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The linear transport equation (classically)

Given b : R, x R? — R smooth vectorfield, # smooth. Consider the Cauchy
problem in R x R

ou(t, b(t,x) - Vu(t,x) =0
{ u(t,x) + b(t,x) - Vu(t,x) O

u(0,x) = u(x)
and the flow generated by b :

at(Ds,t(x) =b(t, (Ds,t(x))
q)s,s(x) =X

Solutions to (1) are constant on the trajectories of b :

%M(t, Do (x)) = Osuu(t, Do(x)) + 0 Do (x) - Vu(t, p(x)) =0

Method of characteristics

The unique solution to (1) is u(f, x) = E(CDO’,}(X)).



Non-smooth vectorfields

Weak formulation
{ du + div (bu) — (divb)u =0

u(0,x) = u(x)

Testing with smooth 0
JG(x)u(t,x)dx :JO(x)ﬁ(x)dx

+ r dsJ(u(s,x)b(s,x) -VO(x) + u(s, x)0(x)div b(s, x))dx
0

» Existence of L® weak solutions when b € L7, divb € L} and 7 € L™

loc

v

[DiPerna-Lions] Renormalized solutions: uniqueness and stability of
L™ weak solutions when b € L'(W'”) N L*® and divb € L®

[Ambrosio] Renormalized solutions for BV vectorfields

v

v

Use the transport equation to select a flow ® defined almost everywhere



SDEs with non-smooth coefficients

Idea:

Perturb the equation of characteristics by an additive Brownian noise acting
on all components.

Why?
Consider the SDE in R?

de = b(t, Xt)dt aF de, XO =X

v

Strong solutions for b Lipshitz (+ linear growth) by fixed point method

v

[Veretennikov] b bounded = uniqueness of strong solutions

v

[Krylov-R6ckner] Strong uniqueness for b in Sobolev spaces

v

[Davie] b bounded = unique solution for a.e. Brownian path

= The noise regularizes the flow of the vectorfield b <



Stochastic flow

To implement the method of characteristics we need information on
dependence on initial conditions.

Definition

A stochastic flow is a family of maps {®@;; : RY — R¥}y<,<;<r such that
» Oy (x) is o({W, — W, ls<y<r<t) measurable for any x € R,0<s<t<T;
> limy_sy @y (x) =x, as. forany x,s,t;
> Dy (Dsu(x)) = Dy (x)

Theorem (Kunita)

Ifb € CV then there exists a C¥*' -stochastic flow @, for any ' < « solving the
SDE

t

Oyx) =1+ J bl g, () + W, — W,

s

for any x € RY.



The It6 trick (I)

The regularization effect can be understood easily in the case b(t, x) = b(x).

Consider ,

X; = x+J b(X;)ds + W;
0

Try the It0 trick: interpret the integral over time as a correction in an It6

formula: ,

G(X;) =G(x) + J; VG(Xs)dW; + L LG(X;)ds

with L = A/2 +b - V. Assume that we can solve the elliptic problem
AG—LG=0b
for some A > 0 ( maybe very large ), then

t t
X +G(Xi) =x+Gx) + W, + J VG(Xs)dW,; — J AG(X;)ds
0 0

where G "has two derivatives more" than b. Setting 1 (x) = x + G(x) we get

D) = v(x) +L V(X )dW, — L AG(X.)ds



The It6 trick (IT)

Theorem (Elliptic estimates)

Forany e >0, e’ < ¢, b € C¢, the elliptic equation N\G — LG = b has a solution
G € C%€ for which ||Gl5,cr — 0as A — oo.

For A large enough Vi = 1 + VG is invertible and 1 has inverse .
Let Y, =¥(X;), y = P (x):

t t~
Y=y +J G (Ys)dW, + J b(Y,)ds
0 0
where 5(y) = Vi o p~!(y) and b(y) = AG o h~(y).

We have & € C¢', b € C2¢" and there exists a C¢’-stochastic flow ¢ solving

t t

6(@sn (y) AW, + L Bl @euly))idu

st (y) =y +J

S



Stochastic flow for C€ vectorfields

By letting ¢s; =P ~! o @5, 0 we obtain a Cle’ stochastic flow satisfying

t

o) = 2+ J Bldbsn ()l + Wi — W,

S

> this flow is the unique strong solution to the SDE
> it does not depend on the choice of A.
» we have an equation for Vs (x):

t

V(s (x)) Vs (x) = Vib(x) +J AVG(Gsu(x))V s (x)du

+ [ ) VW,

> by a stopping procedure we can assume b locally in C¢ (+ linear growth)



Push-forward

For smooth b we have

dx
(s dx=10
[ ot = o
where J;;(x) = | det Vs (x)| (Jacobian determinant) satisfy the differential

equation
L Jo) = div bl () Jul), osl) = 1.

(the stochastic perturbation is solenoidal). Then

Joto) = xp ([ vl

For b € C¢ by an approximation procedure and another It6 trick we get
t t
Jotr) = exp (Pus(2)) = o)+ || T + [ AT (311

where ' € CV¢” solve AT — LT = div b in the sense of distributions.



Stochastic transport equation

The simplest stochastic perturbation which is compatible with the method of
characteristics leads to the Stratonovich SPDE

d
dtut +bt 0 Vutdt—O— Zvl‘ut Odw; =0

i=1

and to the related SDE for the flow of characteristics:

dt‘Ds,t(x) =b(t, q)s,t(x))dt +dW,
q)s,s(x) =X

Euristically we must have again u;(x) = ﬂ((Daf (x)).



Assume that b is locally bounded and divb € L

loc*
Definition

Givenu € L} , for some p > 1 a solution of the stochastic transport equation
(STE) in L _is a measurable function (u(t,x, w),t > 0,x € R%, w € Q) such
that

(i) for P-a.e. w € Q,x € R, R > 0,5Up,c o7y [ p) I4(E % W) dx < 0o

loc

(ii) for any test function 8 € C)(IR?), the process t — [, (t, x)0(x)dx is
continuous and J;-adapted;

(iii) for any test function 6 € Cf° (R%), the process t — LRd u(t,x)0(x)dx is an
F;-semimartingale satisfying

JW u(t, x)8(x)dx = J]Rd’ x)dx + ZJ <J u(s, x)D;0(x )dx) o dW!

+ Jt dSJ u(s, x)[b(x) - VO(x) + div b(x)0(x)]dx
0 R



Main result

Theorem

Assume b € C¢ and divb € L7 and e > d/q. The STE has a unique solution u for
any @ € L, and u(t,x) = u(dy; (x)).

Note that by the pushforward formula

J Fx)g © bt ()]s x dx—J fo b7l (x)glx)dx
]Rd

with Ji;(x) < Clocally. Soif f € L}, ,¢ € L] wehavefo ¢, € L} and

loc loc

| Footpax={ | oo <o

dyt(A)



Existence

First we need to prove that [ u(t, x)6(x)dx is a semimartingale.
Let ¢; = ¢o,. Take a smooth test function 6, by Itd formula

8(u()) = 0(y) + L L20(ds(y))ds + L VO((s(y)) - AW..

Let J; (y) the Jacobian determinant of the flow ¢ for the regularized
vectorfield b¢. Since b® is smooth: dJf (y) = div b®(d:(y))]5 (y)dt.
Then

j uo(mewt(ymf(wdyzj ()8 (y)dy + J dsj 10(y) L8 (s () ] (y)dly
R R4 0 RA

+J ds J 1o (1)8(bs () dliv b (s (y) )% (y)dy
]Rd

0

+J AW, - J 1o (¥) V8 (s (1) )JE (v)dy
0 R4

In the limit ¢ — 0 each term converges so

i | o0y = | w0ty = | uit, 10ty

e—0

is a semi-martingale.



Next we need to prove that the semimartingale [ u(t, x)0(x)dx satisfy the
stochastic transport equation.
By the Stratonovic-Itd formula

t

8(bi(y)) = B(y) + Lb V(s (y))ds +J VO((s(y)) o dW,.

0

Then

d

J s0(y)8 (s I (y)ely = j ()8 (y)dy+J J so(y)b - VO () )JE )y
]Rd IRd

f ds Lw 110 ()8 (s (7)) v b (s (y) )T (y)dy

L AW, J o(y)VO(s () )% (y)dy

R

and take the limit ¢ — 0 to conclude.



Uniqueness

Goal
Prove that, if u(t, x) solve the STE then we must have u(t, x) = u(d; *(x)).

We start by smoothing u. Define
uclty) = [ a0y —2)dx, )= [ w09, (v —x)dx.
RY RY
Since u is a solution to STE we get

t

ue(ty) = uge(y) +J U}Rd u(s, x)b(x) - Ve (y — x)dx} ds

0

+ Jt ds J u(s, x)div b(x) 9 (y — x)dx
0 R?

+ZJ U (s, X)Dy, . (y—x)dx}odWé



Let b® =95 * b and let ¢° the associated flow.
By Stratonovich version of It6-Wentzel calculus

2 elt, 0 () = {Ju(t,x') [(B(') = B (1) - Turbe (g = ') + div ()9, (y — ') dx'}

Test against p € C(IR?) and perform a change of variables
d

& | et opvp s

= J]Rd J]Rd u(t,x’) Hh(x’) —p® (y)} cVyude (y—x') +divh(x') e (y — x’)]y:c‘)?m dx’p (x) d

JRd J]Rd ult,x’) Hb(x,) - (y]} Verde (y—x') +divh(x') D (y — x’)] dx'p ((4%5)71(?):
By an integration by parts this is equal to
:Jw UJR Ve (y =) o) = )] - 9y [0 (6D W) P )] dy] u(t,x')dx!

] | [divben) = dived (] oty =)o ((0F) W )yt x )

We want to show that both contributions go to zeroas ¢ — 0 and 6 — 0



First term

e—0

A® =lim Ld 9 (y—x) [b(x") = °(W)] - Vy [p (67) ) I (v)] dy
)

= [b(x") = (x")] - Vo [p ((67) ' (x) ]

We can prove that

(x")]

IV [0 (7)1 (D) JP0)] | 5 88
locally as & — 0 for any 3 < —d/q. Moreover

b—b°| < 8¢

50 |As| < 8¢TP — 0assoonas e+ > 0.



Second term

[ | laivbta) — divbe )] 0ty —x1o((69) )ty it )’
= | aivb) (J %E(y—x')p((cbf)*(y))ff(wdy) u(t, x')dx!
R4 R4

_ de div b® (1) p((2) " ()2 (Y)ue (£, y)dy

and both terms converge, as ¢ — 0 followed by 4 — 0 to

JW div b(y)o(d;  (v))i(y)ult, y)dy

so their difference converge to zero.



We obtained

syt [t 08200 01— | (000 0105] <o

R4
Now
J ug(t,d)fx)P(x)dx:J J U (t, ) (df (x) — y)p (x) dxdy
RY Ri Jgi
- JN JN e (t,y10e (= y)o ((69) 7 (2)) P ((9F) " (2)) 'dzdy
- JW u(t,2)p (077 (2)) Ji(p ' (2)dz
This yields

de u(t,2)p (b, 1(2)) Jild; ' (2)) 'dz = J u(0,x)p (x) dx

R4

for every p (x) € C?(R?). Choosing p appropriately we get

J u(t,z)p(z)dz—J u(O,x)p((b,(x))],(x)dx:J (0, &2 () p ().
R4 . »



Counterexamples to certain extensions

Example (Random vectorfields)

Take b(t, x) = +/|x — W4/, then
dX, = b(t, X, )dt + dW, = /|X; — Wildt + dW,.

By the change of variables Y; = X; — W, we obtain

dY; = +/|Y.ldt

so path-wise uniqueness is impossible in general.

Not so artificial...



Consider a 2d stochastic Euler equation in vorticity variables
& (£,x) + (u(t,x) - VE(E,x)) dt + VE(t,x) 0 dW () =0

where E, = aﬂxl] — aluz.
Formally equivalent to the "system" of stochastic ordinary equations

axt = || KOxt = X Vel | de + v, 1R
]RZ

for a suitable kernel K, &, being the initial condition of the vorticity equation.
By the change of variable Y{ = X{ — W, we obtain

dy; = U K(Y? fY?/)éo(X?/)da’] dt
]RZ

The equation for (Y§) corresponds to the classical vorticity equation

afa’ (trx)

o + (' (t,x) - VE (t,x))dt =0 & = 0u) — 0

with initial condition &.



Possible way out

Consider a more complex (infinite-dimensional) noise:

axe = U K(X" — X?')QO(X?')da’} dt+ ) on(X5)dWy, aeR?
R? k=1
where each point X, is moved "almost" independently of the others.
Seems useful to require

S oi@)oxly) = allx—y)

k=1

witha(r) ~ r*asr — 0, « > 0. This in order to hope some regularizing effect
of the noise over the deterministic (and singular) drift.
Connection with the theory of stochastic flows of Le Jan-Raimond.



