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Prologue.
(or, what not to expect)

You will hear something about rough paths, however. . .
There will be very little rough paths (at least in the form you could
expect)
There will be no reference to probability (but stochastic analysis is
the main application)
Enjoy the open landscape
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k-Increments

Definition
A k-increment is a continuous function g : [0, T]k+1 → V such that
gt0···tk = 0 whenever ti = ti+1. Denote them Ck(V).

Example
g ∈ C0 is a function on [0, T]

Given f ∈ C1, set gts = ft − fs, then g ∈ C1.

Basic fact
g ∈ C1 is given by gts = ft − fs for some f ∈ C0 iff it satisfy

gts − gsu − gus = 0

A cocycle property.
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A cochain complex

Increments forms a cochain complex (C∗, δ) with coboundary map

δ : Ck → Ck+1 (δg)t1···tk =
k∑

i=1

(−1)igt1···̂ti···tk

C0
δ→ C1

δ→ C2
δ→ C3

δ→ · · ·

δδ = 0 and Kerδ|Ck+1 = Imδ|Ck so the complex is acyclic.
In particular, g ∈ C1 is a 1-cocycle (or closed 1-increment) if

δgtus = −gus + gts − gtu = 0.

Then there exists f ∈ C0 such that g = δf : closed 1-increments
are exact.
(cfr. de-Rham cohomology of Rn: closed differential forms are exact)
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Some (useful) notation. . .

Definition
For a ∈ Ck and b ∈ Cm we define the product ab ∈ Ck+m as

(ab)t1···tk+m+1 = at1···tk+1btk+1···tk+m+1

Notation
When x, f1, f2 ∈ C0 and smooth, we will mean(∫

ϕ(x)dx
)

ts
=

∫ t

s
ϕ(xr)dxr

and (∫
df1df2

)
ts

=

∫ t

s

(∫ u

s
drf1,r

)
duf2,u

as elements of C1.
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. . . and interesting relations

Easy to check:

δ

∫
df1 = 0 δ

∫
df1df2 =

∫
df1

∫
df2 = δf1δf2

for any smooth f1, f2 ∈ C0.
And more generally

δ

∫
df1 · · · dfn =

n−1∑
k=1

∫
df1 · · · dfk

∫
dfk+1 · · · dfn

Moral: δ splits interated integral into “simpler” objects (and Λ put
them together again...)
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Norms on Increments

Definition
For g ∈ C1,h ∈ C2 let

‖g‖µ = sup
t,s∈[0,T]

|gts|
|t − s|µ

‖h‖ρ,σ = inf sup
t,s,u∈[0,T]3

|htus|
|t − u|ρ|u− s|σ

and

‖h‖µ = inf

{∑
i

‖hi‖ρi,µ−ρi : h =
∑

i

hi, 0 < ρi < µ

}
Denote Cµ

k the subset of Ck with finite ‖ · ‖µ norm (k = 1, 2).
Let C1+

k = ∪µ>1Cµ
k – the small increments.
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The Λ map

Fact
We have BC1+

1 = C1+
1 ∩ Imδ = {0}: nontrivial small 1-increments

cannot be exact.

Theorem
There exists a unique bounded linear map Λ : BC1+

2 → C1+
1 such that

δΛg = g.

(BC1+
2 = C1+

2 ∩ Imδ)

If g ∈ C1 and δg ∈ C1+
2 , then

g = Λδg + δf
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Outline
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What an integral is made of?

Taylor formula∫ t

s
ϕ(xr)dxr = ϕ(xs)

∫ t

s
dxr +

∫ t

s

(∫ u

s
ϕ′(xr)dxr

)
dxu

with our “brand new” notation reads∫
ϕ(x)dx = ϕ(x)

∫
dx +

∫
ϕ′(x)dxdx

as elements of C1.
We look in more detail to the iterated integral by dissecting it:

δ

∫
ϕ′(x)dxdx =

∫
ϕ′(x)dx

∫
dx = δϕ(x)δx ∈ C2

3
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Young integration

Then ∫
ϕ(x)dx = ϕ(x)δx + Λ (δϕ(x)δx)

The integral on the l.h.s is equal to an expression which do not
need x to be differentiable.
Essentially x must be γ-Hölder with γ > 1/2 – Young integration

M. G. (Pisa) An excursions Ascona 2005 13 / 32



Go on. . .

Again ∫
ϕ(x)dx = ϕ(x)

∫
dx +

∫
ϕ′(x)dxdx

But now continue Taylor expansion one step further:∫
ϕ(x)dx = ϕ(x)

∫
dx + ϕ′(x)

∫
dxdx +

∫
ϕ′′(x)dxdxdx

The remainder is now a three-fold integral:

δ

∫
ϕ′′(x)dxdxdx =

∫
ϕ′′(x)dx︸ ︷︷ ︸
δϕ′(x)

∫
dxdx +

∫
ϕ′′(x)dxdx︸ ︷︷ ︸

δϕ(x)−ϕ′(x)δx

∫
dx
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Rough paths

Putting things together∫
ϕ(x)dx = (1− Λδ)

[
ϕ(x)δx + ϕ′(x)

∫
dxdx

]
(if the argument of Λ is small enough).

To make sense of the r.h.s we need a small
∫

dxdx such that

δ

∫
dxdx = δxδx

(which is a highly nontrivial non-linear relation).∫
dxdx is the “Levy area” of the rough path theory.
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Rougher and rougher.

This procedure can be iterated to recover the hierarchy of (Lyons’)
rough paths which are given by a sequence of iterated integrals of
the form ∫

dx,
∫

dxdx,
∫

dxdxdx, . . .

Watch out: to prove smallness of some terms we need geometric
rough paths, i.e. which satisfy relations like

[(δx)st]
2 = 2

(∫
dxdx

)
ts

.

(smooth integrals OK, Stratonovich OK, Itô NO! – but we do not
need it).
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Increments of convolutions

Let S(t) = e−λt, t ≥ 0 a (semi-)group of contractions on the real line.
Look at

gt =

∫ t

0
S(t − u)ϕ(xu)dxu

Then

(δg)ts = atsgs +

∫ t

s
S(t − u)ϕ(xu)dxu

with ats = S(t − s)− 1
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The perturbed complex

Idea
Introduce the “perturbed” coboundary δ̂ = (δ − a)

δ̂δ̂ = 0 using δa = aa

We have another acyclic cochain complex (C∗, δ̂)

C0
δ̂→ C1

δ̂→ C2
δ̂→ C3

δ̂→ · · ·

There exists a unique bounded operator Λ̂ : BC1+
2 → C1+

1 such that

δ̂Λ̂g = g.

A Young theory for convolution integrals
SPDEs driven by FBM (H > 1/2), joint work with A. Lejay and S. Tindel).
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A (bi-)linear equation

Let us play with the solution y of the (bi-)linear integral equation

yt = S(t − s)ys +

∫ t

s
S(t − u)dxuyu.

Expand the r.h.s. in a truncated series of iterated integrals:

yt = S(t − s)ys +

∫ t

s
S(t − u)dxuS(u− s)ys +

∫ t

s
S(t − u)dxu

∫ u

s
S(u− v)dxvyv

In our notation this reads:

δ̂y = y
∫

d̃x +

∫
d̂x(d̂x y) = y

∫
d̃x + y

∫
d̂xd̃x +

∫
d̂xd̂x(d̂x y)
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Convolution rough paths

Working a bit we get to

δ̂y = (1− Λ̂δ̂)

[
y
∫

d̃x + y
∫

d̂xd̃x
]

where we used the fact that δ̂
∫

d̂xd̃x =
∫

d̃x
∫

d̃x

This express the solution y as a function of the couple∫
d̃x

∫
d̂xd̃x

suitable notion of rough path for convolution equations.
Path-wise SPDEs driven by BM (in progress, with S. Tindel)
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Outline

1 Increments
Abstract integration
Exercise of deconstruction
Rough paths

2 Variations
Convolution integrals
Multiparameter integrals
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2d Integrals

With regular f , g : R2 → R define 2d integrals as∫∫ (x2,y2)

(x1,y1)
fdg :=

∫ x2

x1

dx
∫ y2

y1

dyf (x, y)∂1∂2g(x, y)

∂1 and ∂2 are the partial derivatives wrt. the first and the second
coordinate, respectively.
Another possibility, for a triple f , g, h∫∫ (x2,y2)

(x1,y1)
fd1gd2h :=

∫∫ (x2,y2)

(x1,y1)
f (x, y)∂1g(x, y)∂2h(x, y) dxdy
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2d exact increments

Then ∫∫ (x2,y2)

(x1,y1)
dg = g(x2, y2)− g(x1, y2)− g(x2, y1) + g(x1, y1)

=: (δg)(x1, y1, x2, y2)

which identify the natural “two-dimensional” increment δg of a
function g.
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The complex of 2d increments

In complete analogy with the 1-d case we have:
2-d cochains Ck,l which are k-increments in the first direction and l
increments in the second direction.
2-d coboundary map δ = δ1δ2 which is given by the successive
application of 1-d coboundaries in the two directions.
the complex

C0,0
δ→ C1,1

δ→ C2,2
δ→ C3,3

δ→ · · ·

which is not acyclic.
A 2-d Λ operator corresponding to Λ = Λ1Λ2.
As a first consequence we have a 2-d Young theory.

M. G. (Pisa) An excursions Ascona 2005 26 / 32



The complex of 2d increments

In complete analogy with the 1-d case we have:
2-d cochains Ck,l which are k-increments in the first direction and l
increments in the second direction.
2-d coboundary map δ = δ1δ2 which is given by the successive
application of 1-d coboundaries in the two directions.
the complex

C0,0
δ→ C1,1

δ→ C2,2
δ→ C3,3

δ→ · · ·

which is not acyclic.
A 2-d Λ operator corresponding to Λ = Λ1Λ2.
As a first consequence we have a 2-d Young theory.

M. G. (Pisa) An excursions Ascona 2005 26 / 32



The complex of 2d increments

In complete analogy with the 1-d case we have:
2-d cochains Ck,l which are k-increments in the first direction and l
increments in the second direction.
2-d coboundary map δ = δ1δ2 which is given by the successive
application of 1-d coboundaries in the two directions.
the complex

C0,0
δ→ C1,1

δ→ C2,2
δ→ C3,3

δ→ · · ·

which is not acyclic.
A 2-d Λ operator corresponding to Λ = Λ1Λ2.
As a first consequence we have a 2-d Young theory.

M. G. (Pisa) An excursions Ascona 2005 26 / 32



The complex of 2d increments

In complete analogy with the 1-d case we have:
2-d cochains Ck,l which are k-increments in the first direction and l
increments in the second direction.
2-d coboundary map δ = δ1δ2 which is given by the successive
application of 1-d coboundaries in the two directions.
the complex

C0,0
δ→ C1,1

δ→ C2,2
δ→ C3,3

δ→ · · ·

which is not acyclic.
A 2-d Λ operator corresponding to Λ = Λ1Λ2.
As a first consequence we have a 2-d Young theory.

M. G. (Pisa) An excursions Ascona 2005 26 / 32



The complex of 2d increments

In complete analogy with the 1-d case we have:
2-d cochains Ck,l which are k-increments in the first direction and l
increments in the second direction.
2-d coboundary map δ = δ1δ2 which is given by the successive
application of 1-d coboundaries in the two directions.
the complex

C0,0
δ→ C1,1

δ→ C2,2
δ→ C3,3

δ→ · · ·

which is not acyclic.
A 2-d Λ operator corresponding to Λ = Λ1Λ2.
As a first consequence we have a 2-d Young theory.

M. G. (Pisa) An excursions Ascona 2005 26 / 32



Expansion of 2d integrals

For a two-dimensional quantity we can write down the following
expansion∫∫ (x2,y2)

(x1,y1)

f (x, y)dg(x, y) = −f (x1, y1)(δg)(x1, y1, x2, y2)

+

∫ y2

y1

f (x1, y)d2[g(x2, y)− g(x1, y)] +

∫ x2

x1

f (x, y1)d1[g(x, y2)− g(x, y1)]

+

∫∫ (x2,y2)

(x1,y1)

[∫∫ (x,y)

(x1,y1)

df (u, v)

]
dg(x, y)

We can set up a convenient notation in which this equation reads∫∫
fdg = f

∫∫
dg︸ ︷︷ ︸

f δg

+

∫
1

f
∫

2
dg +

∫
2

f
∫

1
dg︸ ︷︷ ︸

boundary integrals

+

∫∫
dfdg︸ ︷︷ ︸

remainder
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2d dissection
Our preferred exercise:∫∫

ϕ(x)dx =− ϕ(x)
∫

dx +

∫
1
ϕ(x)

∫
2

dx +

∫
2
ϕ(x)

∫
1

dx

+

∫∫
dϕ(x)dx

M. G. (Pisa) An excursions Ascona 2005 28 / 32



2d dissection
Our preferred exercise:∫∫

ϕ(x)dx =− ϕ(x)
∫

dx +

∫
1
ϕ(x)

∫
2

dx +

∫
2
ϕ(x)

∫
1

dx

+

∫∫
ϕ′(x)dxdx +

∫∫
ϕ′′(x)(d1xd2x)dx

M. G. (Pisa) An excursions Ascona 2005 28 / 32



2d dissection
Our preferred exercise:∫∫

ϕ(x)dx =− ϕ(x)
∫

dx +

∫
1
ϕ(x)

∫
2

dx +

∫
2
ϕ(x)

∫
1

dx

− ϕ′(x)
∫

dxdx +

∫
1
ϕ′(x)

∫
2

dxdx

+

∫
2
ϕ′(x)

∫
1

dxdx +

∫∫
dϕ′(x)dxdx

− ϕ′′(x)
∫

(d1xd2x)dx +

∫
1
ϕ′′(x)

∫
2
(d1xd2x)dx

+

∫
2
ϕ′′(x)

∫
1
(d1xd2x)dx +

∫∫
dϕ′′(x)(d1xd2x)dx

M. G. (Pisa) An excursions Ascona 2005 28 / 32



Strategy to control the expansion

∫∫
ϕ′(x)dxdx =− ϕ′(x)

∫
dxdx +

∫
1
ϕ′(x)

∫
2

dxdx

+

∫
2
ϕ′(x)

∫
1

dxdx +

∫∫
dϕ′(x)dxdx

This expression seems complicated, however it shows that, in order to
control the l.h.s. we need two ingredients:

1 Being able to define essentially one-dimensional integrals like∫
1
ϕ(x)

∫
2

dx,
∫

1
ϕ′(x)

∫
2

dxdx,
∫

1
ϕ′′(x)

∫
2

d1xd2dx, . . .

2 Control the remainders given by the three-fold iterated integrals

R :=

∫∫
dϕ′(x)dxdx R̃ :=

∫∫
dϕ′′(x)d1xd2xdx.
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The boundary integrals (example)

∫
1
ϕ′(x)

∫
2

dxdx = ϕ′(x)
∫∫

dxdx − Λ1

[
δ1ϕ

′(x)
∫∫

dxdx + C1

]
with

C1 := ϕ′′(x)
∫

1
d1x

∫
2

dx
∫

1
dx − (Λ1 ⊗1 1)(A1 + B1)

A1 := δ1ϕ
′′(x)

∫
1

d1x
∫

2
dx

∫
1

dx

and
B1 :=

(
δ1ϕ

′′(x)− ϕ′′(x)δ1x
) ∫

1

∫
2

dx
∫

1
dx
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The 2d rough sheet

To define integrals over a Brownian-like sheet x we need at least the
following data:∫∫

dx,
∫∫

d1xd2x,
∫∫

dxdx,
∫∫

d1xd2xdx,

∫∫
(d1xd2x)(d1xd2x),

∫
1

d1x
∫

2
dx

∫
1

dx,

and some others. . .
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Summary

Lyons’ rough paths seems the tip of an iceberg.
Flexibility of the approach (many kinds of “rough paths” but same
structure)
Sometimes algebra is useful (and interesting).

Outlook
I Effective approach to path-wise SPDEs (more in S. Tindel talk).
I A lot of work to do to fully understand rough sheets.
I Any use of the higher degrees Ck≥2 in the cochain complex?
I Is more algebra lurking behind? (algebra homology, NCG).
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