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Prologue.

(or, what not to expect)

@ You will hear something about rough paths, however. . .

@ There will be very little rough paths (at least in the form you could
expect)

@ There will be no reference to probability (but stochastic analysis is
the main application)
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Prologue.

(or, what not to expect)

@ You will hear something about rough paths, however. . .

@ There will be very little rough paths (at least in the form you could
expect)

@ There will be no reference to probability (but stochastic analysis is
the main application)

@ Enjoy the open landscape
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Outline

Q Increments
@ Abstract integration
@ Exercise of deconstruction
@ Rough paths

e Variations
@ Convolution integrals
@ Multiparameter integrals
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k-Increments

Definition
A k-increment is a continuous function g : [0, T]**! — V such that
81, = 0 whenever t; = 1. Denote them Ci(V).
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A k-increment is a continuous function g : [0, T]**! — V such that
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Example
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@ Givenf € Cy, set gis =f; — f;, then g € C;. )
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A k-increment is a continuous function g : [0, T]**! — V such that
81, = 0 whenever t; = 1. Denote them Ci(V).

Example
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k-Increments

Definition
A k-increment is a continuous function g : [0, T]**! — V such that
81, = 0 whenever t; = 1. Denote them Ci(V).

Example
@ g € (yis a function on [0, T]
@ Givenf € Cy, set gis =f; — f;, then g € C;.

Basic fact
g € Cy is given by g, = f; — f; for some f € C, iff it satisfy

8ts — 8su — us = 0

A cocycle property.
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A cochain complex

@ Increments forms a cochain complex (C., §) with coboundary map

5 . Ck - Ck-l—l (5g tty — Z( 1 gt1-~~t,~--tk
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A cochain complex

@ Increments forms a cochain complex (C., §) with coboundary map

5 . Ck - Ck-l—l (5g tty — Z( 1 gt1-~~t,~--tk
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A cochain complex

@ Increments forms a cochain complex (C., §) with coboundary map

5 . Ck - Ck+1 (5g tty — Z( 1 gt1-~~t,~~-tk

4 1 4 4
Co—C—C—C3— -

96 = 0 and Keré|c,,, = Imd|c, so the complex is acyclic.
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A cochain complex

@ Increments forms a cochain complex (C., §) with coboundary map

5 . Ck - Ck+1 5g tty — Z( 1 gt1~~~t,~~-tk

Goabeded..
96 = 0 and Keré|c,,, = Imd|c, so the complex is acyclic.
@ In particular, g € C; is a 1-cocycle (or closed 1-increment) if

5gtus = —8us t+ 8ts — &u = 0.
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A cochain complex

@ Increments forms a cochain complex (C., §) with coboundary map

5 . Ck - Ck+1 5g tty — Z( 1 gtlmtl“-tk

w2adaded. .
96 = 0 and Keré|c,,, = Imd|c, so the complex is acyclic.
@ In particular, g € C; is a 1-cocycle (or closed 1-increment) if

5gtus = —8us t+ 8ts — &u = 0.

Then there exists f € Cy such that g = Jf: closed 1-increments
are exact.
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A cochain complex

@ Increments forms a cochain complex (C., §) with coboundary map

5 . Ck - Ck+1 5g tty — Z( 1 gtlmt,“-tk

ol ..
96 = 0 and Keré|c,,, = Imd|c, so the complex is acyclic.
@ In particular, g € C; is a 1-cocycle (or closed 1-increment) if

5gtus = —8us t+ 8ts — &u = 0.

Then there exists f € Cy such that g = Jf: closed 1-increments
are exact.

@ (cfr. de-Rham cohomology of R": closed differential forms are exact)
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Some (useful) notation. . .

Definition
For a € C; and b € C,, we define the product ab € Ci,, as

(ab)tl o tktmt1 = atl otk 1 btk+1 o tktmt1
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Some (useful) notation. . .

Definition
For a € C; and b € C,, we define the product ab € Ci,, as

(ab)tl lpm1 — Gty btk+1 “ljtmil

Notation
When x, 11,/ € Co and smooth, we will mean

([ otr) | ()

as elements of C;.
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Some (useful) notation. . .

Definition
For a € C; and b € C,, we define the product ab € Ci,, as

(ab)tl lpm1 — Gty btk+1 “ljtmil

Notation
When x,f1,/>» € Cy and smooth, we will mean

( / "O(x)dx)m: /s greay
Jue) - (o)

as elements of C;.

and
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..and interesting relations

@ Easy to check:

5 / dfi=0 b / dfidf, = / df / dfs = 8o

for any smooth f1, > € Cy.
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..and interesting relations

@ Easy to check:

5/%20 5/%%;/%/%;%%

for any smooth f1, > € Cy.
@ And more generally

6/%m%=§/%mm/mﬁm%
k=1
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..and interesting relations

@ Easy to check:

5/%=0 5/%%;/%/%;%%

for any smooth f1, > € Cy.
@ And more generally

6/%mm=§/%mm/mﬂm%
k=1

@ Moral: 4 splits interated integral into “simpler” objects
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..and interesting relations

@ Easy to check:

5/%=0 5/%%:/%/%:%%

for any smooth f1, > € Cy.
@ And more generally

5/%W%:§/%m%/%ﬂm%
k=1

@ Moral: § splits interated integral into “simpler” objects (and A put
them together again...)
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Norms on Increments

Definition
For g € Ci,h € C; let

|gts| : |hlus|
gl = sup [2llp,e =inf sup T——p 0
. t,s€[0,T] |t - Sl“ »e t,5,u€[0,T]3 |t - u|p|u - s|o‘

and
A, = mf{z Whillpomps b =3 1,0 < s < u}

Denote C}' the subset of C; with finite || - ||, norm (k = 1,2).
Let C;* = U,=1C}' — the small increments.
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The A map

Fact

We have BC;" = C{* nImd = {0}: nontrivial small 1-increments
cannot be exact.
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The A map

Fact

We have BC, ™ = C{* nImé = {0}: nontrivial small 1-increments
cannot be exact. |

Theorem
There exists a unique bounded linear map A : BC,™ — C|* such that

oNg = g.

(BCyt =cytnims)
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The A map

Fact

We have BC, ™ = C{* nImé = {0}: nontrivial small 1-increments
cannot be exact.

Theorem
There exists a unique bounded linear map A : BC,™ — C|* such that

oNg = g.

(BCyt =cytnims)

If g € C; and 6g € C;, then

g = Nog + of
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What an integral is made of?

Taylor formula

[ etos

s [ [ ([ o)
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What an integral is made of?

Taylor formula

/Sso o, /dxr+/ (/ xrdx,)dxu

with our “brand new” notation reads

/SD(X)dXZ so(x)/dx—l— /go’(x)dxdx

as elements of C;.
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What an integral is made of?

Taylor formula

/Sso o, /dxr+/ (/ xrdx,)dxu

with our “brand new” notation reads

/ (x)dx = ¢ x)/dx+/ x)dxdx

as elements of C;.
We look in more detail to the iterated integral

/ o' (x)dxdx
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What an integral is made of?

Taylor formula

/Sso o, /dxr+/ (/ xrdx,)dxu

with our “brand new” notation reads

/ (x)dx = ¢ x)/dx+/ x)dxdx

as elements of C;.
We look in more detail to the iterated integral by dissecting it:

) / X)dxdx
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What an integral is made of?

Taylor formula

/Sso o, /dxr+/ (/ xrdx,)dxu

with our “brand new” notation reads

/ (x)dx = ¢ x)/dx+/ x)dxdx

as elements of C;.
We look in more detail to the iterated integral by dissecting it:

6/ x)dxdx = /cp'(x)dx/dx = Sp(x)ox € C3
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Young integration

@ Then
/cp(x)dx = @(x)ox + A (0p(x)dx)

@ The integral on the |.h.s is equal to an expression which do not
need x to be differentiable.

@ Essentially x must be y-Hdélder with v > 1/2 — Young integration
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Goon...

Again
/ o(x)dx = ¢(x) / dx + / @ (x)dxdx

But now continue Taylor expansion one step further:
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Goon...

Again
/ o(x)dx = p(x) / dx + / o' (x)dxdx

But now continue Taylor expansion one step further:

/ o(x)dx = p(x) / dx + ¢/ (x) / dxdx + / ©" (x)dxdxdx
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Goon...

Again
/ o(x)dx = p(x) / dx + / @' (x)dxdx

But now continue Taylor expansion one step further:

/ o(x)dx = o(x) / dx + ¢'(x) / dxdx + / ©" (x)dxdxdx

The remainder is now a three-fold integral:

/ " (x)dxdxdx
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Goon...

Again
/ o(x)dx = p(x) / dx + / @' (x)dxdx

But now continue Taylor expansion one step further:

/ o(x)dx = o(x) / dx + ¢'(x) / dxdx + / ©" (x)dxdxdx

The remainder is now a three-fold integral:

0 / " (x)dxdxdx = / " (x)dx / dxdx + / " (x)dxdx / dx

3¢’ (x) dep(x)— ¢’ (x)0x
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Rough paths

Putting things together

/ o(x)dx = (1 — Ad) [go(x)&x + () / dxdx]

(if the argument of A is small enough).
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Rough paths

Putting things together

/ o(x)dx = (1 — Ad) [go(x)&x + () / dxdx]

(if the argument of A is small enough).
@ To make sense of the r.h.s we need a small [ dxdx such that

) / dxdx = 0xbx

(which is a highly nontrivial non-linear relation).
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Rough paths

Putting things together

/ o(x)dx = (1 — Ad) [go(x)&c + () / dxdx]

(if the argument of A is small enough).
@ To make sense of the r.h.s we need a small [ dxdx such that

) / dxdx = 0xbx

(which is a highly nontrivial non-linear relation).
@ [ dxdx is the “Levy area” of the rough path theory.
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Rougher and rougher.

@ This procedure can be iterated to recover the hierarchy of (Lyons’)
rough paths which are given by a sequence of iterated integrals of

the form
/ dx, / dxdx, / dxdxdx, . . .
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Rougher and rougher.

@ This procedure can be iterated to recover the hierarchy of (Lyons’)
rough paths which are given by a sequence of iterated integrals of

the form
/ dx, / dxdx, / dxdxdx, . . .

@ Watch out: to prove smallness of some terms we need geometric
rough paths, i.e. which satisfy relations like

K&%F:z(/ww);

(smooth integrals OK, Stratonovich OK, 1td6 NO! — but we do not
need it).
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e Variations

@ Convolution integrals
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Increments of convolutions

Let S(1) = e, t > 0 a (semi-)group of contractions on the real line.

Look at .
o= / St — u)p(ou)da
0
Then ,
(08)s = asgs + / S(t — u)plu)dn,

with a,; = S(r —s) — 1
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The perturbed complex
Idea

Introduce the “perturbed” coboundary § = (6 — a)
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The perturbed complex
Idea

Introduce the “perturbed” coboundary § = (6 — a)

@ 56 = 0 using da = aa
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The perturbed complex

Idea
Introduce the “perturbed” coboundary § = (6 — a) J

@ §6 =0 using da = aa
@ We have another acyclic cochain complex (C,, )

5 8 5 8
Co—C—C—C— -
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The perturbed complex

Idea
Introduce the “perturbed” coboundary § = (6 — a) J

@ §6 =0 using da = aa
@ We have another acyclic cochain complex (C,, )

Cooe S de ...
@ There exists a unique bounded operator A : BC)™ — ¢!+ such that

AN

oNg =g.
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The perturbed complex

Idea
Introduce the “perturbed” coboundary § = (6 — a) J

@ §6 =0 using da = aa
@ We have another acyclic cochain complex (C,, )

@ A Young theory for convolution integrals
SPDEs driven by FBM (H > 1/2), joint work with A. Lejay and S. Tindel).
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A (bi-)linear equation

Let us play with the solution y of the (bi-)linear integral equation

t
Y= S(t— s)ys + / S(t — u)dx,y.
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A (bi-)linear equation

Let us play with the solution y of the (bi-)linear integral equation

t
yo= St -9yt [ St
Expand the r.h.s. in a truncated series of iterated integrals:

t 1 u
v =8(t— s)ys + / S(t — u)dx,S(u — 5)ys —I—/ S(r— u)dxu/ S(u — v)dx,y,
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A (bi-)linear equation

Let us play with the solution y of the (bi-)linear integral equation

t
yo= St -9yt [ St
Expand the r.h.s. in a truncated series of iterated integrals:

t t u
v =8(t— s)ys + / S(t — u)dx,S(u — s)ys + / S(r— u)dxu/ S(u — v)dx,y,

In our notation this reads:

Sy:y/;/x—l-/ax(axy)
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A (bi-)linear equation

Let us play with the solution y of the (bi-)linear integral equation

t
yo= St -9yt [ St
Expand the r.h.s. in a truncated series of iterated integrals:

t t u
v =8(t— s)ys + / S(t — u)dx,S(u — s)ys + / S(r— u)dxu/ S(u — v)dx,y,

In our notation this reads:

Sy:y/;/x—l—/glx(axy) :y/glx—f—y/axglx—i—/axglx(glxy)
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Convolution rough paths

@ Working a bit we get to

by = (1 —Ad) [y/c?x—i—y/fix&x]

where we used the fact that § [ dxdx = [dx [ dx
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Convolution rough paths

@ Working a bit we get to

by = (1 —Ad) [y/&x—i—y/&x&x]

where we used the fact that § [ dxdx = [dx [ dx
@ This express the solution y as a function of the couple

/ i / il

suitable notion of rough path for convolution equations.
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Convolution rough paths

@ Working a bit we get to

by = (1 —Ad) [y/glx—i—y/zixglx]

where we used the fact that § [ dxdx = [dx [ dx
@ This express the solution y as a function of the couple

/ i / il

suitable notion of rough path for convolution equations.
@ Path-wise SPDEs driven by BM (in progress, with S. Tindel)
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e Variations

@ Multiparameter integrals
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2d Integrals

@ With regular f, g : R> — R define 2d integrals as

(x2,y2) X s
/ / fdg = / dx / dyf (x,¥) 91 Dag (%, y)
(xl,}’l) X1 Y1
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2d Integrals

@ With regular f, g : R> — R define 2d integrals as

(x2,52) X s
/ / fdg = / dx / dyf (x,¥) 91 Dag (%, y)
(x17y1) X1 Y1

@ 0; and 0, are the partial derivatives wrt. the first and the second
coordinate, respectively.
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2d Integrals

@ With regular f, g : R> — R define 2d integrals as

(x2,52) X s
/ / fdg = / dx / dyf (x,¥) 91 Dag (%, y)
(XIJI) X1 Y1

@ 0; and 0, are the partial derivatives wrt. the first and the second
coordinate, respectively.

@ Another possibility, for a triple f, g, h

(x2,32) (x2,52)
/ / fdgdah = / / F(x, ¥)018(x, ¥)0ah(x, y) dxdy

(x1,y1) X1,)1)
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2d exact increments

@ Then

(x2,y2)
/ /( dg = g(v2,y2) — g(x1,32) — g(v2, 1) + g(x1, 1)

X1,1)
=: (0g)(x1,y1,X2,y2)

which identify the natural “two-dimensional” increment ég of a
function g.
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The complex of 2d increments

In complete analogy with the 1-d case we have:

@ 2-d cochains C;; which are k-increments in the first direction and /
increments in the second direction.
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The complex of 2d increments

In complete analogy with the 1-d case we have:

@ 2-d cochains C;; which are k-increments in the first direction and /
increments in the second direction.

@ 2-d coboundary map 6 = 6,4, which is given by the successive
application of 1-d coboundaries in the two directions.
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The complex of 2d increments

In complete analogy with the 1-d case we have:

@ 2-d cochains C;; which are k-increments in the first direction and /
increments in the second direction.

@ 2-d coboundary map 6 = 6,4, which is given by the successive
application of 1-d coboundaries in the two directions.

@ the complex
5 5 s 5
Coo—Ci1—Crp—C33— -+

which is not acyclic.

M. G. (Pisa) An excursions Ascona 2005 26/32



The complex of 2d increments

In complete analogy with the 1-d case we have:

@ 2-d cochains C;; which are k-increments in the first direction and /
increments in the second direction.

@ 2-d coboundary map 6 = 6,4, which is given by the successive
application of 1-d coboundaries in the two directions.

@ the complex
5 5 s 5
Coo—Ci1—Crp—C33— -+

which is not acyclic.
@ A 2-d A operator corresponding to A = AjA;.
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The complex of 2d increments

In complete analogy with the 1-d case we have:

@ 2-d cochains C;; which are k-increments in the first direction and /
increments in the second direction.

@ 2-d coboundary map 6 = 6,4, which is given by the successive
application of 1-d coboundaries in the two directions.

@ the complex
Co,0 LR Cia XA Cop LA C33 LA
which is not acyclic.
@ A 2-d A operator corresponding to A = AjA;.
@ As a first consequence we have a 2-d Young theory.

M. G. (Pisa) An excursions Ascona 2005 26/32



Expansion of 2d integrals

For a two-dimensional quantity we can write down the following
expansion

(x2,2)
//( ) f(x,y)dg(x,y) = —=f(x1,y1)(08)(x1,¥1, %2, ¥2)
X101

4 ”f(xl,y)dz[g(xz,y) ~ g+ | " ey )dlg(xy2) — g(xy)]

(%2,y2) (x,y)
// I o) ey
X1,1) X1 y1)
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Expansion of 2d integrals

For a two-dimensional quantity we can write down the following
expansion

(Xz )z
/ / F(x,y)dg(x,y) = —f (x1,y1)(68) (x1,¥1,%2,2)

(x1,y1)
+ / F(x1,y)do[g(x2,y) — g(x1,¥)] + / S, y1)difg(x, y2) — g(x, y1)]
(%2,32) (x,y)
[ | dse
X1,)1) (x1,31)
We can set up a convenient notation in which this equation reads

o ffs [ s [

boundary integrals remalnder
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2d dissection

Our preferred exercise

J[ s

o [ e
//gp(xdxdx—i—//

d 1 xdzx
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2d dissection

Our preferred exercise:

// x)dx = — @(x /dx+/ /dx—i—/ /
—<p(x)/dxdx+/l "(x )‘/dedx
v / S0 /1 vy + / / 4! (x)dxdx
—«p;’(x) / (dlxdzx)dx—l—' /1 ¢ (x) /2 (dyxdox)dx
+ /2 ¢ (x) | /1 (dyxdax)dx + / / dep" (x)(dyxdx)dx




Strategy to control the expansion

// (x)dxdx = — ¢’ (x /dxdx—|— / /(/\(/\
+/ /cl\d\-l-//dgp )dixdx

This expression seems complicated, however it shows that, in order to
control the I.h.s. we need two ingredients:
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Strategy to control the expansion

// (x)dxdx = — ¢’ (x )/dxdx+/ "(x )/.d\d\
+/ /d\d\-l—//dap )dixdx

This expression seems complicated, however it shows that, in order to
control the I.h.s. we need two ingredients:

@ Being able to define essentially one-dimensional integrals like

/1 o(x) /2 dx, /1 A (%) /2 dvd, /1 (%) /2 dixdbds, ...

@ Control the remainders given by the three-fold iterated integrals

R = / / dg'(X)dxdx R = / / dy" (x)d xdyxdx.

M. G. (Pisa) An excursions Ascona 2005 29/32



The boundary integrals (example)

/1 2 () /2 dvdx = /(x) / / dvdd — A, [51<p'(x) / / dvdx + cl]

with
- go”(x)/dlx/dx/dx— (A @1 (A + B1)
1 2 1

A= 6190”(x)/1d1x/2dx/1dx
By = (619" (x) — ¢ (x)d1x) / / dx / dx

and
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The 2d rough sheet

To define integrals over a Brownian-like sheet x we need at least the
following data:

// dx, // dixdrx, //dxdx, //dlxdzxdx,
//(d1Xd2x)(d1xd2x), /ldlx/zdx/ldx,

and some others. ..
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Summary

@ Lyons’ rough paths seems the tip of an iceberg.

@ Flexibility of the approach (many kinds of “rough paths” but same
structure)

@ Sometimes algebra is useful (and interesting).

@ Outlook
» Effective approach to path-wise SPDEs (more in S. Tindel talk).
» A lot of work to do to fully understand rough sheets.
» Any use of the higher degrees C;>, in the cochain complex?
» Is more algebra lurking behind? (algebra homology, NCG).
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