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Rough paths

» T. Lyons (Oxford): an integration theory for irregular signals.

» Nonlinear systems y; driven by a (non-differentiable) noise x;

dy = f(y)dx

» The output y is a nice function of the iterated integrals of x:

(x,dedx,~~- ,de®"> 2. y

We can consider only a finite number of them. No need of formal series.



Algebraically

The increment dys = y; — y; of the solution of the integral equation
y = [ f(y)dx has a natural expansion

t

dYss = Ef(yu)dxu =f(ys) J: dx, +f(ys)f/(y5)J LM dx,dx, +h.o.t.

S S

If we neglect the h.o.t. it belongs to the linear span of the iterated integrals
t
XL=x—x .. X. :J X' dx,
and we write it as [ (FX)es = fsXis ]
5y:ylxl +y2X2+
where y! = f (1), y> = f (y:)f'(y:), and so forth.

The solution of the ODE is identified with the fixed point of

nonlinear . X
map integration

y — fly) — If(y)

for ys whose increments can be (partially) expanded on the {X"},



Phenomenology of rough-paths



Trees
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Differential equations (@ la Butcher)

The solution y of the differential equation

dy =f(y)dt,  y=n

has the B-series representation

ye=n+) V(M

TeT

Elementary differentials /' defined as
W(e)(&) =£(8), W[t =fW () (E)" - (T) (&)

where fy(&) =f(&) and f3(&) H‘b‘ 0 &, f(&) derivatives of the vectorfields.



Driven differential equations

Given a collection of paths {x* € C'([0, T], R)},e, n € R”
Analytic vectorfields {f; : R" — R"},c

Theorem
The differential equation

dyr = falys)dx{,  yo=nm

admit locally the series solution

=y + Z v)X5  yo=n

TED g,

where §f (o) (£) = fo(£), & ([T -+ T1a) (£) = fup, .1, (E) [T [9F (7)) (E)1.



Smooth iterated integrals

Let X : ¢ — G, c C([0, T R)
& 1.k t K i
X =, x| []xgax, M
s 5 i=1
Extend X to AT, considering C, as an algebra with (commutative) product
(aob) =aub, fora, b e . Welet X! =1.
X;rslmrr” _ X;rSIX;rSZ . X;", X[Tl‘“'r”]a — JXTlmT”dxa

Bounds -
. Alt —s|)'T
) < A= DT

T!

Theorem (Tree multiplicative property )

(1) (2) A
T __ § T i _ i
th - Xtu Xus =X

tus



Example

t
T =t—s, T :J Tel - Todu

S

By induction: TF = (t —s)!7(t!)~!
Lemma (Tree Binomial)

For every T € T and a,b > 0 we have

! (1) (2)
el _ i e i
(a+b) 7;@?”!@?2)!‘1 b

@



Structure of solution to DDEs

Write 47 = ¢/ (1) (ys)/0(T) so that

yi—ye= Y Xyt
T€Tyg,
Lemma

Forany t € Ty, U {0} we have

yr— T = Z c'(o, T, p)XRyS

€T ,peETF

¢’ counting function of reduced coproduct: A'c =3 _ ¢'(0,T,p)T® p.



Integration of increments

v

Q: Givena € €, can we find f € C; such thatf; — f; = a;5 ?

Ats — Aty — Ays = (ﬁ 7fs) - (ft 7fu) - (fu *fs) =0 (ObStI'U_CtiOI'l)

» Increments: €, C C([0,1]",V), g € C, iff g ..., =0 when t; = t; 4

Coboundary: 8f;s = f; — fs, 8Stus = Qs — Siu — Quss - - -, 0> =0
O—>]R—>(?1i>(?2i(?3i>

Then 6f =a < d6a =0.

Small 2-increments cannot be exact: a;; = o(|t —s|) = a # of

v

» Unique decomposition: a = df +o(|t —s|) ?
Yes, if obstruction da is small:

Theorem
If 8aws = o(|t — s|), then 3! f € Cy,r € CLT such that

a=>d +r, O =(1—Ad)a



Examples

» Convergence of sums:
Sio = Z‘meft = Z(5f)ti+1ti 4+ Z(ﬂtmn = (&f ) + ZO(\fz‘ﬂ —tl) = fi —fo

> Young integrals: xeCY,v>1/2a; = @(xs)0x;s
8s = 5 (X)1uds = (It — 5P) = & = (1— AB)a = J o(x)dx

» NCG & A map. L*(R), dg = [F,g], F* =¢,

t— Js 1
(df)is = % J fdg = Tr, (fdg) = Z—CTrw (Fdfdg)

SO
1
A(888) o0 = — 52 T (Filig)



(Step-2) Rough paths

Rough integrals: X* = x, 6X*) = X*X*, X* € ), X!* € & (y > 1/3)

i;cp(X)dx = (1-A8)(@(x)X* + ¢'(x)X")),

5(-)eedr >t

Sle(x)X® + @' (x)X")) = (—8p(x) + @' (x)X*)X* — ¢’ (x) X'

v

Continuous map: (¢, X*, X!*) — § ¢(x
» Renormalized sums: ) ;(¢(x;, )X T e HERD:¢ H»lt —§o(x
§dxdx = X'l

A finite number of iterated integrals determines all the other integrals.

v

v



Branched rough paths

The only data we need to build the family {X"}.c7, is a family of maps {I"},cc
from @, to C, satisfying certain properties.

Definition

An integral is a linear map I : D; — D; on an unital sub-algebra D; C €5 for
which I(hf) = I(h)f,Vh € Dy, f € €; and

8I(h) =I(e)h+ Y I(h)W*  whenhe Dy, 8h=) h"h* and k" € D,

1

Then X* = [*(e), Xl

1

kly Iﬂ(XTlmTk), Xt

k 1 k

=X" o0---0X".

=T

Tree multiplicative property still holds: §X* = X4'".



Geometric rough paths

Integrals are not necessarily Rota-Baxter maps: e.g. ItAZ stochastic integral
t t t S t S t
stdxsj Qsdxs = J fsJ Qudx, dx, +J gsJ fudx, dx; +stgsd5
0 0 o Jo o Jo 0

I(A)I(g) = I(I(F)g) +I(A1()) +J(1R),  J(FIQ) = J(fI(g)) + (8] (f))

Solution to dy = ydx, yo = 1: y; = exp(x; — t/2).
When they are Rota-Baxter we have shuffle relations:

J&! ( L[ (1)) o Ibl Ihm Z Ifl IfrH»m )) (3)
ceSh(ab)

This relation reduces X™ for T € T, to a linear combination of {X U}o.e.j-ghen‘
These are geometric rough-paths: the closure of smooth rough paths.



Growing a branched rough path

Fix y € (0,1], consider g, : ¥ — IR, on forests as g (1) = 1 for |t| < 1/y and

. 1 .
gy(t) =1 if <1y gyl1) = il Z gy (t)gy (1) otherwise

qY(Tl o 'Tn) = qY(Tl) o 'q’Y(TV!)'
Theorem
Given a partial homomorphism X : A, T — C; satisfying the multiplicative

property
X5l < BAgy (1)t — 1, Te T} 4

withy(n+1) > 1, then 3! X : AT, — C, such that eq. (4) holds VT € T..

Construction via the equation: X™ = A(XA'T).



Speed of growth

Conjecture
gy (t) < C(T) ™Y

True for linear Chen trees J¢hen:

n

k1yy (n—k) n
Z avepy = (a+0b)Y

ey SO oy Y€1, ab>0

k=0
Variant of Lyons’ neo-classical inequality

n

aykby(nfk) (u+b)yn
2 ORI < !

k=0

“neo-classical tree inequality”?

avI* D pyic?)] (a + b)YI™

> (O (@ ST (T

OK fory = 1: tree binomial formula.



Controlled paths

Definition

Let n the largest integer such that ny < 1. Forany k € (1/(n+1),y] a path yis
a k-weakly controlled by X if

Sy= ) XY 4y, syt= > D doTeXPy+y™,  TedFy!
eFi! cegn=l 0

n—|t|)k

with y* € @‘;‘K,y’i'T € @; . Then we writey € Q. (X; V).

Lemma (Stability)

Let @ € CZ(]Rk,]R] andy € Qu(X; ]Rk], then zx = @ (y:) is a weakly controlled path,
z € Q«(X;R) where its coefficients are given by

n—1
T _ (pfz(y) T,b T, b, n—1
m=1|p|=m Ty T €F 1



Integration of controlled paths

Theorem

The integral maps {I*}ac . can be extended to maps I* : Q. (X) — 8Q.(X)

yeEUX) - oz=I(y) =X"z"+ Y X7 +2, (5)

n
TeTy

n+1)

where 2 € G5V, 2% — y, 2% — yT and zero otherwise.

Remark

Ify € Qu(X;R" @ RY) then {J°(-) = X, I"(y"*)}per, defines a family of
integrals with an associated branched rough path Y indexed by T¢,. An
explicit recursion is

Yo — Zla(yab), Y[lerk]b _ Zla(yahYTl 0.0 YTk), be Ll

acl ackl



Example

6y = X.y. =+ XIyI + X-nyn- + XVyV + XI-yIc + XV]/V + Xocoyooc + XIyI + yn
5yo — Xc(yz +2y") +XI(yI +y10) +X"(y1. _"_yv +3yco¢) +yc,t

5yo¢ — X* (yIG +y¢o¢) +y¢o,ﬁ

5yv = yv't 6yI¢ = on't Sy“' — yooc't SyI — yi'u

5z = 8l(y) = Xy + X4y* + XIyI + X ¥y ¢ X\fxyi- + XYyV + XV e XiyI 5P
= X°z* + X328 + X}z} +x¥¥
with

Zb =A }(oy:1 + Xzyo'j + XIyI'j + vaoo'j + Xvi't + X*}y:o'j + X.\Y.yooo't:| .



Rough differential equations

Take vectorfields {f, € C (R¥; R¥)},c and integral maps {I"},c, and consider
the rough differential equation

Sy =I"(y), y=meR (6)
in the time interval [0, T].

Theorem

The rough differential equation (6) has a global solution y € Q. (X; R) for any
initial conditionm € RX. If the vectorfields are C; " the solution is unique and has
Lipshitz dependence on data.



The KdV equation

1d periodic KdV equation:

duut, £) + O%u(t, £) + %aau(f, E2=0, u(0,&)=up(E), (HE) €RxT

where initial condition uy € H*(T), T = [—m, 7). Linear part: Airy group U(t)
(isometries on H%). Go to Fourier variables and let v; = U(—t)u;:

. !/ t
v (k) = vo(k) + % ZJ e Bkksy (ko (ko)ds, te[0,T],k € Z,
m

where k; = k — k; and vy(k) = ug(k). Restrict to vy(0) = 0. It has the form

t

Up = Us +J Xs(vs,04)do, t,s € [0, T].

where X, (@, @) = § Y| e kg (k) @(k,).



The KdV equation

Expansion

v = X*(0°2) + X3 (™3 + X}(v“) +x¥ (o4 +r

with multi-linear operators X*:

t

X (01, 92) :J Xs(@1, 92)do;

S

t

1 .
X (@1, @ms1) :J Ko (X2 (@1 ) @), @s)do

S
and

t
[tl72]
th

S

Eq.7 is a rough equation which can be solved with fixed-point:

50 = (1 — A8)[X*(v*2) + X3 (0>3)]

((Ph ey (pn1+n) = J XU(X?;L((PM ey (pm)/ Xi((Perlr ceey (Pm+n))d0_«

@)



Shadows of the conservation law

Lemma

(01, Xs(@2, @3)) + (@2, Xs (@1, @3)) + (3, Xs (@2, 1)) =0, se[0,T]

(0, Xs(0,0)) =0  2(0, X2(0, 0, 0)) + (Xis(, ), Xis(@, 9)) =0

16 (v, 0)ts = 2(Xis (s, V5) + X2 (05,05, 05) + Vs, vs)
+ <XtS(USrUS)rXfS(vSrvS)> + 2<th(vs/vs)rvgs> + (Ufyvgﬁ
= 2(vh, vs) + 2(X4s (05, 05),0s) + (vfs, 0f) = O(It —51>Y)

Theorem (Integral conservation law)

If v is a solution of KAV then [v,|3 = |vo[2 for any t.



The NS equation

The d-dimensional NS equation (or the Burgers’ equation) have the abstract

form ,

uy = Syg +J Si—sB(us, us) ds. (8)
0

S bounded semi-group on B, B symmetric bilinear operator.
Define d(t)-multilinear operator by

t

Xf.s((pxz) = J StfuB(Su—s(p/ Su—s(P)du

t
1 1 1 il
X[ (@x@)+1)) :J St uB(XT (™™, @)du
S

and

1.2 t 1 2

X[T E ]((px(d(Tl)er(Tz))) — J StfuB(X;:s ((pxd(’rl)) XT ((pxd(’rz)))du

ts 7 “Xus

where d(T) is an appropriate degree function.



Bounds on the operators and regularity

The X operators allow bounds in B of the form

T( o Xd(T) |t — sl
X" (@ s <Cw|¢"3
where ¢ > 0 is a constant depending on the particular Banach space B we
choose.
We have the (norm convergent) series representation
=Smo+ Y Xp(ug™ 9)
TeTp

which gives local solutions to NS.
Regularity: [u(k)] < Ce~ V! by controlling growth of the terms in the series.



Convolution integrals

> A cochain complex (C*, $) adapted to the study of convolution integrals.

» Coboundary dh = dh — ah — ha with a;s = S,_; — Id the 2-increment
associated to the semi-group (parallel transport).

» Associated integration theory ( A-map as inverse to ).

> Algebraic relations , e.g.:
5x3(@*?) = X*(X*(9*?), )

» Applications to stochastic partial differential equations (SPDEs):

t

uy = S + J Si—sdw.f (us)
0



Perspectives & open problems

> Rough integrals as renormalized integrals

A\

Growth of X and generalized B-series:
al
; BIEIE
Birkhoff decomposition for PDEs (cf. ERGE)
Scaling in PDEs (RG):

> Blowup of solutions via series methods (cf. Sinai for cNS)
> Long-time asymptotics

v

v

» Nonperturbative solutions of DSE
Hochschild cohomology for (C, 8)

v



