Excursions on rough paths (Or, thoughts about the integration of irregular functions)

Massimiliano Gubinelli

Dipartimento di Matematica Applicata "U. Dini" Università di Pisa

Fifth Seminar on Stochastic Analysis, Random Fields and Applications, Ascona 2005

- You will hear something about rough paths, however...
- There will be very little rough paths (at least in the form you could expect)
- There will be no reference to probability (but stochastic analysis is the main application)
- Enjoy the open landscape

- You will hear something about rough paths, however...
- There will be very little rough paths (at least in the form you could expect)
- There will be no reference to probability (but stochastic analysis is the main application)
- Enjoy the open landscape

- You will hear something about rough paths, however...
- There will be very little rough paths (at least in the form you could expect)
- There will be no reference to probability (but stochastic analysis is the main application)
- Enjoy the open landscape

- You will hear something about rough paths, however...
- There will be very little rough paths (at least in the form you could expect)
- There will be no reference to probability (but stochastic analysis is the main application)
- Enjoy the open landscape

Outline

- Increments
 - Abstract integration
 - Exercise of deconstruction
 - Rough paths
- Variations
 - Convolution integrals
 - Multiparameter integrals

Outline

- Increments
 - Abstract integration
 - Exercise of deconstruction
 - Rough paths
- Variations
 - Convolution integrals
 - Multiparameter integrals

Definition

A k-increment is a continuous function $g:[0,T]^{k+1} \to V$ such that $g_{t_0 \cdots t_k} = 0$ whenever $t_i = t_{i+1}$. Denote them $\mathcal{C}_k(V)$.

Example

- $g \in C_0$ is a function on [0, T]
- Given $f \in C_1$, set $g_{ts} = f_t f_s$, then $g \in C_1$.

Basic fact

 $g \in \mathcal{C}_1$ is given by $g_{ts} = f_t - f_s$ for some $f \in \mathcal{C}_0$ iff it satisfy

$$g_{ts}-g_{su}-g_{us}=0$$

A cocycle property.

Definition

A k-increment is a continuous function $g:[0,T]^{k+1} \to V$ such that $g_{t_0 \cdots t_k} = 0$ whenever $t_i = t_{i+1}$. Denote them $\mathcal{C}_k(V)$.

Example

- $g \in C_0$ is a function on [0, T]
- Given $f \in \mathcal{C}_1$, set $g_{ts} = f_t f_s$, then $g \in \mathcal{C}_1$.

Basic fac

 $g \in C_1$ is given by $g_{ts} = f_t - f_s$ for some $f \in C_0$ iff it satisfy

$$g_{ts} - g_{su} - g_{us} = 0$$

A cocycle property.

Definition

A k-increment is a continuous function $g:[0,T]^{k+1} \to V$ such that $g_{t_0 \cdots t_k} = 0$ whenever $t_i = t_{i+1}$. Denote them $\mathcal{C}_k(V)$.

Example

- $g \in C_0$ is a function on [0, T]
- Given $f \in C_1$, set $g_{ts} = f_t f_s$, then $g \in C_1$.

Basic fact

 $g \in C_1$ is given by $g_{ts} = f_t - f_s$ for some $f \in C_0$ iff it satisfy

$$g_{ts} - g_{su} - g_{us} = 0$$

A cocycle property

Definition

A k-increment is a continuous function $g:[0,T]^{k+1} \to V$ such that $g_{t_0 \cdots t_k} = 0$ whenever $t_i = t_{i+1}$. Denote them $\mathcal{C}_k(V)$.

Example

- $g \in C_0$ is a function on [0, T]
- Given $f \in C_1$, set $g_{ts} = f_t f_s$, then $g \in C_1$.

Basic fact

 $g \in C_1$ is given by $g_{ts} = f_t - f_s$ for some $f \in C_0$ iff it satisfy

$$g_{ts} - g_{su} - g_{us} = 0$$

A cocycle property.

• Increments forms a cochain complex (C_*, δ) with coboundary map

$$\delta: \mathcal{C}_k \to \mathcal{C}_{k+1} \qquad (\delta g)_{t_1 \cdots t_k} = \sum_{i=1}^k (-1)^i g_{t_1 \cdots \hat{t}_i \cdots t_k}$$

$$C_0 \xrightarrow{\delta} C_1 \xrightarrow{\delta} C_2 \xrightarrow{\delta} C_3 \xrightarrow{\delta} \cdots$$

 $\delta \delta = 0$ and $\operatorname{Ker} \delta|_{\mathcal{C}_{k+1}} = \operatorname{Im} \delta|_{\mathcal{C}_k}$ so the complex is acyclic

• In particular, $g \in C_1$ is a 1-cocycle (or closed 1-increment) if

$$\delta g_{tus} = -g_{us} + g_{ts} - g_{tu} = 0.$$

Then there exists $f \in C_0$ such that $g = \delta f$: closed 1-increments are exact.

• (cfr. de-Rham cohomology of \mathbb{R}^n : closed differential forms are exact)

M. G. (Pisa) An excursions Ascona 2005 6 / 32

• Increments forms a cochain complex (C_*, δ) with coboundary map

$$\delta: \mathcal{C}_k \to \mathcal{C}_{k+1} \qquad (\delta g)_{t_1 \cdots t_k} = \sum_{i=1}^k (-1)^i g_{t_1 \cdots \hat{t}_i \cdots t_k}$$

 $\mathcal{C}_0 \stackrel{\delta}{ o} \mathcal{C}_1 \stackrel{\delta}{ o} \mathcal{C}_2 \stackrel{\delta}{ o} \mathcal{C}_3 \stackrel{\delta}{ o} \cdots$

 $\delta\delta=0$ and $\text{Ker}\delta|_{\mathcal{C}_{k+1}}=\text{Im}\delta|_{\mathcal{C}_k}$ so the complex is acyclic.

• In particular, $g \in \mathcal{C}_1$ is a 1-cocycle (or closed 1-increment) if

$$\delta g_{tus} = -g_{us} + g_{ts} - g_{tu} = 0.$$

Then there exists $f \in C_0$ such that $g = \delta f$: closed 1-increments are exact.

• (cfr. de-Rham cohomology of \mathbb{R}^n : closed differential forms are exact)

M. G. (Pisa) An excursions Ascona 2005 6/32

• Increments forms a cochain complex (C_*, δ) with coboundary map

$$\delta: \mathcal{C}_k \to \mathcal{C}_{k+1} \qquad (\delta g)_{t_1 \cdots t_k} = \sum_{i=1}^k (-1)^i g_{t_1 \cdots \hat{t}_i \cdots t_k}$$

 $\mathcal{C}_0 \xrightarrow{\delta} \mathcal{C}_1 \xrightarrow{\delta} \mathcal{C}_2 \xrightarrow{\delta} \mathcal{C}_3 \xrightarrow{\delta} \cdots$

 $\delta\delta=0$ and $\text{Ker}\delta|_{\mathcal{C}_{k+1}}=\text{Im}\delta|_{\mathcal{C}_k}$ so the complex is acyclic.

• In particular, $g \in \mathcal{C}_1$ is a 1-cocycle (or closed 1-increment) if

$$\delta g_{tus} = -g_{us} + g_{ts} - g_{tu} = 0.$$

Then there exists $f \in C_0$ such that $g = \delta f$: closed 1-increments are exact.

• (cfr. de-Rham cohomology of \mathbb{R}^n : closed differential forms are exact)

• Increments forms a cochain complex (C_*, δ) with coboundary map

$$\delta: \mathcal{C}_k \to \mathcal{C}_{k+1} \qquad (\delta g)_{t_1 \cdots t_k} = \sum_{i=1}^k (-1)^i g_{t_1 \cdots \hat{t}_i \cdots t_k}$$

 $\mathcal{C}_0 \stackrel{\delta}{ o} \mathcal{C}_1 \stackrel{\delta}{ o} \mathcal{C}_2 \stackrel{\delta}{ o} \mathcal{C}_3 \stackrel{\delta}{ o} \cdots$

 $\delta\delta=0$ and $\text{Ker}\delta|_{\mathcal{C}_{k+1}}=\text{Im}\delta|_{\mathcal{C}_k}$ so the complex is acyclic.

• In particular, $g \in C_1$ is a 1-cocycle (or closed 1-increment) if

$$\delta g_{tus} = -g_{us} + g_{ts} - g_{tu} = 0.$$

Then there exists $f \in C_0$ such that $g = \delta f$: closed 1-increments are exact.

• (cfr. de-Rham cohomology of \mathbb{R}^n : closed differential forms are exact)

• Increments forms a cochain complex (C_*, δ) with coboundary map

$$\delta: \mathcal{C}_k \to \mathcal{C}_{k+1} \qquad (\delta g)_{t_1 \cdots t_k} = \sum_{i=1}^k (-1)^i g_{t_1 \cdots \hat{t}_i \cdots t_k}$$

 $\mathcal{C}_0 \overset{\delta}{ o} \mathcal{C}_1 \overset{\delta}{ o} \mathcal{C}_2 \overset{\delta}{ o} \mathcal{C}_3 \overset{\delta}{ o} \cdots$

 $\delta\delta=0$ and $\text{Ker}\delta|_{\mathcal{C}_{k+1}}=\text{Im}\delta|_{\mathcal{C}_k}$ so the complex is acyclic.

• In particular, $g \in C_1$ is a 1-cocycle (or closed 1-increment) if

$$\delta g_{tus} = -g_{us} + g_{ts} - g_{tu} = 0.$$

Then there exists $f \in C_0$ such that $g = \delta f$: closed 1-increments are exact.

• (cfr. de-Rham cohomology of \mathbb{R}^n : closed differential forms are exact)

• Increments forms a cochain complex (C_*, δ) with coboundary map

$$\delta: \mathcal{C}_k \to \mathcal{C}_{k+1} \qquad (\delta g)_{t_1 \cdots t_k} = \sum_{i=1}^k (-1)^i g_{t_1 \cdots \hat{t_i} \cdots t_k}$$

 $\mathcal{C}_0 \overset{\delta}{
ightarrow} \mathcal{C}_1 \overset{\delta}{
ightarrow} \mathcal{C}_2 \overset{\delta}{
ightarrow} \mathcal{C}_3 \overset{\delta}{
ightarrow} \cdots$

 $\delta\delta=0$ and $\text{Ker}\delta|_{\mathcal{C}_{k+1}}=\text{Im}\delta|_{\mathcal{C}_k}$ so the complex is acyclic.

• In particular, $g \in C_1$ is a 1-cocycle (or closed 1-increment) if

$$\delta g_{tus} = -g_{us} + g_{ts} - g_{tu} = 0.$$

Then there exists $f \in C_0$ such that $g = \delta f$: closed 1-increments are exact.

• (cfr. de-Rham cohomology of \mathbb{R}^n : closed differential forms are exact)

6/32

Some (useful) notation...

Definition

For $a \in \mathcal{C}_k$ and $b \in \mathcal{C}_m$ we define the product $ab \in \mathcal{C}_{k+m}$ as

$$(ab)_{t_1\cdots t_{k+m+1}} = a_{t_1\cdots t_{k+1}}b_{t_{k+1}\cdots t_{k+m+1}}$$

Notation

When $x, f_1, f_2 \in \mathcal{C}_0$ and smooth, we will mean

$$\left(\int \varphi(x)dx\right)_{ts} = \int_{s}^{t} \varphi(x_{r})dx_{r}$$

and

$$\left(\int df_1 df_2\right)_{ts} = \int_s^t \left(\int_s^u d_t f_{1,r}\right) d_u f_{2,u}$$

as elements of C_1 .

M. G. (Pisa)

In excursions

Some (useful) notation...

Definition

For $a \in \mathcal{C}_k$ and $b \in \mathcal{C}_m$ we define the product $ab \in \mathcal{C}_{k+m}$ as

$$(ab)_{t_1\cdots t_{k+m+1}} = a_{t_1\cdots t_{k+1}}b_{t_{k+1}\cdots t_{k+m+1}}$$

Notation

When $x, f_1, f_2 \in \mathcal{C}_0$ and smooth, we will mean

$$\left(\int \varphi(x)dx\right)_{ts} = \int_{s}^{t} \varphi(x_r)dx_r$$

and

$$\left(\int df_1 df_2\right)_{ts} = \int_s^t \left(\int_s^u d_r f_{1,r}\right) d_u f_{2,u}$$

as elements of C_1 .

Ascona 2005

7/32

M. G. (Pisa) An excursions

Some (useful) notation...

Definition

For $a \in \mathcal{C}_k$ and $b \in \mathcal{C}_m$ we define the product $ab \in \mathcal{C}_{k+m}$ as

$$(ab)_{t_1\cdots t_{k+m+1}} = a_{t_1\cdots t_{k+1}}b_{t_{k+1}\cdots t_{k+m+1}}$$

Notation

When $x, f_1, f_2 \in \mathcal{C}_0$ and smooth, we will mean

$$\left(\int \varphi(x)dx\right)_{ts} = \int_{s}^{t} \varphi(x_r)dx_r$$

and

$$\left(\int df_1 df_2\right)_{ts} = \int_s^t \left(\int_s^u d_r f_{1,r}\right) d_u f_{2,u}$$

as elements of C_1 .

7/32

M. G. (Pisa) An excursions Ascona 2005

Easy to check:

$$\delta \int df_1 = 0$$
 $\delta \int df_1 df_2 = \int df_1 \int df_2 = \delta f_1 \delta f_2$

for any smooth $f_1, f_2 \in \mathcal{C}_0$.

And more generally

$$\delta \int df_1 \cdots df_n = \sum_{k=1}^{n-1} \int df_1 \cdots df_k \int df_{k+1} \cdots df_n$$

• Moral: δ splits interated integral into "simpler" objects (and Λ put them together again...)

M. G. (Pisa)

Easy to check:

$$\delta \int df_1 = 0$$
 $\delta \int df_1 df_2 = \int df_1 \int df_2 = \delta f_1 \delta f_2$

for any smooth $f_1, f_2 \in \mathcal{C}_0$.

And more generally

$$\delta \int df_1 \cdots df_n = \sum_{k=1}^{n-1} \int df_1 \cdots df_k \int df_{k+1} \cdots df_n$$

• Moral: δ splits interated integral into "simpler" objects (and Λ put them together again...)

M. G. (Pisa)

Easy to check:

$$\delta \int df_1 = 0$$
 $\delta \int df_1 df_2 = \int df_1 \int df_2 = \delta f_1 \delta f_2$

for any smooth $f_1, f_2 \in \mathcal{C}_0$.

And more generally

$$\delta \int df_1 \cdots df_n = \sum_{k=1}^{n-1} \int df_1 \cdots df_k \int df_{k+1} \cdots df_n$$

• Moral: δ splits interated integral into "simpler" objects (and Λ put them together again...)

Easy to check:

$$\delta \int df_1 = 0$$
 $\delta \int df_1 df_2 = \int df_1 \int df_2 = \delta f_1 \delta f_2$

for any smooth $f_1, f_2 \in \mathcal{C}_0$.

And more generally

$$\delta \int df_1 \cdots df_n = \sum_{k=1}^{n-1} \int df_1 \cdots df_k \int df_{k+1} \cdots df_n$$

• Moral: δ splits interated integral into "simpler" objects (and Λ put them together again...)

M. G. (Pisa)

Norms on Increments

Definition

For $g \in \mathcal{C}_1, h \in \mathcal{C}_2$ let

$$||g||_{\mu} = \sup_{t,s \in [0,T]} \frac{|g_{ts}|}{|t-s|^{\mu}} \qquad ||h||_{\rho,\sigma} = \inf \sup_{t,s,u \in [0,T]^3} \frac{|h_{tus}|}{|t-u|^{\rho}|u-s|^{\sigma}}$$

and

$$||h||_{\mu} = \inf \left\{ \sum_{i} ||h_{i}||_{\rho_{i}, \mu - \rho_{i}} : h = \sum_{i} h_{i}, 0 < \rho_{i} < \mu \right\}$$

Denote \mathcal{C}_k^μ the subset of \mathcal{C}_k with finite $\|\cdot\|_\mu$ norm (k=1,2). Let $\mathcal{C}_k^{1+}=\cup_{\mu>1}\mathcal{C}_k^\mu$ – the small increments.

The Λ map

Fact

We have $\mathcal{BC}_1^{1+} = \mathcal{C}_1^{1+} \cap \text{Im}\delta = \{0\}$: nontrivial small 1-increments cannot be exact.

Theorem

There exists a unique bounded linear map $\Lambda: \mathcal{BC}_2^{1+} \to \mathcal{C}_1^{1+}$ such that

$$\delta \Lambda g = g.$$

$$(\mathcal{BC}_2^{1+} = \mathcal{C}_2^{1+} \cap \mathit{Im}\delta)$$

If $g \in \mathcal{C}_1$ and $\delta g \in \mathcal{C}_2^{1+}$, ther

$$g = \Lambda \delta g + \delta f$$

M. G. (Pisa)

.n excursio

The Λ map

Fact

We have $\mathcal{BC}_1^{1+} = \mathcal{C}_1^{1+} \cap \text{Im}\delta = \{0\}$: nontrivial small 1-increments cannot be exact.

Theorem

There exists a unique bounded linear map $\Lambda:\mathcal{BC}_2^{1+}\to\mathcal{C}_1^{1+}$ such that

$$\delta \Lambda g = g$$
.

$$(\mathcal{B}\mathcal{C}_2^{1+}=\mathcal{C}_2^{1+}\cap \mathit{Im}\delta)$$

If $g \in \mathcal{C}_1$ and $\delta g \in \mathcal{C}_2^{1+}$, ther

$$g = \Lambda \delta g + \delta f$$

M. G. (Pisa)

in excursions

The Λ map

Fact

We have $\mathcal{BC}_1^{1+} = \mathcal{C}_1^{1+} \cap \text{Im}\delta = \{0\}$: nontrivial small 1-increments cannot be exact.

Theorem

There exists a unique bounded linear map $\Lambda:\mathcal{BC}_2^{1+}\to\mathcal{C}_1^{1+}$ such that

$$\delta \Lambda g = g$$
.

$$(\mathcal{B}\mathcal{C}_2^{1+}=\mathcal{C}_2^{1+}\cap \mathit{Im}\delta)$$

If $g \in \mathcal{C}_1$ and $\delta g \in \mathcal{C}_2^{1+}$, then

$$g = \Lambda \delta g + \delta f$$

M. G. (Pisa)

n excursions

Outline

- Increments
 - Abstract integration
 - Exercise of deconstruction
 - Rough paths
- Variations
 - Convolution integrals
 - Multiparameter integrals

Taylor formula

$$\int_{s}^{t} \varphi(x_r) dx_r = \varphi(x_s) \int_{s}^{t} dx_r + \int_{s}^{t} \left(\int_{s}^{u} \varphi'(x_r) dx_r \right) dx_u$$

with our "brand new" notation reads

$$\int \varphi(x)dx = \varphi(x) \int dx + \int \varphi'(x)dxdx$$

as elements of C_1 .

We look in more detail to the iterated integral by dissecting it:

$$\delta \int \varphi'(x)dxdx = \int \varphi'(x)dx \int dx = \delta \varphi(x)\delta x \in C_3^2$$

M. G. (Pisa)

An excursions

Taylor formula

$$\int_{s}^{t} \varphi(x_r) dx_r = \varphi(x_s) \int_{s}^{t} dx_r + \int_{s}^{t} \left(\int_{s}^{u} \varphi'(x_r) dx_r \right) dx_u$$

with our "brand new" notation reads

$$\int \varphi(x)dx = \varphi(x) \int dx + \int \varphi'(x)dxdx$$

as elements of C_1 .

We look in more detail to the iterated integral by **dissecting** it:

$$\delta \int \varphi'(x)dxdx = \int \varphi'(x)dx \int dx = \delta \varphi(x)\delta x \in C_3^2$$

M. G. (Pisa)

In excursions

Taylor formula

$$\int_{s}^{t} \varphi(x_r) dx_r = \varphi(x_s) \int_{s}^{t} dx_r + \int_{s}^{t} \left(\int_{s}^{u} \varphi'(x_r) dx_r \right) dx_u$$

with our "brand new" notation reads

$$\int \varphi(x)dx = \varphi(x) \int dx + \int \varphi'(x)dxdx$$

as elements of C_1 .

We look in more detail to the iterated integral by dissecting it:

$$\delta \int \varphi'(x) dx dx = \int \varphi'(x) dx \int dx = \delta \varphi(x) \delta x \in \mathcal{C}_3^2$$

M. G. (Pisa)

in excursions

Taylor formula

$$\int_{s}^{t} \varphi(x_r) dx_r = \varphi(x_s) \int_{s}^{t} dx_r + \int_{s}^{t} \left(\int_{s}^{u} \varphi'(x_r) dx_r \right) dx_u$$

with our "brand new" notation reads

$$\int \varphi(x)dx = \varphi(x) \int dx + \int \varphi'(x)dxdx$$

as elements of C_1 .

We look in more detail to the iterated integral by dissecting it:

$$\delta \int \varphi'(x) dx dx = \int \varphi'(x) dx \int dx = \delta \varphi(x) \delta x \in \mathcal{C}_3^2$$

Taylor formula

$$\int_{s}^{t} \varphi(x_r) dx_r = \varphi(x_s) \int_{s}^{t} dx_r + \int_{s}^{t} \left(\int_{s}^{u} \varphi'(x_r) dx_r \right) dx_u$$

with our "brand new" notation reads

$$\int \varphi(x)dx = \varphi(x) \int dx + \int \varphi'(x)dxdx$$

as elements of C_1 .

We look in more detail to the iterated integral by dissecting it:

$$\delta \int \varphi'(x)dxdx = \int \varphi'(x)dx \int dx = \delta \varphi(x)\delta x \in \mathcal{C}_3^2$$

M. G. (Pisa)

in excursions

Young integration

Then

$$\int \varphi(x)dx = \varphi(x)\delta x + \Lambda \left(\delta \varphi(x)\delta x\right)$$

- The integral on the l.h.s is equal to an expression which do not need x to be differentiable.
- Essentially x must be γ -Hölder with $\gamma > 1/2$ Young integration

Go on...

Again

$$\int \varphi(x)dx = \varphi(x) \int dx + \int \varphi'(x)dxdx$$

But now continue Taylor expansion one step further:

$$\int \varphi(x)dx = \varphi(x) \int dx + \varphi'(x) \int dxdx + \int \varphi''(x)dxdxdx$$

The remainder is now a three-fold integral:

$$\delta \int \varphi''(x) dx dx dx = \underbrace{\int \varphi''(x) dx}_{\delta \varphi'(x)} \int dx dx + \underbrace{\int \varphi''(x) dx dx}_{\delta \varphi(x) - \varphi'(x) \delta x} \int dx$$

M. G. (Pisa)

n excursions

Go on...

Again

$$\int \varphi(x)dx = \varphi(x) \int dx + \int \varphi'(x)dxdx$$

But now continue Taylor expansion one step further:

$$\int \varphi(x)dx = \varphi(x) \int dx + \varphi'(x) \int dx dx + \int \varphi''(x)dx dx dx$$

The remainder is now a three-fold integral:

$$\delta \int \varphi''(x) dx dx dx = \underbrace{\int \varphi''(x) dx}_{\delta \varphi'(x)} \int dx dx + \underbrace{\int \varphi''(x) dx dx}_{\delta \varphi(x) - \varphi'(x) \delta x} \int dx$$

M. G. (Pisa)

n excursions

Go on...

Again

$$\int \varphi(x)dx = \varphi(x) \int dx + \int \varphi'(x)dxdx$$

But now continue Taylor expansion one step further:

$$\int \varphi(x)dx = \varphi(x) \int dx + \varphi'(x) \int dx dx + \int \varphi''(x)dx dx dx$$

The remainder is now a three-fold integral:

$$\delta \int \varphi''(x) dx dx dx = \underbrace{\int \varphi''(x) dx}_{\delta \varphi'(x)} \int dx dx + \underbrace{\int \varphi''(x) dx dx}_{\delta \varphi(x) - \varphi'(x) \delta x} \int dx$$

M. G. (Pisa)

An excursions

Go on...

Again

$$\int \varphi(x)dx = \varphi(x) \int dx + \int \varphi'(x)dxdx$$

But now continue Taylor expansion one step further:

$$\int \varphi(x)dx = \varphi(x) \int dx + \varphi'(x) \int dx dx + \int \varphi''(x)dx dx dx$$

The remainder is now a three-fold integral:

$$\delta \int \varphi''(x) dx dx dx = \underbrace{\int \varphi''(x) dx}_{\delta \varphi'(x)} \int dx dx + \underbrace{\int \varphi''(x) dx dx}_{\delta \varphi(x) - \varphi'(x) \delta x} \int dx$$

M. G. (Pisa)

in excursions

Outline

- Increments
 - Abstract integration
 - Exercise of deconstruction
 - Rough paths
- Variations
 - Convolution integrals
 - Multiparameter integrals

Rough paths

Putting things together

$$\int \varphi(x)dx = (1 - \Lambda \delta) \left[\varphi(x)\delta x + \varphi'(x) \int dx dx \right]$$

(if the argument of Λ is small enough).

• To make sense of the r.h.s we need a small $\int dxdx$ such that

$$\delta \int dx dx = \delta x \delta x$$

(which is a highly nontrivial non-linear relation).

• $\int dx dx$ is the "Levy area" of the rough path theory.

Rough paths

Putting things together

$$\int \varphi(x)dx = (1 - \Lambda \delta) \left[\varphi(x)\delta x + \varphi'(x) \int dx dx \right]$$

(if the argument of Λ is small enough).

• To make sense of the r.h.s we need a small $\int dxdx$ such that

$$\delta \int dx dx = \delta x \delta x$$

(which is a highly nontrivial non-linear relation).

• $\int dx dx$ is the "Levy area" of the rough path theory.

Rough paths

Putting things together

$$\int \varphi(x)dx = (1 - \Lambda \delta) \left[\varphi(x)\delta x + \varphi'(x) \int dx dx \right]$$

(if the argument of Λ is small enough).

• To make sense of the r.h.s we need a small $\int dxdx$ such that

$$\delta \int dx dx = \delta x \delta x$$

(which is a highly nontrivial non-linear relation).

• $\int dx dx$ is the "Levy area" of the rough path theory.

Rougher and rougher.

 This procedure can be iterated to recover the hierarchy of (Lyons') rough paths which are given by a sequence of iterated integrals of the form

$$\int dx, \quad \int dx dx, \quad \int dx dx dx, \dots$$

 Watch out: to prove smallness of some terms we need geometric rough paths, i.e. which satisfy relations like

$$[(\delta x)_{st}]^2 = 2\left(\int dx dx\right)_{ts}.$$

(smooth integrals OK, Stratonovich OK, Itô NO! – but we do not need it).

Rougher and rougher.

 This procedure can be iterated to recover the hierarchy of (Lyons') rough paths which are given by a sequence of iterated integrals of the form

$$\int dx, \quad \int dx dx, \quad \int dx dx dx, \dots$$

 Watch out: to prove smallness of some terms we need geometric rough paths, i.e. which satisfy relations like

$$[(\delta x)_{st}]^2 = 2\left(\int dx dx\right)_{ts}.$$

(smooth integrals OK, Stratonovich OK, Itô NO! – but we do not need it).

M. G. (Pisa)

Outline

- Increments
 - Abstract integration
 - Exercise of deconstruction
 - Rough paths
- Variations
 - Convolution integrals
 - Multiparameter integrals

Increments of convolutions

Let $S(t) = e^{-\lambda t}$, $t \ge 0$ a (semi-)group of contractions on the real line. Look at

$$g_t = \int_0^t S(t - u)\varphi(x_u)dx_u$$

Then

$$(\delta g)_{ts} = a_{ts}g_s + \int_s^t S(t-u)\varphi(x_u)dx_u$$

with $a_{ts} = S(t-s) - 1$

M. G. (Pisa)

Idea

Introduce the "perturbed" coboundary $\hat{\delta} = (\delta - a)$

- $\delta \hat{\delta} = 0$ using $\delta a = aa$
- We have another acyclic cochain complex $(C_*, \hat{\delta})$

$$C_0 \xrightarrow{\hat{\delta}} C_1 \xrightarrow{\hat{\delta}} C_2 \xrightarrow{\hat{\delta}} C_3 \xrightarrow{\hat{\delta}} \cdots$$

• There exists a unique bounded operator $\hat{\Lambda}:\mathcal{BC}_2^{1+}\to\mathcal{C}_1^{1+}$ such that

$$\hat{\delta}\hat{\Lambda}g=g.$$

A Young theory for convolution integrals
 SPDEs driven by FBM (H > 1/2), joint work with A. Lejay and S. Tindel).

M. G. (Pisa)

Idea

Introduce the "perturbed" coboundary $\hat{\delta} = (\delta - a)$

- $\hat{\delta}\hat{\delta} = 0$ using $\delta a = aa$
- We have another acyclic cochain complex $(\mathcal{C}_*, \hat{\delta})$

$$C_0 \xrightarrow{\hat{\delta}} C_1 \xrightarrow{\hat{\delta}} C_2 \xrightarrow{\hat{\delta}} C_3 \xrightarrow{\hat{\delta}} \cdots$$

• There exists a unique bounded operator $\hat{\Lambda}:\mathcal{BC}_2^{1+}\to\mathcal{C}_1^{1+}$ such that

$$\hat{\delta}\hat{\Lambda}g=g.$$

Idea

Introduce the "perturbed" coboundary $\hat{\delta} = (\delta - a)$

- $\hat{\delta}\hat{\delta} = 0$ using $\delta a = aa$
- We have another acyclic cochain complex $(\mathcal{C}_*, \hat{\delta})$

$$\mathcal{C}_0 \xrightarrow{\hat{\delta}} \mathcal{C}_1 \xrightarrow{\hat{\delta}} \mathcal{C}_2 \xrightarrow{\hat{\delta}} \mathcal{C}_3 \xrightarrow{\hat{\delta}} \cdots$$

• There exists a unique bounded operator $\hat{\Lambda}:\mathcal{BC}_2^{1+}\to\mathcal{C}_1^{1+}$ such that

$$\hat{\delta}\hat{\Lambda}g=g.$$

Idea

Introduce the "perturbed" coboundary $\hat{\delta} = (\delta - a)$

- $\hat{\delta}\hat{\delta} = 0$ using $\delta a = aa$
- We have another acyclic cochain complex $(C_*, \hat{\delta})$

$$\mathcal{C}_0 \xrightarrow{\hat{\delta}} \mathcal{C}_1 \xrightarrow{\hat{\delta}} \mathcal{C}_2 \xrightarrow{\hat{\delta}} \mathcal{C}_3 \xrightarrow{\hat{\delta}} \cdots$$

 \bullet There exists a unique bounded operator $\hat{\Lambda}:\mathcal{BC}_2^{1+}\to\mathcal{C}_1^{1+}$ such that

$$\hat{\delta}\hat{\Lambda}g=g.$$

Idea

Introduce the "perturbed" coboundary $\hat{\delta} = (\delta - a)$

- $\hat{\delta}\hat{\delta} = 0$ using $\delta a = aa$
- We have another acyclic cochain complex $(C_*, \hat{\delta})$

$$\mathcal{C}_0 \overset{\hat{\delta}}{\rightarrow} \mathcal{C}_1 \overset{\hat{\delta}}{\rightarrow} \mathcal{C}_2 \overset{\hat{\delta}}{\rightarrow} \mathcal{C}_3 \overset{\hat{\delta}}{\rightarrow} \cdots$$

• There exists a unique bounded operator $\hat{\Lambda}:\mathcal{BC}_2^{1+}\to\mathcal{C}_1^{1+}$ such that

$$\hat{\delta}\hat{\Lambda}g=g.$$

Let us play with the solution y of the (bi-)linear integral equation

$$y_t = S(t-s)y_s + \int_s^t S(t-u)dx_u y_u.$$

Expand the r.h.s. in a truncated series of iterated integrals:

$$y_t = S(t-s)y_s + \int_s^t S(t-u)dx_u S(u-s)y_s + \int_s^t S(t-u)dx_u \int_s^u S(u-v)dx_v y_v$$

In our notation this reads:

$$\hat{\delta}y = y \int \tilde{d}x + \int \hat{d}x (\hat{d}x y) = y \int \tilde{d}x + y \int \hat{d}x dx + \int \hat{d}x dx (\hat{d}x y)$$

M. G. (Pisa)

n excursions

Let us play with the solution y of the (bi-)linear integral equation

$$y_t = S(t-s)y_s + \int_s^t S(t-u)dx_u y_u.$$

Expand the r.h.s. in a truncated series of iterated integrals:

$$y_t = S(t-s)y_s + \int_s^t S(t-u)dx_u S(u-s)y_s + \int_s^t \frac{S(t-u)dx_u}{s} \int_s^u \frac{S(u-v)dx_v}{s} y_v$$

In our notation this reads:

$$\hat{\delta}y = y \int \tilde{d}x + \int \hat{d}x (\hat{d}x y) = y \int \tilde{d}x + y \int \hat{d}x dx + \int \hat{d}x dx (\hat{d}x y)$$

21/32

M. G. (Pisa) An excursions Ascona 2005

Let us play with the solution y of the (bi-)linear integral equation

$$y_t = S(t-s)y_s + \int_s^t S(t-u)dx_u y_u.$$

Expand the r.h.s. in a truncated series of iterated integrals:

$$y_t = S(t-s)y_s + \int_s^t S(t-u)dx_u S(u-s)y_s + \int_s^t \frac{S(t-u)dx_u}{s} \int_s^u \frac{S(u-v)dx_v}{s} y_v$$

In our notation this reads:

$$\hat{\delta}y = y \int \tilde{d}x + \int \hat{d}x (\hat{d}x y) = y \int \tilde{d}x + y \int \hat{d}x \tilde{d}x + \int \hat{d}x \hat{d}x (\hat{d}x y)$$

M. G. (Pisa)

n excursions

Let us play with the solution y of the (bi-)linear integral equation

$$y_t = S(t-s)y_s + \int_s^t S(t-u)dx_u y_u.$$

Expand the r.h.s. in a truncated series of iterated integrals:

$$y_t = S(t-s)y_s + \int_s^t S(t-u)dx_u S(u-s)y_s + \int_s^t \frac{S(t-u)dx_u}{s} \int_s^u \frac{S(u-v)dx_v}{s} y_v$$

In our notation this reads:

$$\hat{\delta}y = y \int \tilde{d}x + \int \hat{d}x (\hat{d}x y) = y \int \tilde{d}x + y \int \hat{d}x \tilde{d}x + \int \hat{d}x \hat{d}x (\hat{d}x y)$$

M. G. (Pisa)

An excursions

Convolution rough paths

Working a bit we get to

$$\hat{\delta}y = (1 - \hat{\Lambda}\hat{\delta}) \left[y \int \tilde{d}x + y \int \hat{d}x \tilde{d}x \right]$$

where we used the fact that $\hat{\delta} \int \hat{d}x \tilde{d}x = \int \tilde{d}x \int \tilde{d}x$

This express the solution y as a function of the couple

$$\int \tilde{d}x \qquad \int \hat{d}x \tilde{d}x$$

suitable notion of rough path for convolution equations.

• Path-wise SPDEs driven by BM (in progress, with S. Tindel)

Convolution rough paths

Working a bit we get to

$$\hat{\delta}y = (1 - \hat{\Lambda}\hat{\delta}) \left[y \int \tilde{d}x + y \int \hat{d}x \tilde{d}x \right]$$

where we used the fact that $\hat{\delta} \int \hat{d}x \tilde{d}x = \int \tilde{d}x \int \tilde{d}x$

This express the solution y as a function of the couple

$$\int \tilde{d}x \qquad \int \hat{d}x \tilde{d}x$$

suitable notion of rough path for convolution equations.

Path-wise SPDEs driven by BM (in progress, with S. Tindel)

M. G. (Pisa)

Convolution rough paths

Working a bit we get to

$$\hat{\delta}y = (1 - \hat{\Lambda}\hat{\delta}) \left[y \int \tilde{d}x + y \int \hat{d}x \tilde{d}x \right]$$

where we used the fact that $\hat{\delta} \int \hat{d}x \tilde{d}x = \int \tilde{d}x \int \tilde{d}x$

This express the solution y as a function of the couple

$$\int \tilde{d}x \qquad \int \hat{d}x \tilde{d}x$$

suitable notion of rough path for convolution equations.

• Path-wise SPDEs driven by BM (in progress, with S. Tindel)

Outline

- Increments
 - Abstract integration
 - Exercise of deconstruction
 - Rough paths
- Variations
 - Convolution integrals
 - Multiparameter integrals

2d Integrals

• With regular $f, g : \mathbb{R}^2 \to \mathbb{R}$ define 2d integrals as

$$\iint_{(x_1,y_1)}^{(x_2,y_2)} f dg := \int_{x_1}^{x_2} dx \int_{y_1}^{y_2} dy f(x,y) \partial_1 \partial_2 g(x,y)$$

- ∂_1 and ∂_2 are the partial derivatives wrt. the first and the second coordinate, respectively.
- Another possibility, for a triple f, g, h

$$\iint_{(x_1,y_1)}^{(x_2,y_2)} f d_1 g d_2 h := \iint_{(x_1,y_1)}^{(x_2,y_2)} f(x,y) \partial_1 g(x,y) \partial_2 h(x,y) \, dx dy$$

2d Integrals

• With regular $f, g : \mathbb{R}^2 \to \mathbb{R}$ define 2d integrals as

$$\iint_{(x_1,y_1)}^{(x_2,y_2)} f dg := \int_{x_1}^{x_2} dx \int_{y_1}^{y_2} dy f(x,y) \partial_1 \partial_2 g(x,y)$$

- ∂_1 and ∂_2 are the partial derivatives wrt. the first and the second coordinate, respectively.
- Another possibility, for a triple f, g, h

$$\iint_{(x_1,y_1)}^{(x_2,y_2)} f d_1 g d_2 h := \iint_{(x_1,y_1)}^{(x_2,y_2)} f(x,y) \partial_1 g(x,y) \partial_2 h(x,y) \, dx dy$$

M. G. (Pisa)

2d Integrals

• With regular $f, g : \mathbb{R}^2 \to \mathbb{R}$ define 2d integrals as

$$\iint_{(x_1,y_1)}^{(x_2,y_2)} f dg := \int_{x_1}^{x_2} dx \int_{y_1}^{y_2} dy f(x,y) \partial_1 \partial_2 g(x,y)$$

- ∂_1 and ∂_2 are the partial derivatives wrt. the first and the second coordinate, respectively.
- Another possibility, for a triple f, g, h

$$\iint_{(x_1,y_1)}^{(x_2,y_2)} f d_1 g d_2 h := \iint_{(x_1,y_1)}^{(x_2,y_2)} f(x,y) \partial_1 g(x,y) \partial_2 h(x,y) dx dy$$

M. G. (Pisa)

2d exact increments

Then

$$\iint_{(x_1,y_1)}^{(x_2,y_2)} dg = g(x_2,y_2) - g(x_1,y_2) - g(x_2,y_1) + g(x_1,y_1)$$

=: $(\delta g)(x_1,y_1,x_2,y_2)$

which identify the natural "two-dimensional" increment δg of a function g.

In complete analogy with the 1-d case we have:

- 2-d cochains $C_{k,l}$ which are k-increments in the first direction and l increments in the second direction.
- 2-d coboundary map $\delta = \delta_1 \delta_2$ which is given by the successive application of 1-d coboundaries in the two directions.
- the complex

$$C_{0,0} \xrightarrow{\delta} C_{1,1} \xrightarrow{\delta} C_{2,2} \xrightarrow{\delta} C_{3,3} \xrightarrow{\delta} \cdots$$

- A 2-d Λ operator corresponding to $\Lambda = \Lambda_1 \Lambda_2$.
- As a first consequence we have a 2-d Young theory.

In complete analogy with the 1-d case we have:

- 2-d cochains $C_{k,l}$ which are k-increments in the first direction and l increments in the second direction.
- 2-d coboundary map $\delta = \delta_1 \delta_2$ which is given by the successive application of 1-d coboundaries in the two directions.
- the complex

$$C_{0,0} \xrightarrow{\delta} C_{1,1} \xrightarrow{\delta} C_{2,2} \xrightarrow{\delta} C_{3,3} \xrightarrow{\delta} \cdots$$

- A 2-d Λ operator corresponding to $\Lambda = \Lambda_1 \Lambda_2$.
- As a first consequence we have a 2-d Young theory.

In complete analogy with the 1-d case we have:

- 2-d cochains $C_{k,l}$ which are k-increments in the first direction and l increments in the second direction.
- 2-d coboundary map $\delta = \delta_1 \delta_2$ which is given by the successive application of 1-d coboundaries in the two directions.
- the complex

$$C_{0,0} \xrightarrow{\delta} C_{1,1} \xrightarrow{\delta} C_{2,2} \xrightarrow{\delta} C_{3,3} \xrightarrow{\delta} \cdots$$

- A 2-d Λ operator corresponding to $\Lambda = \Lambda_1 \Lambda_2$.
- As a first consequence we have a 2-d Young theory.

In complete analogy with the 1-d case we have:

- 2-d cochains $C_{k,l}$ which are k-increments in the first direction and l increments in the second direction.
- 2-d coboundary map $\delta = \delta_1 \delta_2$ which is given by the successive application of 1-d coboundaries in the two directions.
- the complex

$$C_{0,0} \xrightarrow{\delta} C_{1,1} \xrightarrow{\delta} C_{2,2} \xrightarrow{\delta} C_{3,3} \xrightarrow{\delta} \cdots$$

- A 2-d Λ operator corresponding to $\Lambda = \Lambda_1 \Lambda_2$.
- As a first consequence we have a 2-d Young theory.

In complete analogy with the 1-d case we have:

- 2-d cochains $C_{k,l}$ which are k-increments in the first direction and l increments in the second direction.
- 2-d coboundary map $\delta = \delta_1 \delta_2$ which is given by the successive application of 1-d coboundaries in the two directions.
- the complex

$$C_{0,0} \xrightarrow{\delta} C_{1,1} \xrightarrow{\delta} C_{2,2} \xrightarrow{\delta} C_{3,3} \xrightarrow{\delta} \cdots$$

- A 2-d Λ operator corresponding to $\Lambda = \Lambda_1 \Lambda_2$.
- As a first consequence we have a 2-d Young theory.

Expansion of 2d integrals

For a two-dimensional quantity we can write down the following expansion

$$\iint_{(x_1,y_1)}^{(x_2,y_2)} f(x,y) dg(x,y) = -f(x_1,y_1)(\delta g)(x_1,y_1,x_2,y_2)
+ \int_{y_1}^{y_2} f(x_1,y) d_2[g(x_2,y) - g(x_1,y)] + \int_{x_1}^{x_2} f(x,y_1) d_1[g(x,y_2) - g(x,y_1)]
+ \iint_{(x_1,y_1)}^{(x_2,y_2)} \left[\iint_{(x_1,y_1)}^{(x,y)} df(u,v) \right] dg(x,y)$$

We can set up a convenient notation in which this equation reads

$$\iint f dg = \underbrace{f \iint dg}_{f \delta g} + \underbrace{\int_{1}^{f} \int_{2}^{dg} dg}_{boundary integrals} + \underbrace{\iint df dg}_{remainder}$$

4□ > 4□ > 4 = > 4 = > = 900

M. G. (Pisa) An excursions Ascona 2005 27 / 32

Expansion of 2d integrals

For a two-dimensional quantity we can write down the following expansion

$$\iint_{(x_1,y_1)}^{(x_2,y_2)} f(x,y) dg(x,y) = -f(x_1,y_1)(\delta g)(x_1,y_1,x_2,y_2)
+ \int_{y_1}^{y_2} f(x_1,y) d_2[g(x_2,y) - g(x_1,y)] + \int_{x_1}^{x_2} f(x,y_1) d_1[g(x,y_2) - g(x,y_1)]
+ \iint_{(x_1,y_1)}^{(x_2,y_2)} \left[\iint_{(x_1,y_1)}^{(x,y)} df(u,v) \right] dg(x,y)$$

We can set up a convenient notation in which this equation reads

$$\iint f dg = \underbrace{f \iint dg}_{f \delta g} + \underbrace{\int_{1}^{f} \int_{2}^{} dg + \int_{2}^{f} \int_{1}^{} dg}_{\text{boundary integrals}} + \underbrace{\iint df dg}_{\text{remainder}}$$

M. G. (Pisa) An excursions Ascona 2005 27 / 32

2d dissection

Our preferred exercise:

$$\iint \varphi(x)dx = -\varphi(x) \int dx + \int_{1} \varphi(x) \int_{2} dx + \int_{2} \varphi(x) \int_{1} dx + \iint d\varphi(x)dx$$

M. G. (Pisa)

An excursions

2d dissection

Our preferred exercise:

$$\iint \varphi(x)dx = -\varphi(x) \int dx + \int_{1} \varphi(x) \int_{2} dx + \int_{2} \varphi(x) \int_{1} dx + \iint \varphi'(x)dxdx + \iint \varphi''(x)(d_{1}xd_{2}x)dx$$

M. G. (Pisa)

An excursions

2d dissection

Our preferred exercise:

$$\iint \varphi(x)dx = -\varphi(x) \int dx + \int_{1} \varphi(x) \int_{2} dx + \int_{2} \varphi(x) \int_{1} dx$$

$$-\varphi'(x) \int dxdx + \int_{1} \varphi'(x) \int_{2} dxdx$$

$$+ \int_{2} \varphi'(x) \int_{1} dxdx + \iint d\varphi'(x)dxdx$$

$$-\varphi''(x) \int (d_{1}xd_{2}x)dx + \int_{1} \varphi''(x) \int_{2} (d_{1}xd_{2}x)dx$$

$$+ \int_{2} \varphi''(x) \int_{1} (d_{1}xd_{2}x)dx + \iint d\varphi''(x)(d_{1}xd_{2}x)dx$$

M. G. (Pisa)

Strategy to control the expansion

$$\iint \varphi'(x)dxdx = -\varphi'(x) \int dxdx + \int_{1} \varphi'(x) \int_{2} dxdx + \int_{2} \varphi'(x) \int_{1} dxdx + \iint d\varphi'(x)dxdx$$

This expression seems complicated, however it shows that, in order to control the l.h.s. we need two ingredients:

Being able to define essentially one-dimensional integrals like

$$\int_{1} \varphi(x) \int_{2} dx, \int_{1} \varphi'(x) \int_{2} dx dx, \int_{1} \varphi''(x) \int_{2} d_{1}x d_{2}dx, \dots$$

Control the remainders given by the three-fold iterated integrals

$$\mathcal{R} := \iint d\varphi'(x) dx dx \qquad \widetilde{\mathcal{R}} := \iint d\varphi''(x) d_1 x d_2 x dx$$

M. G. (Pisa) An excursions Ascona 2005 29/32

Strategy to control the expansion

$$\iint \varphi'(x)dxdx = -\varphi'(x) \int dxdx + \int_{1} \varphi'(x) \int_{2} dxdx + \int_{2} \varphi'(x) \int_{1} dxdx + \iint d\varphi'(x)dxdx$$

This expression seems complicated, however it shows that, in order to control the l.h.s. we need two ingredients:

Being able to define essentially one-dimensional integrals like

$$\int_{1} \varphi(x) \int_{2} dx, \int_{1} \varphi'(x) \int_{2} dx dx, \int_{1} \varphi''(x) \int_{2} d_{1}x d_{2}dx, \dots$$

Control the remainders given by the three-fold iterated integrals

$$\mathcal{R} := \iint d\varphi'(x) dx dx \qquad \widetilde{\mathcal{R}} := \iint d\varphi''(x) d_1 x d_2 x dx.$$

M. G. (Pisa) An excursions Ascona 2005 29/32

The boundary integrals (example)

$$\int_{1} \varphi'(x) \int_{2} dx dx = \varphi'(x) \iint \frac{dx dx}{dx} - \Lambda_{1} \left[\delta_{1} \varphi'(x) \iint \frac{dx dx}{dx} + C_{1} \right]$$

with

$$C_1 := \varphi''(x) \int_1 d_1 x \int_2 dx \int_1 dx - (\Lambda_1 \otimes_1 1)(A_1 + B_1)$$
$$A_1 := \delta_1 \varphi''(x) \int_1 d_1 x \int_2 dx \int_1 dx$$

and

$$\mathcal{B}_1 := \left(\delta_1 \varphi''(x) - \varphi''(x)\delta_1 x\right) \int_1 \int_2 dx \int_1 dx$$

The 2d rough sheet

To define integrals over a Brownian-like sheet x we need at least the following data:

$$\iint dx, \quad \iint d_1x d_2x, \quad \iint dx dx, \quad \iint d_1x d_2x dx,$$
$$\iint (d_1x d_2x)(d_1x d_2x), \quad \int_1 d_1x \int_2 dx \int_1 dx,$$

and some others...

M. G. (Pisa)

n excursions

- Lyons' rough paths seems the tip of an iceberg.
- Flexibility of the approach (many kinds of "rough paths" but same structure)
- Sometimes algebra is useful (and interesting).
- Outlook
 - Effective approach to path-wise SPDEs (more in S. Tindel talk).
 - A lot of work to do to fully understand rough sheets.
 - \blacktriangleright Any use of the higher degrees $\mathcal{C}_{k\geq 2}$ in the cochain complex?
 - Is more algebra lurking behind? (algebra homology, NCG)

- Lyons' rough paths seems the tip of an iceberg.
- Flexibility of the approach (many kinds of "rough paths" but same structure)
- Sometimes algebra is useful (and interesting).
- Outlook
 - Effective approach to path-wise SPDEs (more in S. Tindel talk).
 - A lot of work to do to fully understand rough sheets
 - ▶ Any use of the higher degrees $C_{k\geq 2}$ in the cochain complex?
 - Is more algebra lurking behind? (algebra homology, NCG)

- Lyons' rough paths seems the tip of an iceberg.
- Flexibility of the approach (many kinds of "rough paths" but same structure)
- Sometimes algebra is useful (and interesting).
- Outlook
 - Effective approach to path-wise SPDEs (more in S. Tindel talk)
 - A lot of work to do to fully understand rough sheets
 - ▶ Any use of the higher degrees $C_{k>2}$ in the cochain complex?
 - Is more algebra lurking behind? (algebra homology, NCG)

- Lyons' rough paths seems the tip of an iceberg.
- Flexibility of the approach (many kinds of "rough paths" but same structure)
- Sometimes algebra is useful (and interesting).

Outlook

- Effective approach to path-wise SPDEs (more in S. Tindel talk).
- A lot of work to do to fully understand rough sheets.
- ▶ Any use of the higher degrees $C_{k\geq 2}$ in the cochain complex?
- ▶ Is more algebra lurking behind? (algebra homology, NCG).

- Lyons' rough paths seems the tip of an iceberg.
- Flexibility of the approach (many kinds of "rough paths" but same structure)
- Sometimes algebra is useful (and interesting).
- Outlook
 - Effective approach to path-wise SPDEs (more in S. Tindel talk).
 - A lot of work to do to fully understand rough sheets.
 - ▶ Any use of the higher degrees $C_{k>2}$ in the cochain complex?
 - Is more algebra lurking behind? (algebra homology, NCG).

- Lyons' rough paths seems the tip of an iceberg.
- Flexibility of the approach (many kinds of "rough paths" but same structure)
- Sometimes algebra is useful (and interesting).
- Outlook
 - Effective approach to path-wise SPDEs (more in S. Tindel talk).
 - A lot of work to do to fully understand rough sheets.
 - ▶ Any use of the higher degrees $C_{k>2}$ in the cochain complex?
 - ▶ Is more algebra lurking behind? (algebra homology, NCG).

- Lyons' rough paths seems the tip of an iceberg.
- Flexibility of the approach (many kinds of "rough paths" but same structure)
- Sometimes algebra is useful (and interesting).
- Outlook
 - Effective approach to path-wise SPDEs (more in S. Tindel talk).
 - A lot of work to do to fully understand rough sheets.
 - ▶ Any use of the higher degrees $C_{k>2}$ in the cochain complex?
 - ▶ Is more algebra lurking behind? (algebra homology, NCG).

- Lyons' rough paths seems the tip of an iceberg.
- Flexibility of the approach (many kinds of "rough paths" but same structure)
- Sometimes algebra is useful (and interesting).
- Outlook
 - Effective approach to path-wise SPDEs (more in S. Tindel talk).
 - A lot of work to do to fully understand rough sheets.
 - ▶ Any use of the higher degrees $C_{k>2}$ in the cochain complex?
 - Is more algebra lurking behind? (algebra homology, NCG).