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The linear transport equation (classically)

Given b : R+ ×Rd → Rd smooth vectorfield, u smooth. Consider the Cauchy
problem in R+ ×Rd {

∂tu(t, x) + b(t, x) · ∇u(t, x) = 0

u(0, x) = u(x)
(1)

and the flow generated by b :{
∂tΦs,t(x) = b(t,Φs,t(x))

Φs,s(x) = x

Solutions to (1) are constant on the trajectories of b :

d
dt

u(t,Φ0,t(x)) = ∂tu(t,Φ0,t(x)) + ∂tΦ0,t(x) · ∇u(t,Φ0,t(x)) = 0

Method of characteristics

The unique solution to (1) is u(t, x) = u(Φ−1
0,t (x)).



Non-smooth vectorfields

Weak formulation {
∂tu + div (bu) − (div b)u = 0

u(0, x) = u(x)

Testing with smooth θ∫
θ(x)u(t, x)dx =

∫
θ(x)u(x)dx

+

∫ t

0
ds
∫
(u(s, x)b(s, x) · ∇θ(x) + u(s, x)θ(x)div b(s, x))dx

I Existence of L∞ weak solutions when b ∈ Lp, div b ∈ L1
loc and u ∈ L∞

I [DiPerna-Lions] Renormalized solutions: uniqueness and stability of
L∞ weak solutions when b ∈ L1(W1,p) ∩ L∞ and div b ∈ L∞

I [Ambrosio] Renormalized solutions for BV vectorfields
I Use the transport equation to select a flowΦ defined almost everywhere



SDEs with non-smooth coefficients

Idea:
Perturb the equation of characteristics by an additive Brownian noise acting
on all components.

Why?

Consider the SDE in Rd

dXt = b(t, Xt)dt + dWt, X0 = x0

I Strong solutions for b Lipshitz (+ linear growth) by fixed point method
I [Veretennikov] b bounded⇒ uniqueness of strong solutions
I [Krylov-Röckner] Strong uniqueness for b in Sobolev spaces
I [Davie] b bounded⇒ unique solution for a.e. Brownian path

⇒ The noise regularizes the flow of the vectorfield b⇐



Stochastic flow

To implement the method of characteristics we need information on
dependence on initial conditions.

Definition

A stochastic flow is a family of maps {Φs,t : Rd → Rd}06s6t6T such that
I Φs,t(x) is σ({Wr − Wq}s6q6r6t) measurable for any x ∈ Rd, 0 6 s 6 t 6 T;
I limt→s+Φs,t(x) = x, a.s. for any x, s, t;
I Φu,t(Φs,u(x)) = Φs,t(x)

Theorem (Kunita)

If b ∈ C1,α then there exists a C1,α′ -stochastic flowΦs,t for any α ′ < α solving the
SDE

Φs,t(x) = x +

∫ t

s
b(u,Φs,u(x))du + Wt − Ws

for any x ∈ Rd.



The Itô trick (I)

The regularization effect can be understood easily in the case b(t, x) = b(x).
Consider

Xt = x +

∫ t

0
b(Xs)ds + Wt

Try the Itô trick: interpret the integral over time as a correction in an Itô
formula:

G(Xt) = G(x) +

∫ t

0
∇G(Xs)dWs +

∫ t

0
LG(Xs)ds

with L = ∆/2 + b · ∇. Assume that we can solve the elliptic problem

λG − LG = b

for some λ > 0 ( maybe very large ), then

Xt + G(Xt) = x + G(x) + Wt +

∫ t

0
∇G(Xs)dWs −

∫ t

0
λG(Xs)ds

where G "has two derivatives more" than b. Setting ψ(x) = x + G(x) we get

ψ(Xt) = ψ(x) +

∫ t

0
∇ψ(Xs)dWs −

∫ t

0
λG(Xs)ds



The Itô trick (II)

Theorem (Elliptic estimates)

For any ε > 0, ε ′ < ε, b ∈ Cε, the elliptic equation λG − LG = b has a solution
G ∈ C2,ε for which ‖G‖2,ε′ → 0 as λ→∞.

For λ large enough∇ψ = 1 +∇G is invertible and ψ has inverse ψ−1.
Let Yt = ψ(Xt), y = ψ(x):

Yt = y +

∫ t

0
σ̃(Ys)dWs +

∫ t

0
b̃(Ys)ds

where σ̃(y) = ∇ψ ◦ψ−1(y) and b̃(y) = λG ◦ψ−1(y).

We have σ̃ ∈ C1,ε′ , b̃ ∈ C2,ε′ and there exists a C1,ε′ -stochastic flow ϕ solving

ϕs,t(y) = y +

∫ t

s
σ̃(ϕs,u(y))dWu +

∫ t

0
b̃(ϕs,u(y))du



Stochastic flow for Cε vectorfields

By letting φs,t = ψ−1 ◦ϕs,t ◦ψwe obtain a C1,ε′ stochastic flow satisfying

φs,t(x) = x +

∫ t

s
b(φs,u(x))du + Wt − Ws

I this flow is the unique strong solution to the SDE
I it does not depend on the choice of λ.
I we have an equation for∇φs,t(x):

∇ψ(φs,t(x))∇φs,t(x) = ∇ψ(x) +

∫ t

s
λ∇G(φs,u(x))∇φs,u(x)du

+

∫ t

s
∇2ψ(φs,u(x))∇φs,u(x)dWu

I by a stopping procedure we can assume b locally in Cε (+ linear growth)



Push-forward

For smooth b we have ∫
θ(φs,t(x))dx =

∫
θ(x)

dx
Js,t(x)

where Js,t(x) = | det∇φs,t(x)| (Jacobian determinant) satisfy the differential
equation

d
dt

Js,t(x) = div b(φs,t(x)) Js,t(x), Js,s(x) = 1.

(the stochastic perturbation is solenoidal). Then

Js,t(x) = exp
(∫ t

s
div b(φs,u(x))du

)
For b ∈ Cε by an approximation procedure and another Itô trick we get

Js,t(x) = exp
(
Γ(φs,t(x)) − Γ(x) +

∫ t

s
∇Γ(φs,u(x))dWu +

∫ t

s
λΓ(φs,u(x))du

)
where Γ ∈ C1,ε′ solve λΓ − LΓ = div b in the sense of distributions.



Stochastic transport equation

The simplest stochastic perturbation which is compatible with the method of
characteristics leads to the Stratonovich SPDE

dtut + bt · ∇ut dt +

d∑
i=1

∇iut ◦ dWi
t = 0

u0(x) = u(x)

and to the related SDE for the flow of characteristics:{
dtΦs,t(x) = b(t,Φs,t(x))dt + dWt

Φs,s(x) = x

Euristically we must have again ut(x) = u(Φ−1
0,t (x)).



Assume that b is locally bounded and div b ∈ Lq
loc.

Definition

Given u ∈ Lp
loc, for some p > 1 a solution of the stochastic transport equation

(STE) in Lp
loc is a measurable function (u(t, x,ω), t > 0, x ∈ Rd,ω ∈ Ω) such

that

(i) for P-a.e. ω ∈ Ω, x ∈ Rd, R > 0, supt∈[0,T]

∫
B(x,R)

|u(t, x,ω)|
p dx <∞

(ii) for any test function θ ∈ C0
0(R

d), the process t 7→
∫
Rd u(t, x)θ(x)dx is

continuous and Ft-adapted;

(iii) for any test function θ ∈ C∞0 (Rd), the process t 7→
∫
Rd u(t, x)θ(x)dx is an

Ft-semimartingale satisfying∫
Rd

u(t, x)θ(x)dx =

∫
Rd

u(x)θ(x)dx +

d∑
i=1

∫ t

0

(∫
Rd

u(s, x)Diθ(x)dx
)
◦ dWi

s

+

∫ t

0
ds
∫
Rd

u(s, x)[b(x) · ∇θ(x) + div b(x)θ(x)]dx



Main result

Theorem
Assume b ∈ Cε and div b ∈ Lq and ε > d/q. The STE has a unique solution u for
any u ∈ Lp

loc and u(t, x) = u(φ−1
0,t (x)).

Note that by the pushforward formula∫
Rd

f (x)g ◦ φs,t(x)Js,t(x)dx =

∫
Rd

f ◦ φ−1
s,t (x)g(x)dx

with Js,t(x) 6 C locally. So if f ∈ Lp
loc, g ∈ Lq

loc we have f ◦ φ−1
s,t ∈ Lp

loc and∫
A

|f ◦ φ−1
s,t (x)|pdx =

∫
φ−1

s,t (A)

|f (x)|pJs,t(x)dx <∞.



Existence
First we need to prove that

∫
u(t, x)θ(x)dx is a semimartingale.

Let φt = φ0,t. Take a smooth test function θ, by Itô formula

θ(φt(y)) = θ(y) +

∫ t

0
Lbθ(φs(y))ds +

∫ t

0
∇θ(φs(y)) · dWs.

Let Jεt (y) the Jacobian determinant of the flow φεt for the regularized
vectorfield bε. Since bε is smooth: dJεt (y) = div bε(φt(y))Jεt (y)dt.
Then∫
Rd

u0(y)θ(φt(y))Jεt (y)dy =

∫
Rd

u0(y)θ(y)dy +

∫ t

0
ds
∫
Rd

u0(y)Lbθ(φs(y))Jεs (y)dy

+

∫ t

0
ds
∫
Rd

u0(y)θ(φs(y))div bε(φs(y))Jεs (y)dy

+

∫ t

0
dWs ·

∫
Rd

u0(y)∇θ(φs(y))Jεs (y)dy

In the limit ε→ 0 each term converges so

lim
ε→0

∫
Rd

u0(y)θ(φt(y))Jεt (y)dy =

∫
Rd

u0(y)θ(φt(y))Jt(y)dy =

∫
Rd

u(t, y)θ(y)dy

is a semi-martingale.



Next we need to prove that the semimartingale
∫

u(t, x)θ(x)dx satisfy the
stochastic transport equation.
By the Stratonovic-Itô formula

θ(φt(y)) = θ(y) +

∫ t

0
b · ∇θ(φs(y))ds +

∫ t

0
∇θ(φs(y)) ◦ dWs.

Then∫
Rd

u0(y)θ(φt(y))Jεt (y)dy =

∫
Rd

u0(y)θ(y)dy +

∫ t

0
ds
∫
Rd

u0(y)b · ∇θ(φs(y))Jεs (y)dy

+

∫ t

0
ds
∫
Rd

u0(y)θ(φs(y))div bε(φs(y))Jεs (y)dy

+

∫ t

0
dWs ◦

∫
Rd

u0(y)∇θ(φs(y))Jεs (y)dy

and take the limit ε→ 0 to conclude.



Uniqueness

Goal

Prove that, if u(t, x) solve the STE then we must have u(t, x) = u(φ−1
t (x)).

We start by smoothing u. Define

uε(t, y) =

∫
Rd

u(t, x)ϑε (y − x) dx, u0,ε(y) =

∫
Rd

u0(x)ϑε (y − x) dx.

Since u is a solution to STE we get

uε(t, y) = u0,ε(y) +

∫ t

0

[∫
Rd

u(s, x)b(x) · ∇xϑε(y − x)dx
]

ds

+

∫ t

0
ds
∫
Rd

u(s, x)div b(x)ϑε(y − x)dx

+

d∑
i=1

∫ t

0

[∫
Rd

u(s, x)Dxiϑε (y − x) dx
]
◦ dWi

s



Let bδ = ϑδ ∗ b and let φδ the associated flow.
By Stratonovich version of Itô-Wentzel calculus

d
dt

uε(t,φδt (x)) =

{∫
u(t, x ′)

[
(b(x ′) − bδ(y)) · ∇x′ϑε (y − x ′) + div b(x ′)ϑε(y − x ′)

]
dx ′
}

y=φδ
t (x)

Test against ρ ∈ C∞0 (Rd) and perform a change of variables

d
dt

∫
Rd

uε(t,φδt x)ρ(x)dx

=

∫
Rd

∫
Rd

u(t, x ′)
[[

b(x ′) − bδ(y)
]
· ∇x′ϑε

(
y − x ′

)
+ div b(x ′)ϑε(y − x ′)

]
y=φδ

t (x)
dx ′ρ (x) dx

=

∫
Rd

∫
Rd

u(t, x ′)
[[

b(x ′) − bδ(y)
]
· ∇x′ϑε

(
y − x ′

)
+ div b(x ′)ϑε(y − x ′)

]
dx ′ρ

(
(φδt )−1(y)

)
Jδt (y)dy

By an integration by parts this is equal to

=

∫
Rd

[∫
Rd
ϑε
(
y − x ′

) [
b(x ′) − bδ(y)

]
· ∇y

[
ρ
(
(φδt )−1(y)

)
Jδt (y)

]
dy
]

u(t, x ′)dx ′

+

∫
Rd

∫
Rd

[
div b(x ′) − div bδ(y)

]
ϑε(y − x ′)ρ((φδt )−1(y))Jδt (y)dy u(t, x ′)dx ′

We want to show that both contributions go to zero as ε→ 0 and δ→ 0



First term

Aδ = lim
ε→0

∫
Rd
ϑε (y − x ′)

[
b(x ′) − bδ(y)

]
· ∇y

[
ρ
(
(φδt )−1y

)
Jδt (y)

]
dy

=
[
b(x ′) − bδ(x ′)

]
· ∇x′

[
ρ
(
(φδt )−1(x ′)

)
Jδt (x ′)

]
We can prove that

|∇
[
ρ
(
(φδt )−1(·)

)
Jδt (·)

]
| . δβ

locally as δ→ 0 for any β < −d/q. Moreover

|b − bδ| . δε

so |Aδ| . δε+β → 0 as soon as ε+ β > 0.



Second term

∫
Rd

∫
Rd

[
div b(x ′) − div bδ(y)

]
ϑε(y − x ′)ρ((φδt )−1(y))Jδt (y)dy u(t, x ′)dx ′

=

∫
Rd

div b(x ′)
(∫
Rd
ϑε(y − x ′)ρ((φδt )−1(y))Jδt (y)dy

)
u(t, x ′)dx ′

−

∫
Rd

div bδ(y)ρ((φδt )−1(y))Jδt (y)uε(t, y)dy

and both terms converge, as ε→ 0 followed by δ→ 0 to∫
Rd

div b(y)ρ(φ−1
t (y))Jt(y)u(t, y)dy

so their difference converge to zero.



We obtained

lim
δ→0

lim
ε→0

[∫
Rd

uε(t,φδt x)ρ (x) dx −

∫
Rd

uε(0, x)ρ (x) dx
]

= 0.

Now ∫
Rd

uε(t,φδt x)ρ (x) dx =

∫
Rd

∫
Rd

uε(t, y)ϑε(φ
δ
t (x) − y)ρ (x) dxdy

=

∫
Rd

∫
Rd

uε(t, y)ϑε(z − y)ρ
(
(φδt )−1(z)

)
Jδt ((φδt )−1(z))−1dzdy

→
∫
Rd

u(t, z)ρ
(
φ−1

t (z)
)

Jt(φ
−1
t (z))−1dz

This yields ∫
Rd

u(t, z)ρ
(
φ−1

t (z)
)

Jt(φ
−1
t (z))−1dz =

∫
Rd

u(0, x)ρ (x) dx

for every ρ (x) ∈ C∞0 (Rd). Choosing ρ appropriately we get∫
Rd

u(t, z)ρ(z)dz =

∫
Rd

u(0, x)ρ(φt(x))Jt(x)dx =

∫
Rd

u(0,φ−1
t (y))ρ(y)dy.



Counterexamples to certain extensions

Example (Random vectorfields)

Take b(t, x) =
√

|x − Wt|, then

dXt = b(t, Xt)dt + dWt =
√

|Xt − Wt|dt + dWt.

By the change of variables Yt = Xt − Wt we obtain

dYt =
√

|Yt|dt

so path-wise uniqueness is impossible in general.

Not so artificial...



Consider a 2d stochastic Euler equation in vorticity variables

∂tξ (t, x) + (u (t, x) · ∇ξ (t, x)) dt +∇ξ (t, x) ◦ dW (t) = 0

where ξ = ∂2u1 − ∂1u2.
Formally equivalent to the "system" of stochastic ordinary equations

dXa
t =

[∫
R2

K(Xa
t − Xa′

t )ξ0(Xa′
t )da′

]
dt + dWt, a ∈ R2

for a suitable kernel K, ξ0 being the initial condition of the vorticity equation.
By the change of variable Ya

t = Xa
t − Wt we obtain

dYa
t =

[∫
R2

K(Ya
t − Ya′

t )ξ0(Xa′
t )da′

]
dt

The equation for (Ya
t ) corresponds to the classical vorticity equation

∂tξ
′ (t, x)

∂t
+ (u′ (t, x) · ∇ξ′ (t, x)) dt = 0 ξ′ = ∂2u′1 − ∂1u′2

with initial condition ξ0.



Possible way out

Consider a more complex (infinite-dimensional) noise:

dXa
t =

[∫
R2

K(Xa
t − Xa′

t )ξ0(Xa′
t )da′

]
dt +

∞∑
k=1

σk(Xa
t )dWk

t , a ∈ R2

where each point Xa is moved "almost" independently of the others.
Seems useful to require

∞∑
k=1

σk(x)σk(y) = a(|x − y|)

with a(r) ' rα as r→ 0, α > 0. This in order to hope some regularizing effect
of the noise over the deterministic (and singular) drift.
Connection with the theory of stochastic flows of Le Jan-Raimond.


