Stochastic transport equation and non-Lipshitz SDEs

Massimiliano Gubinelli

Laboratoire de Mathématiques, Orsay

The linear transport equation (classically)

Given $b : \mathbb{R}_+ \times \mathbb{R}^d \to \mathbb{R}^d$ smooth vectorfield, \overline{u} smooth. Consider the Cauchy problem in $\mathbb{R}_+ \times \mathbb{R}^d$

$$\begin{cases} \partial_t u(t,x) + b(t,x) \cdot \nabla u(t,x) = 0 \\ u(0,x) = \overline{u}(x) \end{cases}$$
 (1)

and the flow generated by b:

$$\begin{cases} \partial_t \Phi_{s,t}(x) = b(t, \Phi_{s,t}(x)) \\ \Phi_{s,s}(x) = x \end{cases}$$

Solutions to (1) are constant on the trajectories of *b* :

$$\frac{d}{dt}u(t,\Phi_{0,t}(x)) = \partial_t u(t,\Phi_{0,t}(x)) + \partial_t \Phi_{0,t}(x) \cdot \nabla u(t,\Phi_{0,t}(x)) = 0$$

Method of characteristics

The unique solution to (1) is $u(t, x) = \overline{u}(\Phi_{0,t}^{-1}(x))$.

Non-smooth vectorfields

Weak formulation

$$\begin{cases} \partial_t u + \operatorname{div}(bu) - (\operatorname{div} b)u = 0 \\ u(0, x) = \overline{u}(x) \end{cases}$$

Testing with smooth θ

$$\int \theta(x)u(t,x)dx = \int \theta(x)\overline{u}(x)dx$$
$$+ \int_0^t ds \int (u(s,x)b(s,x) \cdot \nabla \theta(x) + u(s,x)\theta(x)\operatorname{div} b(s,x))dx$$

- ► Existence of L^{∞} weak solutions when $b \in L^{p}$, $\operatorname{div} b \in L^{1}_{\operatorname{loc}}$ and $\overline{u} \in L^{\infty}$
- ▶ [DiPerna-Lions] Renormalized solutions: uniqueness and stability of L^{∞} weak solutions when $b \in L^{1}(W^{1,p}) \cap L^{\infty}$ and div $b \in L^{\infty}$
- ► [Ambrosio] Renormalized solutions for BV vectorfields
- Use the transport equation to select a flow Φ defined almost everywhere

SDEs with non-smooth coefficients

Idea:

Perturb the equation of characteristics by an additive Brownian noise acting on all components.

Why?

Consider the SDE in \mathbb{R}^d

$$dX_t = b(t, X_t)dt + dW_t, X_0 = x_0$$

- ► Strong solutions for *b* Lipshitz (+ linear growth) by fixed point method
- ► **[Veretennikov]** *b* bounded ⇒ uniqueness of strong solutions
- ► **[Krylov-Röckner]** Strong uniqueness for *b* in Sobolev spaces
- ▶ **[Davie]** *b* bounded \Rightarrow unique solution for a.e. Brownian path
 - \Rightarrow The noise regularizes the flow of the vectorfield $b \Leftarrow$

Stochastic flow

To implement the method of characteristics we need information on *dependence on initial conditions*.

Definition

A *stochastic flow* is a family of maps $\{\Phi_{s,t}: \mathbb{R}^d \to \mathbb{R}^d\}_{0 \le s \le t \le T}$ such that

- $\Phi_{s,t}(x)$ is $\sigma(\{W_r W_q\}_{s \leqslant q \leqslant r \leqslant t})$ measurable for any $x \in \mathbb{R}^d$, $0 \leqslant s \leqslant t \leqslant T$;
- ▶ $\lim_{t\to s+} \Phi_{s,t}(x) = x$, a.s. for any x, s, t;
- $\Phi_{u,t}(\Phi_{s,u}(x)) = \Phi_{s,t}(x)$

Theorem (Kunita)

If $b\in C^{1,\alpha}$ then there exists a $C^{1,\alpha'}$ -stochastic flow $\Phi_{s,t}$ for any $\alpha'<\alpha$ solving the SDE

$$\Phi_{s,t}(x) = x + \int_{s}^{t} b(u, \Phi_{s,u}(x)) du + W_t - W_s$$

for any $x \in \mathbb{R}^d$.

The Itô trick (I)

The regularization effect can be understood easily in the case b(t,x) = b(x). Consider

$$X_t = x + \int_0^t b(X_s) ds + W_t$$

Try the *Itô trick*: interpret the integral over time as a correction in an *Itô* formula:

$$G(X_t) = G(x) + \int_0^t \nabla G(X_s) dW_s + \int_0^t LG(X_s) ds$$

with $L = \Delta/2 + b \cdot \nabla$. Assume that we can solve the elliptic problem

$$\lambda G - LG = b$$

for some $\lambda > 0$ (maybe very large), then

$$X_t + G(X_t) = x + G(x) + W_t + \int_0^t \nabla G(X_s) dW_s - \int_0^t \lambda G(X_s) ds$$

where *G* "has two derivatives more" than *b*. Setting $\psi(x) = x + G(x)$ we get

$$\psi(X_t) = \psi(x) + \int_0^t \nabla \psi(X_s) dW_s - \int_0^t \lambda G(X_s) ds$$

The Itô trick (II)

Theorem (Elliptic estimates)

For any $\varepsilon > 0$, $\varepsilon' < \varepsilon$, $b \in C^{\varepsilon}$, the elliptic equation $\lambda G - LG = b$ has a solution $G \in C^{2,\varepsilon}$ for which $\|G\|_{2,\varepsilon'} \to 0$ as $\lambda \to \infty$.

For λ large enough $\nabla \psi = 1 + \nabla G$ is invertible and ψ has inverse ψ^{-1} . Let $Y_t = \psi(X_t)$, $y = \psi(x)$:

$$Y_t = y + \int_0^t \tilde{\sigma}(Y_s) dW_s + \int_0^t \tilde{b}(Y_s) ds$$

where $\tilde{\sigma}(y) = \nabla \psi \circ \psi^{-1}(y)$ and $\tilde{b}(y) = \lambda G \circ \psi^{-1}(y)$.

We have $\tilde{\sigma} \in C^{1,\varepsilon'}$, $\tilde{b} \in C^{2,\varepsilon'}$ and there exists a $C^{1,\varepsilon'}$ -stochastic flow ϕ solving

$$\varphi_{s,t}(y) = y + \int_s^t \tilde{\sigma}(\varphi_{s,u}(y))dW_u + \int_0^t \tilde{b}(\varphi_{s,u}(y))du$$

Stochastic flow for C^{ϵ} vectorfields

By letting $\phi_{s,t}=\psi^{-1}\circ\phi_{s,t}\circ\psi$ we obtain a $C^{1,\varepsilon'}$ stochastic flow satisfying

$$\phi_{s,t}(x) = x + \int_s^t b(\phi_{s,u}(x))du + W_t - W_s$$

- this flow is the unique strong solution to the SDE
- it does not depend on the choice of λ .
- we have an equation for $\nabla \phi_{s,t}(x)$:

$$\nabla \psi(\varphi_{s,t}(x)) \nabla \varphi_{s,t}(x) = \nabla \psi(x) + \int_{s}^{t} \lambda \nabla G(\varphi_{s,u}(x)) \nabla \varphi_{s,u}(x) du$$
$$+ \int_{s}^{t} \nabla^{2} \psi(\varphi_{s,u}(x)) \nabla \varphi_{s,u}(x) dW_{u}$$

• by a stopping procedure we can assume b locally in C^{ϵ} (+ linear growth)

Push-forward

For smooth *b* we have

$$\int \theta(\phi_{s,t}(x))dx = \int \theta(x) \frac{dx}{J_{s,t}(x)}$$

where $J_{s,t}(x) = |\det \nabla \phi_{s,t}(x)|$ (Jacobian determinant) satisfy the differential equation

$$\frac{d}{dt}J_{s,t}(x) = \operatorname{div} b(\phi_{s,t}(x))J_{s,t}(x), \qquad J_{s,s}(x) = 1.$$

(the stochastic perturbation is solenoidal). Then

$$J_{s,t}(x) = \exp\left(\int_s^t \operatorname{div} b(\phi_{s,u}(x)) du\right)$$

For $b \in C^{\epsilon}$ by an approximation procedure and another Itô trick we get

$$J_{s,t}(x) = \exp\left(\Gamma(\phi_{s,t}(x)) - \Gamma(x) + \int_{s}^{t} \nabla \Gamma(\phi_{s,u}(x)) dW_{u} + \int_{s}^{t} \lambda \Gamma(\phi_{s,u}(x)) du\right)$$

where $\Gamma \in C^{1,\epsilon'}$ solve $\lambda \Gamma - L\Gamma = \text{div } b$ in the sense of distributions.

Stochastic transport equation

The simplest stochastic perturbation which is compatible with the method of characteristics leads to the Stratonovich SPDE

$$\begin{cases} d_t u_t + b_t \cdot \nabla u_t dt + \sum_{i=1}^d \nabla_i u_t \circ dW_t^i = 0 \\ u_0(x) = \overline{u}(x) \end{cases}$$

and to the related SDE for the flow of characteristics:

$$\begin{cases} d_t \Phi_{s,t}(x) = b(t, \Phi_{s,t}(x)) dt + dW_t \\ \Phi_{s,s}(x) = x \end{cases}$$

Euristically we must have again $u_t(x) = \overline{u}(\Phi_{0,t}^{-1}(x))$.

Assume that b is locally bounded and div $b \in L_{loc}^q$.

Definition

Given $\overline{u} \in L^p_{loc}$, for some $p \geqslant 1$ a solution of the stochastic transport equation (STE) in L^p_{loc} is a measurable function $(u(t,x,\omega),t\geqslant 0,x\in\mathbb{R}^d,\omega\in\Omega)$ such that

- (i) for P-a.e. $\omega \in \Omega$, $x \in \mathbb{R}^d$, R > 0, $\sup_{t \in [0,T]} \int_{B(x,R)} |u(t,x,\omega)|^p dx < \infty$
- (ii) for any test function $\theta \in C_0^0(\mathbb{R}^d)$, the process $t \mapsto \int_{\mathbb{R}^d} u(t, x) \theta(x) dx$ is continuous and \mathcal{F}_t -adapted;
- (iii) for any test function $\theta \in C_0^{\infty}(\mathbb{R}^d)$, the process $t \mapsto \int_{\mathbb{R}^d} u(t,x)\theta(x)dx$ is an \mathcal{F}_t -semimartingale satisfying

$$\int_{\mathbb{R}^d} u(t,x)\theta(x)dx = \int_{\mathbb{R}^d} \overline{u}(x)\theta(x)dx + \sum_{i=1}^d \int_0^t \left(\int_{\mathbb{R}^d} u(s,x)D_i\theta(x)dx \right) \circ dW_s^i$$
$$+ \int_0^t ds \int_{\mathbb{R}^d} u(s,x)[b(x) \cdot \nabla \theta(x) + \operatorname{div} b(x)\theta(x)]dx$$

Main result

Theorem

Assume $b \in C^{\epsilon}$ and div $b \in L^q$ and $\epsilon > d/q$. The STE has a unique solution u for any $\overline{u} \in L^p_{loc}$ and $u(t,x) = \overline{u}(\varphi_{0,t}^{-1}(x))$.

Note that by the pushforward formula

$$\int_{\mathbb{R}^d} f(x)g \circ \phi_{s,t}(x)J_{s,t}(x)dx = \int_{\mathbb{R}^d} f \circ \phi_{s,t}^{-1}(x)g(x)dx$$

with $J_{s,t}(x) \leqslant C$ locally. So if $f \in L^p_{loc}, g \in L^q_{loc}$ we have $f \circ \varphi_{s,t}^{-1} \in L^p_{loc}$ and

$$\int_A |f\circ \varphi_{s,t}^{-1}(x)|^p dx = \int_{\varphi_{s,t}^{-1}(A)} |f(x)|^p J_{s,t}(x) dx < \infty.$$

Existence

First we need to prove that $\int u(t,x)\theta(x)dx$ is a semimartingale. Let $\phi_t = \phi_{0,t}$. Take a smooth test function θ , by Itô formula

$$\theta(\varphi_t(y)) = \theta(y) + \int_0^t L^b \theta(\varphi_s(y)) ds + \int_0^t \nabla \theta(\varphi_s(y)) \cdot dW_s.$$

Let $J_t^{\varepsilon}(y)$ the Jacobian determinant of the flow φ_t^{ε} for the regularized vectorfield b^{ε} . Since b^{ε} is smooth: $dJ_t^{\varepsilon}(y) = \operatorname{div} b^{\varepsilon}(\varphi_t(y))J_t^{\varepsilon}(y)dt$. Then

$$\begin{split} \int_{\mathbb{R}^d} u_0(y) \theta(\varphi_t(y)) J_t^{\varepsilon}(y) dy &= \int_{\mathbb{R}^d} u_0(y) \theta(y) dy + \int_0^t ds \int_{\mathbb{R}^d} u_0(y) L^b \theta(\varphi_s(y)) J_s^{\varepsilon}(y) dy \\ &+ \int_0^t ds \int_{\mathbb{R}^d} u_0(y) \theta(\varphi_s(y)) \operatorname{div} b^{\varepsilon}(\varphi_s(y)) J_s^{\varepsilon}(y) dy \\ &+ \int_0^t dW_s \cdot \int_{\mathbb{R}^d} u_0(y) \nabla \theta(\varphi_s(y)) J_s^{\varepsilon}(y) dy \end{split}$$

In the limit $\varepsilon \to 0$ each term converges so

$$\lim_{\varepsilon \to 0} \int_{\mathbb{R}^d} u_0(y) \theta(\varphi_t(y)) J_t^{\varepsilon}(y) dy = \int_{\mathbb{R}^d} u_0(y) \theta(\varphi_t(y)) J_t(y) dy = \int_{\mathbb{R}^d} u(t,y) \theta(y) dy$$

is a semi-martingale.

Next we need to prove that the semimartingale $\int u(t,x)\theta(x)dx$ satisfy the stochastic transport equation.

By the Stratonovic-Itô formula

$$\theta(\phi_t(y)) = \theta(y) + \int_0^t b \cdot \nabla \theta(\phi_s(y)) ds + \int_0^t \nabla \theta(\phi_s(y)) \circ dW_s.$$

Then

$$\begin{split} \int_{\mathbb{R}^d} u_0(y) \theta(\varphi_t(y)) J_t^{\varepsilon}(y) dy &= \int_{\mathbb{R}^d} u_0(y) \theta(y) dy + \int_0^t ds \int_{\mathbb{R}^d} u_0(y) b \cdot \nabla \theta(\varphi_s(y)) J_s^{\varepsilon}(y) dy \\ &+ \int_0^t ds \int_{\mathbb{R}^d} u_0(y) \theta(\varphi_s(y)) \operatorname{div} b^{\varepsilon}(\varphi_s(y)) J_s^{\varepsilon}(y) dy \\ &+ \int_0^t dW_s \circ \int_{\mathbb{R}^d} u_0(y) \nabla \theta(\varphi_s(y)) J_s^{\varepsilon}(y) dy \end{split}$$

and take the limit $\varepsilon \to 0$ to conclude.

Uniqueness

Goal

Prove that, if u(t,x) solve the STE then we must have $u(t,x) = \overline{u}(\phi_t^{-1}(x))$.

We start by smoothing u. Define

$$u_{\varepsilon}(t,y) = \int_{\mathbb{R}^d} u(t,x)\vartheta_{\varepsilon}(y-x)\,dx, \quad u_{0,\varepsilon}(y) = \int_{\mathbb{R}^d} u_0(x)\vartheta_{\varepsilon}(y-x)\,dx.$$

Since *u* is a solution to STE we get

$$u_{\varepsilon}(t,y) = u_{0,\varepsilon}(y) + \int_0^t \left[\int_{\mathbb{R}^d} u(s,x)b(x) \cdot \nabla_x \vartheta_{\varepsilon}(y-x) dx \right] ds$$
$$+ \int_0^t ds \int_{\mathbb{R}^d} u(s,x) \operatorname{div} b(x) \vartheta_{\varepsilon}(y-x) dx$$
$$+ \sum_{i=1}^d \int_0^t \left[\int_{\mathbb{R}^d} u(s,x) D_{x_i} \vartheta_{\varepsilon}(y-x) dx \right] \circ dW_s^i$$

Let $b^{\delta}=\vartheta_{\delta}*b$ and let φ^{δ} the associated flow. By Stratonovich version of Itô-Wentzel calculus

$$\frac{d}{dt}u_{\varepsilon}(t,\varphi_{t}^{\delta}(x)) = \left\{ \int u(t,x') \left[(b(x') - b^{\delta}(y)) \cdot \nabla_{x'} \vartheta_{\varepsilon} \left(y - x' \right) + \operatorname{div} b(x') \vartheta_{\varepsilon}(y - x') \right] dx' \right\}$$

Test against $\rho \in C_0^{\infty}(\mathbb{R}^d)$ and perform a change of variables

By an integration by parts this is equal to

$$\begin{split} &= \int_{\mathbb{R}^d} \left[\int_{\mathbb{R}^d} \vartheta_{\varepsilon} \left(y - x' \right) \left[b(x') - b^{\delta}(y) \right] \cdot \nabla_y \left[\rho \left((\varphi_t^{\delta})^{-1}(y) \right) J_t^{\delta}(y) \right] dy \right] u(t, x') dx' \\ &+ \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \left[\operatorname{div} b(x') - \operatorname{div} b^{\delta}(y) \right] \vartheta_{\varepsilon}(y - x') \rho ((\varphi_t^{\delta})^{-1}(y)) J_t^{\delta}(y) dy \, u(t, x') dx' \end{split}$$

We want to show that both contributions go to zero as $\varepsilon \to 0$ and $\delta \to 0$

First term

$$\begin{split} A^{\delta} &= \lim_{\varepsilon \to 0} \int_{\mathbb{R}^d} \vartheta_{\varepsilon} \left(y - x' \right) \left[b(x') - b^{\delta}(y) \right] \cdot \nabla_{y} \left[\rho \left((\varphi_{t}^{\delta})^{-1} y \right) J_{t}^{\delta}(y) \right] dy \\ &= \left[b(x') - b^{\delta}(x') \right] \cdot \nabla_{x'} \left[\rho \left((\varphi_{t}^{\delta})^{-1} (x') \right) J_{t}^{\delta}(x') \right] \end{split}$$

We can prove that

$$|\nabla \left[\rho\left((\varphi_t^\delta)^{-1}(\cdot)\right)J_t^\delta(\cdot)\right]|\lesssim \delta^\beta$$

locally as $\delta \to 0$ for any $\beta < -d/q$. Moreover

$$|b-b^\delta|\lesssim \delta^\epsilon$$

so $|A_{\delta}| \lesssim \delta^{\epsilon+\beta} \to 0$ as soon as $\epsilon + \beta > 0$.

Second term

$$\begin{split} &\int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \left[\operatorname{div} b(x') - \operatorname{div} b^\delta(y) \right] \vartheta_\varepsilon(y - x') \rho((\varphi_t^\delta)^{-1}(y)) J_t^\delta(y) dy \, u(t, x') dx' \\ &= \int_{\mathbb{R}^d} \operatorname{div} b(x') \left(\int_{\mathbb{R}^d} \vartheta_\varepsilon(y - x') \rho((\varphi_t^\delta)^{-1}(y)) J_t^\delta(y) dy \right) u(t, x') dx' \\ &- \int_{\mathbb{R}^d} \operatorname{div} b^\delta(y) \rho((\varphi_t^\delta)^{-1}(y)) J_t^\delta(y) u_\varepsilon(t, y) dy \end{split}$$

and both terms converge, as $\epsilon \to 0$ followed by $\delta \to 0$ to

$$\int_{\mathbb{R}^d} \operatorname{div} b(y) \rho(\phi_t^{-1}(y)) J_t(y) u(t,y) dy$$

so their difference converge to zero.

We obtained

$$\lim_{\delta \to 0} \lim_{\varepsilon \to 0} \left[\int_{\mathbb{R}^d} u_{\varepsilon}(t, \phi_t^{\delta} x) \rho(x) dx - \int_{\mathbb{R}^d} u_{\varepsilon}(0, x) \rho(x) dx \right] = 0.$$

Now

$$\begin{split} \int_{\mathbb{R}^d} u_{\varepsilon}(t, \varphi_t^{\delta} x) \rho(x) \, dx &= \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} u_{\varepsilon}(t, y) \vartheta_{\varepsilon}(\varphi_t^{\delta}(x) - y) \rho(x) \, dx dy \\ &= \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} u_{\varepsilon}(t, y) \vartheta_{\varepsilon}(z - y) \rho\left((\varphi_t^{\delta})^{-1}(z)\right) J_t^{\delta}((\varphi_t^{\delta})^{-1}(z))^{-1} dz dy \\ &\to \int_{\mathbb{R}^d} u(t, z) \rho\left(\varphi_t^{-1}(z)\right) J_t(\varphi_t^{-1}(z))^{-1} dz \end{split}$$

This yields

$$\int_{\mathbb{R}^d} u(t,z) \rho\left(\Phi_t^{-1}(z)\right) J_t(\Phi_t^{-1}(z))^{-1} dz = \int_{\mathbb{R}^d} u(0,x) \rho\left(x\right) dx$$

for every $\rho(x) \in C_0^{\infty}(\mathbb{R}^d)$. Choosing ρ appropriately we get

$$\int_{\mathbb{R}^d} u(t,z)\rho(z)dz = \int_{\mathbb{R}^d} u(0,x)\rho(\phi_t(x))J_t(x)dx = \int_{\mathbb{R}^d} u(0,\phi_t^{-1}(y))\rho(y)dy.$$

Counterexamples to certain extensions

Example (Random vectorfields)

Take
$$b(t, x) = \sqrt{|x - W_t|}$$
, then

$$dX_t = b(t, X_t)dt + dW_t = \sqrt{|X_t - W_t|}dt + dW_t.$$

By the change of variables $Y_t = X_t - W_t$ we obtain

$$dY_t = \sqrt{|Y_t|}dt$$

so path-wise uniqueness is impossible in general.

Not so artificial...

Consider a 2d stochastic Euler equation in vorticity variables

$$\partial_t \xi(t, x) + (u(t, x) \cdot \nabla \xi(t, x)) dt + \nabla \xi(t, x) \circ dW(t) = 0$$

where $\xi = \partial_2 u_1 - \partial_1 u_2$.

Formally equivalent to the "system" of stochastic ordinary equations

$$dX_{t}^{a} = \left[\int_{\mathbb{R}^{2}} K(X_{t}^{a} - X_{t}^{a'}) \xi_{0}(X_{t}^{a'}) da' \right] dt + dW_{t}, \qquad a \in \mathbb{R}^{2}$$

for a suitable kernel K, ξ_0 being the initial condition of the vorticity equation. By the change of variable $Y_t^a = X_t^a - W_t$ we obtain

$$dY_t^a = \left[\int_{\mathbb{R}^2} K(Y_t^a - Y_t^{a'}) \xi_0(X_t^{a'}) da' \right] dt$$

The equation for (Y_t^a) corresponds to the classical vorticity equation

$$\frac{\partial_{t}\xi'\left(t,x\right)}{\partial t}+\left(u'\left(t,x\right)\cdot\nabla\xi'\left(t,x\right)\right)dt=0 \qquad \qquad \xi'=\partial_{2}u'_{1}-\partial_{1}u'_{2}$$

with initial condition ξ_0 .

Possible way out

Consider a more complex (infinite-dimensional) noise:

$$dX_{t}^{a} = \left[\int_{\mathbb{R}^{2}} K(X_{t}^{a} - X_{t}^{a'}) \xi_{0}(X_{t}^{a'}) da' \right] dt + \sum_{k=1}^{\infty} \sigma_{k}(X_{t}^{a}) dW_{t}^{k}, \qquad a \in \mathbb{R}^{2}$$

where each point X_a is moved "almost" independently of the others. Seems useful to require

$$\sum_{k=1}^{\infty} \sigma_k(x)\sigma_k(y) = a(|x-y|)$$

with $a(r) \simeq r^{\alpha}$ as $r \to 0$, $\alpha > 0$. This in order to hope some regularizing effect of the noise over the deterministic (and singular) drift.

Connection with the theory of stochastic flows of Le Jan-Raimond.