given the kind of limit we had to perform. We conclude therefore that for
hel*nl!

e—lx—y\z/z(is)
U )= [ ey hOID

This is the model of the free particle in R”, i.e. a particle not interacting with any external
system. In this case (U(t))er is a unitary group on L?(R") and the expectation of any observ-
able Q;(a) on the state w" evolves according to the equation

f'(a)=(Qu(a)h, by =(U(-t) Qo(a) U(t)h, hy = (Qo(a) U ()b, U(t) hy.

8 Wightman and Schwinger functions

We work now with the data (#, &, Qp, U(t)) where (U(t));is a positive energy strongly con-
tinuous unitary group, or equivalently (K(t)); a self-adjoint, strongly continuous, contraction
semigroup. We saw that the given of U is equivalent to the given of K.

Definition 46. We say that ho€ Z is a ground state for U iff U(t)ho= ho.

Theorem 47. hy is a ground state for U iff one of the following equivalent conditions hold:

ph(dx) = §o(dx)
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2. K(t)ho=ho
3. h€ Dy and Hhy=0

4, hoE@H and %(ho, ho) =0
Proof. Exercise. o

Remark 48. The name ground state comes from the fact that hy is the state of minimal energy
of the system (i.e. the zero energy, in our normalization).

Definition 49. hy a cyclic ground state if

span{U (1) Qo(a1) U(t2) Qo(az) - -ho}

is dense in .

A cyclic ground state allows to reconstruct all the Hilbert space from expectations of time evo-
lutions of observables.

Indeed any »"(Q;(a)) can then be approximated by linear combinations of expressions of the
form

(Qn(ar)--QOr,(an) ho, ho)

for suitable t4, ..., t, since we used the fact that A is invariant under U.

Assume now that we are given a cyclic ground state.

Definition 50. Wightman functions are defined as

Wi a(t,..., t) =(Or(a1) - Qr,(an) ho, ho)
where Ar=(ay,...,ax) ek
Lemma 51. Wy p, is invariant wrt. to time translations, namely

Wk,Ak(tl,-n,tk) =Wk,Ak(t1+3,---,tk+5)

for all s€R.
Proof. By invariance of the ground state we have
Wia(f,..., 1) =(Qn(a1)- - Qr,(an) ho, ho)
=(Qn(a1)-+-Q,(an) U(s)ho, U(s)ho)
=(U(=5)Qn(an)U(s)U(=s)---U(=5)Q1,(an) U(s) ho, ho)
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and since U(-s)Qy,(a)U(s) = Qy+s(a) we have the result. O
We observe also that we can define the (reduced) function

Wi (&seos Ek-1) = Wia, (5 £+ &, b+ Ek-1) =(Qo(a1) U (1) Qo(az) U(&2) - - - Qo(ax) ho, ho)

for &,..., &, €R. We have the property that

Wi ar(ts - t6) = Wiea (2= b, .., te— teet).

Definition 52. We consider a set of functions Wy,.(-): &/* x RK"1 — C. We say that Wy a, satisfy
Axiom W1 (compatibility conditions) if the following properties hold

1. Ar=(ay,...,ar) €% and (ty,...,te_1) ER*Y, we have

Wk,Ak(tl’ e ti*ls 0; ti+l’ e tk—l) = Wk—],Ak,l(tl’ e ti*ls ti+la ey tk—l)

A k-1
where Ag_1=(ay,...ai-1,a;Ai+1,Air2,-.., ) €L .

2. Ax_1=(ay,...,ax-1) €A* " and Ty_1=(t1,..., tr_1) ERF1, we have

Wi, (ar,....ai11ah.oapt) (o5 Bk) = Wk—l,Ak,l(tl, cootisg tici+ b b, ooy Ee1)
3. Ar=(ay,...,ar) €A* and Ty_1=(ty,..., tr_1) ER*' we have
Wi a(Te-1) = Wi oa (0(Te1))
where O(Ay) = (d@i, Gi-1,...,a;) and O(Ti_1) = (~tk_1, ~tk_2,...,~ts, —17).
Lemma 53. Reduced Wightman functions satisfy these compatibility conditions (i.e. Axiom W1).

Proof. Easy exercise. m

Let now introduce the Fréchet space &' (R¥) (locally convex topological vector space) such that
fe oS’(JRk) iff fe C°°(]Rk) and || flln,q = Supyerk|(1 +1x1)"™D%f (x)| < 00 where n=0 and a = (ay,..

ay) €N § with DY = LA ikk. We can consider the dual §'(R¥) = ($(R¥))", that is the space of

.

Bxfll axZ

linear functionals T€ § (le) — C such that there exists n, @ for which |T(f)|< Crllflln« Recall
also that the Fourier transform %: L'(R¥) — C°(RF) is defined by

FF(3)= [ (x)dx

and such that #: §(R¥) — & (R*) and the map is continuous wrt. to the topology & (R¥) and
invertible with

1

g_lf(J/) = (27T)k

LRke"ik'yf(x)dx.
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Then if T€ S8 (RF) we can define F(T)=T-F.

Definition 54. W (-) satisfy Axiom W2 (i.e. it is a Fourier transform of a distribution with
support in ]R’f"l) ifWk,Ak(tl,..., tk-1) is continuous in ty,..., ty-1 and Wk,Ak=37(Tk,Ak) for some
Tin, €S such that

k-1 k
Tea(fie: o fi)l< Ce| [ Wfd=@o] | larla- )
t=1 =1

What means that T has support on R¥? This means that if €S8 (R¥) and supp(f) cRF-1\(R,)*!
then T(f)=0.
Remark 55. The equation (9) is equivalent to

k-1 k
o Wt tie) @100 g ety --dtir| < O 197 (@0 I ] llarlor
=1 t=1

for g1,...,8k-1€ S(R). Indeed recall that F (T a,) = Wk,zAk and

F(Tea) (@)= (Wino® = [ Wea (o, te0) gl ) dty--diey
but F(Tr.a,) (g) = Tea(F1(g)) and calling F~!(g) = f and from this one can conclude.
Lemma 56. The Wightman functions satisfy Axiom W2.

Proof. Recall that from U we can construct homomorphisms Xy: Cp(R,C) — B(¥) such that
Xy(e™)=U(t) and which is strongly continuous with respect to pointwise sequential conver-
gence in bounded sets. So for any g€ §'(R) we can define Uy = [ g(t)U(t)dt = Xy (Fg). Indeed

Xu(Fg) i, ho) = [ Fg(xpp(dx) = [ [ g(r)edyuht(dx) = [ g(t) [ e ptrha(dx)de

=[g(t)(U )by, oyt

Now

IWk,Ak(tl’ s tgi(t) o - gk(t) = (Qo(a)U(t)Qo(az)U(tz) - - - Qo(ax)ho,
ho)gi(t1)- - -gk-1(tk-1)dt1---dtx

=(Qo(a1)U(g1)Qo(a2) U(t2)--U(gk-1) Qo(ax) ho, ho)
=(Qo(a1) Xu(F(g1)) Qo(az) U(tz)- - Xu(F (gk-1)) Qo(ak) ho, ho)
which can be bounded by

1Qo(an)ll- - 1Qo(ar) NXu (F (g - I1Xu (F (gk-1))l
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which then gives readily the result using the fact that U has positive energy so

IXu (A< fll=r,)-

Let us consider now our last axiom. Recall that we defined 0(Ay) = (@}, @i_1,..., 1) and O(Tj_1) =
(_tk—h _tk—27 cees _t27 _tl)'

For Ag,=(ay,...,ak,) and Ay, =(d,...,dk,) then we let

Ay Ay, = (ar,a,..., a5y, ..., dy,) € LRkl

Definition 57. The functions Wi..(-): % x R¥"1 — C satisfy Axiom W3 (Hilbert-space positivity)
if forany k€N and any ji,..., jx €N, any T,_1j= (t1,(n-1,j)s- - - tn-1,(n-1,j)) and An;€C and A, ;=
(ai,(nj)s--- An,(n,j)) €A™ where j< j, and n<k we have

jnl jng

k
Z Z Z Anl,hllnz,hz Wnl*"z*l,e(Anz,hz)Anl,hl(é(Tnz*Lhz)’ anl,hl) z0.

ni+ny=1 h1=1 hy=1

Example: if k=1 we have only

o J2 b J2
Z Z Ahlzhzm,(fhzahlz Z Z Ahlzh2<Q0(a*hz)Q0(ah1)h05 h0>
h1=1 h2=1 h1=1 h2=1

J1 J2
= Z AthO(ahl)hO’ Z AthO(ahz)hO 20.

h1:1 h2: 1
Another example gives

OSAZWZ,(@,aqal,az)(tl,—tl) =(Qo(a2) U(t1) Qo(aia1) U(~t1) Qo(az) ho, hoy=11Q0(a1) U(~t1) Qo(az) holl?

Lemma 58. Wightman functions satisfy Axiom W3.

Proof. Let
ko
H= Z Z Anl,thO(al,(nl,hl)) U( tl,(nrl,hﬂ) T U( tnfl,(nrl,hﬂ) QO(anl,(nl,hO ) hO
n=1 h1=1
and using (H, H) =0 and the definition of Wightman functions we get the claim. O

Summarizing, we have shown that the reduced Wightman functions (W a,)« statisty three
basic properties

a) W1 - compatibility condition (encodes the fact that Q, is a C*-representation and that U is
a unitary group)
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b) W2 — tempered distribution axiom (encodes the fact that U is strongly continuous with
positive energy)

c) W3 — Hilbert space positivity (encodes the fact that the scalar product is Hermitian and
positive)

The next set is to give the idea of the proof of equivalent properties S1, 52, S3 for the Schwinger
functions (which are like Wightman functions but with K in place of U) and then we prove that

if we are given functions W1, W2, W3 or 51,52, S3 then we can come back and obtain the data
of (#,Qo, U) or (#,Qo, K) of the Hilbert space, representations Qp, K or U.

Definition 59. Schwinger functions, kEIN and A= (ay,...,ak) edk t,..., tk-120 and let

Ska(tr, ... te-1) =(Qo(a1) K (t1) Qo(az)K(t2) - - - K (tr-1) Qo(ax) ho, ho).

Recall that O(Ay) = (a%,..., ;) and 0(Ti_1) = (~tk_1, ~tk_2,...,~t1). We introduce now also another
map on times as é(Tk—l) = (tk-1, tk-2,--., t1). We will need also the composition Ag- Ay = (ay,...,
aras,...ay).

Definition 60. We say that the set of functions (Si: /% x RK"1 — C); satisfy the axiom S1 (or
compatibility condition)

1. Sk,Ak(tl,---’ t,-_1,0, Fit1seees tk—l) =Sk71,[j\k(t1,..., Fic1 Lit1seens tk—l) where Ak= (al,...,aiai+1,...,ak) and

Sk,(al ,,,,, /lai+pbi ..... ak)(tb'"’tk—l) =/1'Sk,(a1 ,,,,, Ajyenny ak)(tla"‘a tk—l) +,usk,(a1 ..... b,‘ ,,,,, ak)(tla"'a tk—l)

2. Sk (ay,... a1 Ly oap) (B - tko1) = Sk-1, 5, (£ -5 Beo1)

3. Sk,Ak(Tk—l) =§k,9(Ak)(9A(Tk)) which is due to the fact that K(t)*=K(t).
Lemma 61. The Schwinger functions satisfy Axiom S1

Let T€S (RF1) supported in R¥"1 = (R,)*"1 ie. T(f)=T(f) when f=f onRf, ie. functions
which behave on R¥"! but arbitrarily elsewhere. For example s+ e™* belongs to S(R.) and

(S15ensSk-1) — e st~ le-15k-1
isin oS’(]RE*l), We define the Laplace transform £ (T) = G(t,...,tx-1) as

G(tla---9 tk—]) = T((Sl,...,Sk_l) —> e*t1$1-'-7tk,13k71)'
If fel

LF)(t)= [, ef (s)ds.
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Definition 62. Let (Si)x as before. We say that they satisfy Axiom S2 (or that they are Laplace
transform of a tempered distribution) if ATy a, such that Sya,= Z(Tia,) and for all gi,...,gr 1€

S(R,)

k-1 k-1
UJR" lSkAk(tb e tk-1)g(11) - k-1(Bk-1)dtr- - -dtjeq| < ||3ge||L°°(]R+)n llakller- (10)
t=1 t=1

Theorem 63. The inequality (10) implies that Sy, is the Laplace transform of a distribution.

Proof. For a proof see the book of B. Simon “The P(¢), Euclidean Quantum Field Theory”,
Chap. 2 Sect. 2.2. O

Lemma 64. The Schwinger functions, satisfy Axiom S2.

Proof. Similar to the analogous statement for Wightman functions. The essential step is to
observe that

JRk_ISk,Ak(tl, v te-1) g (1) - -1 (tk-1)d - - -dtgey

=(Qo(a1) Xk (Z£g1) - Xx(ZLgk-1) Qo(ax) ho, ho)

where Xk is the homomorphism generated by K as we introduced few lectures ago. O

Remark 65. We proved that Sx a, = Z(Tk a,), moreover Ty a, for k=2 is a measure (easy to
see) from the definition. For k> 2 is not a measure but a poly-measure (i.e. is a measure in each
components, but not jointly).

Remark 66. We have that the reduced Schwinger functions Si a, are holomorphic in {Re(t;) >0:
i=1,...,k}<C* and continuous in {Re(t;) =0:i=1,..., k}, moreover we have

Wi a(Sts- -5 Sk-1) = Sk (iS15- -5 ISk-1)
where the r.h.s is defined as the limit

Sk (ist,...,18k-1) = lim Skoa(Ar+isy, ..o, Ago1 +iSg-1).

Al ,,,,, /1k-1—’0+

This follows directly from the fact that Sy a, is the Laplace transform of a tempered distribution
supported on R,

Definition 67. Let (Si)x as before. They satisfy Axiom S3 (or reflection positivity) if for k€N,
jl,.. .,jkGIN and Tn—l,j= (tl,(n—l,j)s- cey tn—l,(n—l,j)) G]R:.l_l and An,]’GC (f’lS k Oanjn)

Jny  Jng

Z Z Z Any by Any, hz ny+n=1,0(Any,ny)-A nlhl(g(Tnz Lho)> Tng-1,,) 20

niy,na= 1h1 lhz
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This property derives from the fact that the Hilbert scalar product is Hermitian and positive
definite, that Qy is a representation and that K is self-adjoint (which is linked with the form of é).

Lemma 68. The Schwinger functions satisfy Axiom S3.

Now the important result, the reconstruction theorem.

Definition 69. We say that Sy.-: /¥ x R&"1 — C is linear in of (or satisfies Axiom S0) if for all
ai,...,ax€ S and ty, ... tp_1 €ER, if the map
a'_)gk,(al,...,ai_l,a,ai+1 ..... ak)(t17-'-;tk—1)
is linear in a€ .
Theorem 70. If Sy -: /¥ x RE"1 — C satisfy Axioms S0,51,52,S3 we have that there exists an

Hilbert space #, a representation Qo of & in B(H') and a self-adjoint, strongly continuous semi-
group (K(t)) 0 on Z and a vector hg€ # cyclic wrt. Qy, K and invariant, i.e. K(t)ho=hy (in

other words, hy is a ground state), such that S a,(T_1) are the Schwinger functions generated by
(Z, Q0. K, ho).

Remark 71. An analogous theorem holds for families (Wk,Ak)k satisfying W1,W2,W3, from
which one can construct data (7, Qo, (U (%)), ho) for which they are the Wightman functions.

Proof. Let & be the free algebra generated by the symbols Qy(a) and K(t) where a€ o/ and
t€R, equipped with the relations

i. 0p(a)Qo(b) = Qo(ab), AQo(a) + uQo(b) = Op(Aa+ ub) for a,b€ of and A, € C
ii. Qo(1) = 15
iii. K(1)K () =K(t;+1,)
iv. K(0)=1g

By definition & is the complex vector space generated by the words of the form
Qo(a)Qo(b)K(t)---Qo(c)K(t') which then is extended to an algebra by justapposition of the
linear generators and then we take the quotient wrt. the relations listed above. Introduce a
useful notation: if Ti_;=(t,..., tk-1) EIRIE‘1 and A= (ay,...,ak) € o*, we call Fr(Tk-1, Ag) =
Oo(a)K(ty)---K(tr-1)Oo(ar) € F. Using the previous relations we have that if A€ % then

k jn
A= Z Z /-‘.n’hIFn(Tn—l,hAﬂ—l,h)

n=1 h=1

for some Ay, p, Tyi- 1.5, Ap-1,5 (in general not in a unique way). On & we define the scalar product
(+,%) by

(Fi( Ti1, AR), Fre(Te -1, A%)) 5 = Sk -1.0(83)- 8 (O Te 1), Te1)
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and extend it by linearity to all & in the first component and by antilinearity in the second

component. This definition is well posed since (Sk.a,)x satisfy the compatibility conditions of
Axiom S1 and moreover by the last of the property in Axiom S1 we have that the form (x,
+)g is Hermitian and for Axiom S3 that this scalar product is positive definite. We define the
linear subspace /' ={A€F,(A, A)g =0} and we define #(,=F\AN as a vector space. On #, we
define ([ A],[B])s=(A, B)% which is well defined by the Cauchy-Schwartz inequality and where
[A] € #, denotes the class of A€ F. Moreover we let #Z the completion of #) with respect to
this non-degenerate scalar product (, )g (which is stricly positive on #5-{0}). We let ho=[1%].
We define K(t): # — # linear such that

K(t) (Fi( Te-1, Ax)) := K(OFp( Te1, Ag) = Frea1 (8, Tio1), (1eg, Ag)).

We have that K(#)K(s)=K(t+s) and K(0)=1. Moreover K; is symmetric wrt. the scalar pro-
duct on & (this is a consequence of Axiom S1), indeed

(K(t) (Fr(Tr-1,A%)), Fn( Th-1, An)) = Fre1((t, Ti-1), (1ezs Ak)), Fp( Tho1, Ap))

=Sk 1,008 (10 (O(Thor)s (£ Tee1)) = Sk he1,6((1 )k (O(E Tht), Tior)
=(Fir(Ti-1, Ar), K(t)Fp(Th-1, An))

and this extends by linearity to deduce the symmetry for K(t).

Next, we have that

(K(t)A,A)=(K(t/2)A,K(t/2)A)=0
moreover by repeated use of Cauchy-Schwartz we also have
(K(1)A, Ay < ((K(21) A, A)2((A, A2 < - < ((K(2M) A, A) V2 (A, A)) -1V

By Axiom S2 we know that (K(2"t)A, A) can be written as a sum of the form

(K(2"1)A,A) =Y Spa (2" b, troz)
kA

where everything does not depends on n and is uniformly bounded so the quantity (K(2"t)A, A)
is bounded uniformly in n. So

(K(1)A, A< CY2" (A, A~V
and taking n— oo we have

(K(t)A,Ay<(A,A)

so K(t) A/ <A and K(t) is well defined on H and we let K, (H)[A]=[K(t)A]. We have that for
allt=0

(Ko(t/2)[A], Ko(t/2)[A]) =(Ko(t)[AL [A]) <([AL[A])
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so Ky(t) is a contraction for all =0 so it extends to # as K. It is also self-adjoint and a (K(t) )0
is a semigroup. For the strong continuity of the family (K(t));>o we observe that the Schwinger
functions are continuous at least when considered as a functions of one of the time variables
(fixing all the other parameters). This is enough to prove that t — K(t) is weakly continuous
and then strong continuity follows since it is a contraction.

We define a linear map Q(a): F — % as Q(a)A= Qy(a)A. It is a representation of of on F (this
follows from the relations we imposed on the algebra &). We have that is a «-represenation:

<Q(G)A,B>g= <A9Q(a*)B>f¥

this can be proved by looking at the definition of the Hermitian form. Moreover on can show
Q(a) N <N so that we can define the operator on 7. Define the linear functional on &f: L, (a) =
(Q(a)A, A)z. It is positive since

La(bb") =(Q(bb") A, A)z = (Q(H)Q( b)A, Az = (Q( ') A, Q( b") A) - >0.

Therefore it is continuous and its norm on &* is given by Ls(1y) =(A,A)g so if A€/ then L=
0. From this, in particular we have 0=Ls(b"b) =(Q(b)A,Q(b)A)z so Q(b)A€ N for any be .
We can then pass to the quotient and define Qyo(a)[A]=[Q(a)A]. We have also |Qgo(a)[A]ll#<
llallzl[ A]llg so Qo is bounded and can be extended to # as a C*-homomorphism. We let hj=
[1#] and by S1 prove that it is invariant. O

Remark 72. We can replace S2 by S2' which is the property that Si.-: o/% x RE"! — C are
bounded and continuous in each of the time variables separately. This implies that all together
(50,51,52,S3) are equivalent to (50,51,52',S3). (Of course S2 is not equivalent to S2').

9 The Ornstein—Uhlenbeck process

We want now to construct Schwinger functions starting from a stochastic process.

We fix a probability space (Q, #,P) and consider a Gaussian process X:R x Q — R, that is such
that for all &i...., & €R we have that (X;,,..., Xy,) is a k-dimensional Gaussian. A Gaussian process
is characterised by its mean and covariance function. We let E[X;] =0 for all £€R and

1 g ,
Cov(Xe. Xp) =E[XeXe]=5pe "7, £ €R

If S‘k, -+ o/* x R¥"1 - C then we define extended functions g’k, -+ ol* x R¥ — C such that, if &<
EH<-- s welet

Ska(Erer &) =S (b2 E Es=Eny E—Er1)
and if &,..., & are general then we let
Skar(Ereeo &) = Sk adEo(r)y - Ex i)

where 0 €S, is the permutation such that &,(;)<-- < &;(x). Note that to a family & invariant under
translation and permutation of the time variables it associated a unique family S and viceversa.
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We choose now & = Cj(R) and let

Skan(Er. &) =E[a1(Xg) - ar(Xg)]

when & <--- < £ and the extended via permuations as above. This is a symmetric function which
is invariant under translation of the time variables, so we can identify the functions S and have

gk,Ak(tb ey tk—l) =E[al(X0)aZ(th)a3(Xt1+t2) o .ak(Xt1+~-~+tk_1)]
=E[a1(Xt)aZ(Xt+t1)a3(Xt+t1+tz> - ‘ak(Xt+t1+-~+tk,1)]

By construction S0,S1 are true and depend only on the linearity of expectations. For S1 we
observe that, for example,

S2.(ar.a2)(0) =E[a1(Xo) a2(Xo) | =E[ (a1a2) (Xo) ] = S1,(ayay)

and similarly for all the other conditions of S1. S2' is true, as easily seen from the definition
thanks to convergence in law to prove continuity observing that

(Koo 2 X X Koo 2 Xe) 7= (X X X X X)

if £ — ¢; since the covariance function is continuous in each variable and the characteristic
functions converge (by Lévy's theorem this implies convergence in law), and using

ISk, A, (1, -5 te—1) < llaqll- - - llagll,
for the boundedness.

Consider now:
Skeh-1,0(8n A O(Tho1), Teo1)

=E[a,(Xoty -t peemti) 0 2(Xor,) @1 (Xo) a1 (Xo) a2 (X)) -+~ ke (Xeyo vt y) ]
Consider also the transformation R of the process X defined as R(X),;=X_;. Then
Sk h-1.0083) A O(Tho1), Tee1) =E[ @3 (R(X) t4 -0, 1) @ 1(R(X)o) @1 (Xo) az(X) -+ ar(Xpys- oty 1)]
We denote F E%COYI(IR]R*,C) if F is a cylindric continuous function, i.e. if there exists k and &;,...,
&.€R, such that there exists unique continuous F:RF—s C such that F(X) =1:"(X§1, o Xg).
Theorem 73. (Sy)i satisfy Axiom S3 iff for any F€ ‘Eo”coyl(]RR*, C) we have that

E[F(X)F(RX)]>0.

Proof. Only a sketch. The implication < is the most important for us. Consider

k  Jjn
F(X)=> Y Anjarni(Xo)azni(Xe) . -Qnnh(Xey o stynr)-
n=1 h=1
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Note now that
k  Jngng

S AhAngheSnn- 108y n) Anpy (Ot it p) ) =E[F(X)F(R(X))]20.

ni,np=1 hl,h2:1
by hypothesis. The converse is also true because the functions of the form a;(x;)---ar(xy) are

dense in C%(IR¥) and this last algebra is dense in Cj(R¥) wrt. the pointwise convergence with
uniform bounds. O

Definition 74. A process X such that for all F€ CCOYI(JR[R*, C) we have E[F(X)F(R(X))]=0 it is
called a reflection positive process.

Lemma 75. Consider (Yy, Y2) taking values in R™ x R™ which are Gaussian random variables with
covariance

covn)=( 55 51 )

with B; j=Cov(Y; Y;). Then Y, given Y, is a Gaussian random variable and the conditional covari-
ance is given by

Cov(E(YilY2)) =Bi1 - B12B23 B

we are assuming that By, is non-singular.
Proof. Exercise. O

Lemma 76. If ny,...,n,20 and &,..., & 20 then Y= (X_y,,...,X_y,) is conditionally independent
of o= (X¢,...,Xg) given Xo, where X is the OU process above.

Proof. We have by simple inspection

C1 BlT DlT
Cov((Y1,Y2,Xo))=| B, ¢, Df
Dy D, 1/20
with
5 6—6771 e—eﬂh e_e‘fl e_eg"
20020 ) A\ T200 020
and
e 0ni+5)
(Bl)u_ 20
So
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with
Dy BY
(Dl,DZ)T(Dl,D2)=( Bll Dlz)
so finally one has

Cov<<Yl,Yz>|xo>=( CO g )
2

for some matrices Cj, C;. The important observation is that the antidiagonal is zero. (check as
exercise). From this form of the covariance this implies that Y;, ¥, are independent given X,. o

We are going now to prove

Theorem 77. The OU process X is reflection positive.

Proof. Take F¢€ ngl(]RIR*,C), S0 F=F(X§l, ..., Xg) with &,,..., & =0 as above. By the conditional
independence (annd the complex-linearity of the expectation) we have

E[F(X)F(R(X))] =E[E[F(X)F(R(X))IXo]]
=E[E[F(X)IX]E[F(R(X))1Xo]]
Now we observe that X is invariant wrt. reflections so
E[F(R(X))IXo] =E[F(R(X))IR(Xo)] =E[F(X)IX,]
and we obtain

E[F(X)FR(X))]=E[E[F(X)IX,]1?] =0. o

As a consequence we obtain that (:9;{) k satisfy axiorrls S0,51,52,S3 and by the reconstruction the-
orem there exists (7, Qo, (K(t))s0, o) such that ($k)k are the associated extended Schwinger
functions.

Now we are interested in explicitly describing these objects in this particular situation.

In this case we can prove that the free algebra & introduced in the reconstruction is isomorphic
to the algebra Fx < C?(R®*,C) by identifying

Qo(ao)K(t1) Qo(ar)- K (t-1) Qo(ax)

with
ao(Xo)a1(Xy) - ak(Xeys vt y)

and extending this map by linearity. We leave as an exercise to prove the isomorphism (as
algebras). Under this ispomorphis if F, G€ Fx then we also have that the Hermitian form ()&
can be represented probabilistically as

(F, G g =E[F(X)G(R(X))]
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which we know to be non-negative and Hermitian. Let Ax:={F € Fx|(F,F)%,=0}< %x

Remark 78. If F € Fx then there exists a version E[F|X,] which belongs to Fx, indeed the
conditional expectation can be written as E[F|Xy] = F(LrXp) for soem linear map Lr depending
on F

Lemma 79. We have

F-E[FIXp] € Mx

Proof. Observe that

E[(F-E[FIXo]) (F(R(X)) -E[FIX])]

=E[E[(F-E[FIXo]) (F(R(X)) - E[FIXo])IXo]]

=E[E[(F-E[FIXo)IXo][ (F(R(X)) -E[FIXo])IXo]] =0

since clearly E[(F -E[F|Xs])IXo] =0. O

So from an algebraic point of view we have that H = Fx\Ny is just Cp(R,C) where the map
Fx — H is just the conditional expectation F — E[F|Xj]. That H = Cy(R,C) is clear since
E[ao(Xo)IXo] =ao(Xo) so it is a surjective mapping. Moreover the scalar product can be written

-67%/2

(215 =ELF (X080 )= [ f (2802) g

He(dz)

and as a consequence F =L*(R,C, up) moreover (Qo(a) f)(z) =a(z) f(2). Recall now that K(¢)F=
K (t)A which under our isomorphism it is send to a translation of the time variable:

K(t)F(X)=F(X+.).
In particular K(¢) f(Xo) = f(X;) and we have
(K(2) f)(Xo) =E[K(2) f (X0)1Xo] =E[ f (X1)IXo]
This conditional expectation can be written explicitly since Cov (X, Xp) = (20)e~% and so
Xi=e "X+ (1-e72M) V2N,

where Ng~ .#(0,1/20) and it is independent of X, then
K(1)f(2) =E[f(X)|Xo=z] =E[f(e" "2+ (1-e7*)*Np)] = fmj(e_etﬂ (1-e72") 2y p(dy).

Obviously hy=1€L*(R,C, ug). From the explicit expression of (K(t))so one can check again
that it is a stronly continuous contraction semigroup. This is called the Ornstein—Uhlenbeck
semigroup.
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This is not what is done usually in quantum mechanics since the usual space there is taken to be
[*(R,A) where A is the Lebesgue measure, not 5. The map connecting the two representations
is

-02%/4

fe#— f(2)=f(2) Weif:LZ(JR,A)

Let's compute the generator H of K(#):

— + —20t 1/2
Hf (2) = tim KOLE TG iy [ [l A 1@ 4y

By Taylor expansion:

f (Z )Z+ (1 —291‘ 1/2 f (Z —9t )Z+ (1 _6—29t)1/2y)2+o(t3/2>

=lim | o - fo(dy)

and since pg has zero first moment we have

F (e -D)ze3f (2)(1- M) 2y)2+ 0172

=lim | ; po(dy)
. _ +1 s 20t " 3/2
:thn%f(Z)( Ot)z+5f (Z)(lt e ") (1/20)+O(t )=—9f(z)+%f”(z)

so on % we have
Hf (2)=6f (2) -4 f ()

and the same operator on F has the form
~ ~ 1 -
Af(2)=-022f(2) - A f (2)

and this is usually called the Schrédinger representation of the harmonic oscillator, indeed note
that

2
=1P2+ QZ%

which if interpreted classically is the Hamiltonian of the harmonic oscillator.

Therefore we have proven that the quantum mechanical harmonic oscillator is related via the
reconstruction theorem with the Ornstein—-Uhlenbeck process.

10 Euclidean processes
In this section we take a state space M and a stochastic process (X;);er taking values in M and

take o/ a subset of the continuous functions on M large enough (so that o characterise the
measures on M) and we define the Schwinger functions as before, i.e. as

Skai(&--5Ek) =E[a1(Xg) - ar(Xg) ]
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and we will show that the properties

$0. Linearity in a€ &/

$1. Compatibility conditions

$2. Laplace transform of a positively supported distribution
$2'. Boundedness and continuity in ¢

$3. Reflection positivity.

become suitable probabilistic properties of (X;);cr. We are then going to characterise some
classes of processes which have these properties (and therefore which give rise to quantum
mechanical dynamics).

Why it is simpler to use this strategy (to construct QM models)? Essentially because proba-
bilistic tools are usually easier to use/more powerful than functional analityc tools in Hilbert
spaces. So the probabilistic model should be considered a special and versatile representation of
a quantum system.

We consider now & c Cj(M) where M is topological space.

We introduce now Axiom N (Nelson positivity).

,,,,,

Remark 81. In particular, if a;,...,ax=0 in & i.e. a;=b;b; then

Sk (ay....a) (ts oo s teo1) = ka|b1(x1>"‘bk(xk)|2ﬂt1 ..... t_, (dxy- - -dxg) 20,
This justify the name of positivity.

On M we need to assume also that

(*). %k (the linear combination of functions of the form a;(x;)---ax(xx)) generates Cp(MF; C)
with respect to the topology of pointwise convergence with uniform bounds.

For example, this holds, if M=R™ and & is the space of continuous functions vanishing at co on
M3

Theorem 82. (Sk)k satisfy Axioms (N, S1, S2, S3) is equivalent to the existence of a stochastic
process X:Q x R— M such that

1.
Skal&n-n &) =Elai(Xy) - ar(Xg) ]

2. (Xepoon Xeyo o, X)) = (X, Xy, Xg) in law as &— E€R.

3. For any s€R we have that (Xs.t):er has the same law of X, i.e. the law of X is invariant under
translation
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4. Recall that R(X);=X_; and that F€ nyl(]RR*;C) with F(X) =1:"(X§1,...,X§k), then we have that
E[F(X)F(R(X))]>0,
i.e. the process X is reflection positive.

Proof. The direction < is the same in the case M =R and X the OU process, we did in the last
lectures. The reverse direction = goes as follows. If there exists a process satisfying condition
1 using the technical hypothesis (+) we can prove 2,3,4. Indeed if & satisfies Axiom S0,51,52,53
the process X satisfies 4 for F=3" Anaim(x1)---arm(xx) but by («) the functions of this form
are dense in CCOYI(M]R*, C) with respect to the pointwise convergence with uniform bounds so
4 follows from dominated convergence theorem. For 2 we do the the case involving only one
function:

CS)I,(al)(‘fl) ZE[al(Xfl)]

but 52" implies limg, , ¢S, (a,) (€1) = $1,(ay) (€) =E[a1(X¢) ] but they are dense in Cy(M,C) and one
can argument the convergence in law. For 3 one uses the fact that the function are invariant
under translations and («). It remains now to prove 1, i.e. the existence of such a process. By N
we have that

Sk.(ay,.... ak)(tb'-"tk—l)=kaa1(yl)"'ak(Yk)ﬂt1 ..... te (dyre - -dyi)

for some Radon probability measure y;, ... 4 ,. We consider the process (X;); with marginals
given by piy, .. The law of X is unique (if exists) because of (»). By Axiom S1 (compatibility
conditions), in particular the fact that Sk (a,,....a; 1, 1,001, ar) (E10s €k) = Sk-1,(ar,....aivais, ... ar) (§1,...,
g/i, ..., &) and this implies that (u7,)7, are a compatible family of finite dimensional marginals,
and by Kolmogorov's extension theorem there exists a probability measure P on Q= M® witth
the product o-algebra and with marginals given by yi, .. 5. So we can take on Q the process X:
MR x R— M given by X(w)(t) = o(t). O

The most difficult of the conditions is the reflection positivity. There is no “easy” way to check
for it, however is a quite robust property which pass easily to the limit. In this second property
it lies its usefulness.

Situations in which one can check easily for reflection positivity are two. The first is when
dealing with Gaussian processes, then second in when dealing with Markov processes.

We focus today on the Gaussian case. Let M=R™ and & = Cj(M;C) and X; a Gaussian process
taking values in R™ with mean zero. For  €ER™ we can define a- X; =) a;X;. A Gaussian process
is uniquely characterised by its covariance function

ri(t,s) =E[XiX!].

If X satisfies condition 3 then we have that r’(¢,s) is only a function of t-s,i.e. r¥(t,s)=rY(t-
s). The continuity in distribution is equivalent to require that ¢ — r*/(¢) is continuous. This can
be verified using the characteristic function (exercise). What about reflection positivity?

Theorem 83. If X is a reflection positive process then for all ay,...,ar€C and &,...,Ec€ER we have
k

Z (i, r(&i+&)aprm=0. (11)

ij=1
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Proof. We prove in the scalar case m=1 and M =R, the general case follows similarly. We con-
sider f,€ 4 — x in R and such that |f(x)|<|x], e.g. fu(x)=(-n)v(xAn). Let Fy(x) =", aifn(Xs),
then

E[Fu(X)Fa(R(X))] Z @B fu(Xe) fn(Xg)] Z (ai r(Ei+ &) @)gn

i,j=1 i,j=1

by Lebesgue dominated convergence theorem. O

Theorem 84. (Wick's theorem) Let (Y,..., Yx) be a centred Gaussian vector, then for r even and
i1,..., iy chosen among {1,...,k} we have

Z [T E[VY]

}GNE(EN}

where {(i,j)} run over the perfect matches of {i1,...,i,}. Ifris odd then the expectation is zero.

Proof. Let X, ;=E[ Y}, Y;] and we have that the moment generating function is given by
]E[e"“Y] = e%w(’m>

then

E[Y, - ¥]=s——| E = [l ElMY.

oaj, -0t |, o {0} GHE{))}

Lemma 85. Let (Y,,..., Y;) be Gaussian with mean zero, then there are polynomials py(x) € C°(R,
R) indexed by N ={iy,...,i,} with r even or odd of the form

PN(X) =i xi, = ) enpu(X)

M:M<N

where M is of degree less then N. These polynomials are orthogonal wrt. the Gaussian measure, i.e.

E[pn(Y)pm(Y)]=
for deg(N) #deg(M).

Proof. If the covariance matrix ¥ is non-singular we apply a form Gram-Schmidt orthogonal-
isation. For ¥ general we can find a subset of the Gaussians whose covariance is non-singular
and express the rest of the random variables by linear combinations of this subset and use the
previous method. 0

The lemma on orthogonal polinomials holds actually for any random variable (for which poli-
nomials are integrable). In the Gaussian case we can prove that the polynomial depends only on
the variables we are considering. Let us give here the version of the lemma that we are going
to actually use.
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Lemma 86. Let (Y3,...,Y) in R* be Gaussian random variables. Use N = {i1,..., iy} for multiindices.
There exists polynomials pn(Yi,,...,Y:,) such that

ON(YVigs---» Vi) = Viy - - Vi, + lower order polynomial.
and

E[pn(Yine.s Y, ) o (Yis ., ¥3)] =0

if r#r. Moreover introducing the notion of Wick product we have: the Wick product is : Y;,--- Y :
=pn(Yi,..., Y:) which is characterised by the properties

a
aY y/ er ]E[:Yil'”Yir:]zo'
Note that : Yi: =Y.
Proof. The proof is based on Wick's theorem. If Oy, Q; are two polynomials Q;(Y;,,...,Y;,) and
Q2 (Yj,,..., Y;,) then
a
E[Qi(Yi,..., ¥;) Q2(Y; Z E[Y, Y] [(aY Q1(Yi,.... Vi )) (a—&QZ(le---’ Y}QH

which can be proven by integration by parts on monomials and then extended by linearity. We
want to prove now that

il...

for r#¢. The proof is by induction on r + ¢, when r+¢=1 we have E[: Y;: | =E[ Y;] =0. Otherwise
we use the above formula to have

E[:Yil...yir::yj.l...yj.(:]zzE[Yipyjq]E[:yil...%]...nr;; YJ&"'%,"'YJ%]ZO
pq

using the induction hypothesis. O

Theorem 87. Assume that the covariance r satisfies

k
Z (i, r(ti+tj)aj)rm= 0. (12)

ij=1
for all a;€C and t;€R. Then X is a reflection positive process.

Proof. The first step is to prove that reflection positivity holds for polynomials and then
extended to arbitrary functions. Take a cylindrical polynomial Q(X) = Q(Xgl, ..., Xg,) for some
k=1 and &,..., & €R. This polynomial can be expanded in Wick products (since they span
the space of all polynomials). We consier the scalar case, the vector case just involve heavier
notation. We have

Q(Xgl,...,ng) Z’lil _____ i Xg, X,



,,,,,

with A;, . ;, €C. Note that if we let : X, -+ X :=f(X) then : X_g ---X_¢ : =f(R(X)) since the
covariance is invariant under reflections. Then

E[QX)QRON =Y Aiy..iy i B X X X g - X g0 ]

=Z Ail ,,,,, i,/lj1 ,,,,, e Z n”(fiq’fgj,,)

pairings (ig,jp)

where we use that if r=¢ we have

E[: Xg, X, Xg, g 1= ) E[XeXog B[ Xe, Wy - Xy X+ Xoy - X |
q.p

and proceeding with this we obtain the equality above. We have now to show that the above

expression is positive, we know that the matrix (r(&i, + &j,))p.q is positive definite and so the

. . d
above expression can be written as (vy, V) des(0) (Rkye where on the vector space o;_ eg( (R k)w
i=1

consider the scalar products where on RF we consider the product
Y aar(E+§)
i
while on (RF)®¢ we use the tesorization of this scalar product, i.e. for p;®---® p,€ (R¥)® we let

(P18 8ppp1®- - ®Py) = Z n (Dip D)

pairings ( igJp)

and finally we identify
V= (/11, e /1]{) & (/11,2,).133. . ) @€ @?ff(g)(]Rk)w

Then we deduce that (vy, v1) 505(0) (Rkyer > =0 since it is a positive definite scalar product on

(RF)
0 8 (Rk)* We conclude that ]E[Q(X)Q(JR(X))] >0.

Now we approximate exp(iaXz) by polynomials and then we can extend the positivity to convex
linear combinations of complex exponentials on R¥. But these are dense in Cj(R¥,C) and there-
fore we can extend the reflection positivity to all functions in CCOYI(JRR*, C). O

Theorem 88. A gaussian process X satisfies conditions (1,2,3,4) iff r is continuous, translation
invariant and such that eq. (12) holds. In the scalar case this holds iff r is completely monotone and
bounded and translation invariant.

Recall that complete monotonocity is exaclty the condition eq. (12) in the scalar case and this
implies that there exists a positive and bounded measure p on R, such that

r(t) = f ltlsy (ds).
Recall that

r(t) =2i9e‘9‘”
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is the covariance of the Ornstein-Uhlenbeck process. So the theorem says that the reflection
positive Gaussian processes are positive combinations of OU processes.

For example, if y is a sum of Dirac deltas in (6k), then one can obtain a Gaussian process with
covariance r taking the sum of independent OU processes with parameter 6.

Let us now give a look at reflection positivity for Markovian processes.

Definition 89. A process (X;)er is Markovian if F € nyl(M[t’m], C) then forall &,..., &<t

E[F(X)IXt. X, Xe ] =E[F(X)1X;]

almost surely.

Definition 90. The process X is said to be symmetric with respect to time reflections if R(X) has
the same law as X.

Lemma 91. If X is Markovian then F € Cey(M!"**),C) and G€ Coy(MT'),C) then F(X) and
G(X) are conditionally independent given X,.

Proof. Assuming that G(X) = G(Xgl, ..., Xg) with &,..., &<t we have
E[e X h001x, 1 =E[E[ X)X}, X, ..., X5 ]ePTX|X,]
ZE[E[eiaF(X)|Xt] eiﬂG(X)|Xt] — ]E[eiaF(X)|Xt]]E[eiﬁG(X)|Xt]
so this proves conditional independence. O

Theorem 92. Let X be a Markovian process symmetric with respect to time reflections, then it is
reflection positive.

Proof. Take Fe Ccyl(M]R*, C) then by the above lemma

E[F(X)F(R(X))]=E[E[F(X)F(R(X))IXo]] =E[E[F(R(X))IXo]E[F(X)Xo]]

=E[E[F(R(X))XoJE[F(X)Xo]]

=E[E[F(R(X))RXo] E[F(X)Xo]] =E[ [E[F(X)Xo]I*] >0,

where we used that the law is invariant under time reflection. o

The converse implication of the above lemma is also true. Note that the OU process has exactly
this property and therefore it means that the OU process is Markovian and since it is symmetric
wrt. time reflections we have another proof that that OU process is reflection positive.
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If we want to prove the other properties required for the reconstruction theorem we need that X
is continuous in distribution and that it is invariant (in law) under translations. These properties
can be obtained analysing the transition kernel of the Markov process.

Let us remark that X; as an M-valued random variable has a law v=Law(X;) which is indepen-
dent of t€R. Then we can build # = L*(v), with ho=1 and K(t) f € L*(v) is given explictly by

E[f(X0)IXo] = (K(t) f)(Xo)-

The proof is essentially the same we gave for the OU process. The key observation is that if
Fe Ccyl(M]Rt C) we have that

E[(F(X) -E[F(X)IX]) (F(R(X)) -E[F(R(X))IXo])]=0

by Markov property and symmetry under reflections. This allows to identify % = L?(v) and Q,
is given by multiplication : Qy(a) f = a(x) f(x).

Consider a Gaussian process with r(0) =1, then X is Markovian iff r(t+s)=r(t)r(s) (as matrices)
for t,s=0. More generally r(t,s)=r(t,u)r(u,s) for all ssust. So in particular, in the scalar
case the process is reflection positive iff it is an OU process.

To construct reflection positive processes which are Markovian but not Gaussian we can take

the solution (X;); of a stochastic differential equation of the form

Vp(Xt)
2p(Xt)

dXt: dt+dm,

where p€ C3(R™ R.,) and [ p(x)dx=1. And take Law(X, ..., Xz,) to be given by the solution
of the SDE starting at Xy with law pdx. One can check that this is a consistent assignment
of finite dimensional distributions giving a continuous, stationary (i.e. invariant in law under
translation), Markov process which is moreover invariant under time reflection. Therefore it
defines a reflection positive process to which the reconstruction theorem can be applied. In the
case where p is Gaussian, then X is the OU process. However if p is not Gaussian this proce-
dure gives a large class of reflection positive processes and therefore a large class of quantum
dynamics where the Hamiltonian operator H has the form

H=-A+V(x)

for some function V.

The course ends here.
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