Some infinite dimensionals rough-paths

Massimiliano Gubinelli

Laboratoire de Mathématiques Université Paris-Sud XI

Rough paths

- ► T. Lyons (Oxford): an integration theory for irregular signals.
- ▶ Nonlinear systems y_t driven by a (non-differentiable) noise x_t

$$dy = f(y)dx$$

► The output *y* is a nice function of the iterated integrals of *x*:

$$\left(x,\int dxdx,\cdots,\int dx^{\otimes n}\right)\stackrel{\Phi}{\longrightarrow} y$$

We can consider only a finite number of them. No need of formal series.

Algebraically

The increment $\delta y_{ts} = y_t - y_s$ of the solution of the integral equation $y = \int f(y) dx$ has a natural expansion

$$\delta y_{ts} = \int_{s}^{t} f(y_u) dx_u = f(y_s) \int_{s}^{t} dx_u + f(y_s) f'(y_s) \int_{s}^{t} \int_{s}^{u} dx_w dx_u + \text{h.o.t.}$$

If we neglect the h.o.t. it belongs to the linear span of the iterated integrals

$$X_{ts}^{1} = x_{t} - x_{s}$$
 ... $X_{ts}^{n} = \int_{s}^{t} X_{us}^{n-1} dx_{u}$

and we write it as

$$[(fX)_{ts} = f_s X_{ts}]$$

$$\delta y = y^1 X^1 + y^2 X^2 + \cdots$$

where $y_t^1 = f(y_t)$, $y_t^2 = f(y_t)f'(y_t)$, and so forth.

The solution of the ODE is identified with the fixed point of

$$y \xrightarrow{\substack{nonlinear \\ map}} f(y) \xrightarrow{integration} I(f(y))$$

for ys whose increments can be (partially) expanded on the $\{X^n\}_n$

Phenomenology of rough-paths

Trees

 \mathcal{L} finite set. Trees labeled by \mathcal{L} , $\mathcal{T}_{\mathcal{L}}$

$$(\tau_1, \cdots, \tau_k) \overset{B^a}{\overset{+}{\mapsto}} \tau = [\tau_1, \cdots, \tau_k]_a$$

$$[\bullet] = \bullet] \qquad [\bullet, [\bullet]] = \bullet, \qquad \text{etc.} \dots$$

$$\Delta(\tau) = 1 \otimes \tau + \sum_{a \in \mathcal{L}} (B^a_+ \otimes \mathrm{id}) [\Delta(B^a_-(\tau))]$$

$$B^a_-(B^b_+(\tau_1 \cdots \tau_n)) = \begin{cases} \tau_1 \cdots \tau_n & \text{if } a = b \\ 0 & \text{otherwise} \end{cases}$$

Differential equations (à la Butcher)

The solution *y* of the differential equation

$$dy = f(y)dt$$
, $y_0 = \eta$

has the B-series representation

$$y_t = \eta + \sum_{\tau \in \mathfrak{I}} \psi^f(\tau)(\eta) \frac{t^{|\tau|}}{\sigma(\tau)\tau!}$$

Elementary differentials ψ^f defined as

$$\psi^f(\bullet)(\xi) = f(\xi), \qquad \psi^f([\tau^1 \cdots \tau^k]) = f_{\bar{b}}(\eta) \psi^f(\tau^1)(\xi)^{b_1} \cdots \psi^f(\tau^k)(\xi)^{b_k}$$

where $f_{\emptyset}(\xi) = f(\xi)$ and $f_{\bar{b}}(\xi) = \prod_{i=1}^{|\bar{b}|} \vartheta_{\xi_{b_i}} f(\xi)$ derivatives of the vectorfields.

Driven differential equations

Given a collection of paths $\{x^a \in C^1([0,T],\mathbb{R})\}_{a\in\mathcal{L}}, \eta \in \mathbb{R}^n$ Analytic vectorfields $\{f_a : \mathbb{R}^n \to \mathbb{R}^n\}_{a\in\mathcal{L}}$

Theorem

The differential equation

$$dy_t = f_a(y_t)dx_t^a, \qquad y_0 = \eta$$

admit locally the series solution

$$y_t = y_s + \sum_{\tau \in \mathcal{T}_{\mathcal{L}}} \frac{1}{\sigma(\tau)} \Phi^f(\tau)(y_s) X_{ts}^{\tau}, \qquad y_0 = \eta$$

where
$$\Phi^f(\bullet_a)(\xi) = f_a(\xi)$$
, $\Phi^f([\tau^1 \cdots \tau^k]_a)(\xi) = f_{a;b_1 \dots b_k}(\xi) \prod_{i=1}^k [\Phi^f(\tau^i)(\xi)]^{b_i}$.

Smooth iterated integrals

Let $X: \mathfrak{T}_{\mathcal{L}} \to \mathfrak{C}_2 \subset C([0,T]^2;\mathbb{R})$

$$X_{ts}^{\bullet_a} = \int_s^t dx_u^a, \qquad X_{ts}^{[\tau^1 \dots \tau^k]_a} = \int_s^t \prod_{i=1}^k X_{us}^{\tau^i} dx_u^a. \tag{1}$$

Extend X to $\mathcal{AT}_{\mathcal{L}}$ considering \mathcal{C}_2 as an algebra with (commutative) product $(a \circ b)_{ts} = a_{ts}b_{ts}$ for $a, b \in \mathcal{C}_2$. We let $X^1 = 1$.

$$X_{ts}^{\tau_1 \cdots \tau_n} = X_{ts}^{\tau_1} X_{ts}^{\tau_2} \cdots X_{ts}^{\tau_n}, \qquad X^{[\tau_1 \cdots \tau_n]_a} = \int X^{\tau_1 \cdots \tau_n} dx^a$$

Bounds

$$|X_{ts}^{\tau}| \leqslant \frac{(A|t-s|)^{|\tau|}}{\tau!}$$

Theorem (Tree multiplicative property)

$$X_{ts}^{\tau} = \sum X_{tu}^{\tau^{(1)}} X_{us}^{\tau^{(2)}} = X_{tus}^{\Delta \tau}$$

Example

$$T_{ts}^{\bullet} = t - s, \qquad T_{ts}^{[\tau_1 \cdots \tau_n]} = \int_s^t T_{us}^{\tau_1} \cdots T_{us}^{\tau_n} du$$

By induction: $T_{ts}^{\tau} = (t - s)^{|\tau|} (\tau!)^{-1}$

Lemma (Tree Binomial)

For every $\tau \in \mathfrak{T}$ and $a, b \geqslant 0$ we have

$$(a+b)^{|\tau|} = \sum_{i} \frac{\tau!}{\tau_i^{(1)}! \tau_i^{(2)}!} a^{|\tau_i^{(1)}|} b^{|\tau_i^{(2)}|}$$
(2)

Structure of solution to DDEs

Write $y_s^{\tau} = \phi^f(\tau)(y_s)/\sigma(\tau)$ so that

$$y_t - y_s = \sum_{\tau \in \mathfrak{T}_{\mathcal{L}}} X_{ts}^{\tau} y_s^{\tau}$$

Lemma

For any $\tau \in \mathfrak{T}_{\mathcal{L}} \cup \{\emptyset\}$ we have

$$y_t^{\tau} - y_s^{\tau} = \sum_{\sigma \in \mathcal{T}_{\mathcal{L}}, \rho \in \mathcal{F}_{\mathcal{L}}} c'(\sigma, \tau, \rho) X_{ts}^{\rho} y_s^{\sigma}$$

c' counting function of reduced coproduct: $\Delta'\sigma = \sum_{\tau,\rho} c'(\sigma,\tau,\rho)\tau\otimes\rho$.

Integration of increments

- Q: Given $a \in \mathcal{C}_2$ can we find $f \in \mathcal{C}_1$ such that $f_t f_s = a_{ts}$? $a_{ts} a_{tu} a_{us} = (f_t f_s) (f_t f_u) (f_u f_s) = 0$ (obstruction)
- ► Increments: $\mathcal{C}_n \subset C([0,1]^n, V)$, $g \in \mathcal{C}_n$ iff $g_{t_1 \cdots t_n} = 0$ when $t_i = t_{i+1}$ Coboundary: $\delta f_{ts} = f_t f_s$, $\delta g_{tus} = g_{ts} g_{tu} g_{us}$, ..., $\delta^2 = 0$

$$0 \to \mathbb{R} \to \mathcal{C}_1 \xrightarrow{\delta} \mathcal{C}_2 \xrightarrow{\delta} \mathcal{C}_3 \xrightarrow{\delta} \cdots$$

Then $\delta f = a \Leftrightarrow \delta a = 0$.

- ► Small 2-increments cannot be exact: $a_{ts} = o(|t s|) \Rightarrow a \neq \delta f$
- ► Unique decomposition: $a = \delta f + o(|t s|)$? Yes, if obstruction δa is small:

Theorem

If
$$\delta a_{tus} = o(|t-s|)$$
, then $\exists ! f \in \mathfrak{C}_1, r \in \mathfrak{C}_2^{1+}$ such that

$$a = \delta f + r$$
, $\delta f = (1 - \Lambda \delta)a$

Examples

► Convergence of sums:

$$S_{t0} = \sum_{i} a_{t_{i+1}t_{i}} = \sum_{i} (\delta f)_{t_{i+1}t_{i}} + \sum_{i} (r)_{t_{i+1}t_{i}} = (\delta f)_{t0} + \sum_{i} o(|t_{i+1} - t_{i}|) \rightarrow f_{t} - f_{0}$$

▶ Young integrals: $x \in C^{\gamma}$, $\gamma > 1/2$ $a_{ts} = \varphi(x_s)\delta x_{ts}$

$$\delta a_{tus} = \delta \varphi(x)_{tu} \delta x_{us} = o(|t - s|^{2\gamma}) \Rightarrow \delta f = (1 - \Lambda \delta)a =: \int \varphi(x) dx$$

► NCG & Λ map. $L^2(\mathbb{R})$, dg = [F, g], $F^2 = c$,

$$(df)_{ts} = \frac{f_t - f_s}{t - s}$$

$$\int f dg = \operatorname{Tr}_{\omega}(f dg) = \frac{1}{2c} \operatorname{Tr}_{\omega}(F df dg)$$

so

$$\Lambda(\delta f \delta g)_{-\infty,\infty} = -\frac{1}{2c} \text{Tr}_{\omega}(F df dg)$$

(Step-2) Rough paths

Rough integrals:
$$X^{\bullet} = \delta x$$
, $\delta X^{[\bullet]} = X^{\bullet} X^{\bullet}$, $X^{\bullet} \in \mathcal{C}_2^{\gamma}$, $X^{[\bullet]} \in \mathcal{C}_2^{2\gamma}$ ($\gamma > 1/3$)

$$\oint \varphi(x)dx = (1 - \Lambda \delta) (\underbrace{\varphi(x)X^{\bullet} + \varphi'(x)X^{[\bullet]}}_{\delta(\cdot) \in \mathcal{C}_3^{3\gamma > 1}}),$$

$$\delta(\varphi(x)X^{\bullet} + \varphi'(x)X^{[\bullet]}) = (-\delta\varphi(x) + \varphi'(x)X^{\bullet})X^{\bullet} - \delta\varphi'(x)X^{[\bullet]}$$

- ► Continuous map: $(\varphi, X^{\bullet}, X^{[\bullet]}) \mapsto \oint \varphi(x) dx$
- ► Renormalized sums: $\sum_{i} (\varphi(x_{t_i}) X_{t_{i+1}t_i}^{\bullet} + \varphi'(x_{t_i}) X_{t_{i+1}t_i}^{[\bullet]}) \rightarrow \oint \varphi(x) dx$
- ► A finite number of iterated integrals determines all the other integrals.

Branched rough paths

The only data we need to build the family $\{X^{\tau}\}_{\tau \in \mathcal{T}_{\mathcal{L}}}$ is a family of maps $\{I^{a}\}_{a \in \mathcal{L}}$ from \mathcal{C}_{2} to \mathcal{C}_{2} satisfying certain properties.

Definition

An *integral* is a linear map $I: \mathcal{D}_I \to \mathcal{D}_I$ on an unital sub-algebra $\mathcal{D}_I \subset \mathcal{C}_2^+$ for which I(hf) = I(h)f, $\forall h \in \mathcal{D}_I, f \in \mathcal{C}_1$ and

$$\delta I(h) = I(e)h + \sum_i I(h^{1,i})h^{2,i} \qquad \text{when } h \in \mathcal{D}_I, \, \delta h = \sum_i h^{1,i}h^{2,i} \text{ and } h^{1,i} \in \mathcal{D}_I$$

$$\text{Then } X^{\bullet_a} = I^a(e), \qquad X^{[\tau^1 \cdots \tau^k]_a} = I^a(X^{\tau^1 \cdots \tau^k}), \qquad X^{\tau^1 \cdots \tau^k} = X^{\tau^1} \circ \cdots \circ X^{\tau^k}.$$

Tree multiplicative property still holds: $\delta X^{\tau} = X^{\Delta'\tau}$.

Geometric rough paths

Integrals are not necessarily Rota-Baxter maps: e.g. ItÃŹ stochastic integral

$$\int_0^t f_s dx_s \int_0^t g_s dx_s = \int_0^t f_s \int_0^s g_u dx_u dx_s + \int_0^t g_s \int_0^s f_u dx_u dx_s + \int_0^t f_s g_s ds$$

$$I(f)I(g) = I(I(f)g) + I(fI(g)) + J(fg),$$
 $J(f)I(g) = J(fI(g)) + I(gJ(f))$

Solution to dy = ydx, $y_0 = 1$: $y_t = \exp(x_t - t/2)$.

When they are Rota-Baxter we have shuffle relations:

$$I^{a_1}(\cdots I^{a_n}(1)) \circ I^{b_1}(\cdots I^{b_m}(1)) = \sum_{\overline{c} \in Sh(\overline{a},\overline{b})} I^{c_1}(\cdots I^{c_{n+m}}(1))$$
(3)

This relation reduces X^{τ} for $\tau \in \mathcal{T}_{\mathcal{L}}$ to a linear combination of $\{X^{\sigma}\}_{\sigma \in \mathcal{T}^{Chen}_{\mathcal{L}}}$. These are *geometric rough-paths*: the closure of smooth rough paths.

Growing a branched rough path

Fix $\gamma \in (0,1]$, consider $q_{\gamma} : \mathcal{F} \to \mathbb{R}_+$ on forests as $q_{\gamma}(\tau) = 1$ for $|\tau| \leqslant 1/\gamma$ and

$$q_{\gamma}(\tau)=1$$
, if $|\tau|\leqslant 1/\gamma$ $q_{\gamma}(\tau)=rac{1}{2^{\gamma|\tau|}}\sum q_{\gamma}(au^{(1)})q_{\gamma}(au^{(2)})$ otherwise $q_{\gamma}(au_1\cdots au_n)=q_{\gamma}(au_1)\cdots q_{\gamma}(au_n).$

Theorem

Given a partial homomorphism $X: \mathcal{A}_n \mathcal{T}_{\mathcal{L}} \to \mathcal{C}_2$ satisfying the multiplicative property

$$|X_{ts}^{\tau}| \leqslant BA^{|\tau|} q_{\gamma}(\tau) |t - s|^{\gamma|\tau|}, \qquad \tau \in \mathfrak{T}_{\mathcal{L}}^{n}$$
 (4)

with $\gamma(n+1) > 1$, then $\exists ! X : \mathcal{AT}_{\mathcal{L}} \to \mathbb{C}_2$ such that eq. (4) holds $\forall \tau \in \mathcal{T}_{\mathcal{L}}$.

Construction via the equation: $X^{\tau} = \Lambda(X^{\Delta'\tau})$.

Speed of growth

Conjecture

$$q_{\gamma}(\tau) \simeq C(\tau!)^{-\gamma}$$

True for linear Chen trees T^{Chen}:

$$\sum_{k=0}^{n} \frac{a^{\gamma k} b^{\gamma(n-k)}}{(k!)^{\gamma} (n!)^{\gamma}} \leqslant c_{\gamma} \frac{(a+b)^{\gamma n}}{(n!)^{\gamma}}, \qquad \gamma \in (0,1], \ a,b \geqslant 0$$

Variant of Lyons' neo-classical inequality

$$\sum_{k=0}^{n} \frac{a^{\gamma k} b^{\gamma(n-k)}}{(\gamma k)! [\gamma(n-k)n]!} \leqslant c_{\gamma} \frac{(a+b)^{\gamma n}}{(\gamma n)!}$$

"neo-classical tree inequality"?

$$\sum \frac{a^{\gamma | \tau^{(1)} | b^{\gamma | \tau^{(2)} |}}}{(\tau^{(1)}!)^{\gamma} (\tau^{(2)}!)^{\gamma}} \le c_{\gamma} \frac{(a+b)^{\gamma | \tau|}}{(\tau!)^{\gamma}}$$

OK for $\gamma = 1$: tree binomial formula.

Controlled paths

Definition

Let n the largest integer such that $n\gamma \le 1$. For any $\kappa \in (1/(n+1), \gamma]$ a path y is a κ -weakly controlled by X if

$$\delta y = \sum_{\tau \in \mathcal{F}_{\mathcal{L}}^{n-1}} X^{\tau} y^{\tau} + y^{\sharp}, \qquad \delta y^{\tau} = \sum_{\sigma \in \mathcal{F}_{\mathcal{L}}^{n-1}} \sum_{\rho} c'(\sigma, \tau, \rho) X^{\rho} y^{\sigma} + y^{\tau, \sharp}, \qquad \tau \in \mathcal{F}_{\mathcal{L}}^{n-1}$$

with $y^{\tau} \in \mathcal{C}_2^{|\tau|\kappa}$, $y^{\sharp,\tau} \in \mathcal{C}_2^{(n-|\tau|)\kappa}$. Then we write $y \in \mathcal{Q}_{\kappa}(X; V)$.

Lemma (Stability)

Let $\varphi \in C_b^n(\mathbb{R}^k, \mathbb{R})$ and $y \in \Omega_{\kappa}(X; \mathbb{R}^k)$, then $z_t = \varphi(y_t)$ is a weakly controlled path, $z \in \Omega_{\kappa}(X; \mathbb{R})$ where its coefficients are given by

$$z^{\tau} = \sum_{m=1}^{n-1} \sum_{|\bar{b}|=m} \frac{\varphi_{\bar{b}}(y)}{m!} \sum_{\substack{\tau_1, \dots, \tau_m \in \mathcal{F}_{\mathcal{L}}^{n-1} \\ \tau_1 \dots \tau_m = \tau}} y^{\tau_1, b_1} \dots y^{\tau_m, b_m}, \qquad \tau \in \mathcal{F}_{\mathcal{L}}^{n-1}$$

Integration of controlled paths

Theorem

The integral maps $\{I^a\}_{a\in\mathcal{L}}$ can be extended to maps $I^a: \mathcal{Q}_{\kappa}(X) \to \delta\mathcal{Q}_{\kappa}(X)$

$$y \in \Omega_{\kappa}(X) \mapsto \delta z = I^{a}(y) = X^{\bullet_{a}} z^{\bullet_{a}} + \sum_{\tau \in \mathcal{T}^{n}_{\mathcal{L}}} X^{\tau} z^{\tau} + z^{\flat},$$
 (5)

where $z^{\flat} \in \mathcal{C}_2^{\kappa(n+1)}$, $z^{\bullet_a} = y$, $z^{[\tau]_a} = y^{\tau}$ and zero otherwise.

Remark

If $y \in \mathcal{Q}_{\kappa}(X; \mathbb{R}^n \otimes \mathbb{R}^d)$ then $\{J^b(\cdot) = \sum_{a \in \mathcal{L}} I^a(y^{ab} \cdot)\}_{b \in \mathcal{L}_1}$ defines a family of integrals with an associated branched rough path Y indexed by $\mathfrak{T}_{\mathcal{L}_1}$. An explicit recursion is

$$Y^{ullet}_b = \sum_{a \in \mathcal{L}} I^a(y^{ab}), \qquad Y^{[au^1 \cdots au^k]_b} = \sum_{a \in \mathcal{L}} I^a(y^{ab}Y^{ au^1} \circ \cdots \circ Y^{ au_k}), \qquad b \in \mathcal{L}_1$$

Example

$$\delta y = X^{\bullet}y^{\bullet} + X^{\bullet}y^{\bullet} + X^{\bullet}y^{\bullet \bullet} + X^{\bullet}y^{\bullet \bullet} + X^{\bullet}y^{\bullet} + X^{\bullet}y$$

$$\delta z = \delta I(y) = X^{\bullet}y + X^{\bullet}y^{\bullet} + X^{\bullet}$$

with

$$z^{\flat} = \Lambda \left[X^{\bullet} y^{\sharp} + X^{\blacksquare} y^{\bullet,\sharp} + X^{\blacksquare} y^{\blacksquare,\sharp} + X^{\blacktriangledown} y^{\bullet,\sharp} + X^{\blacktriangledown} y^{\blacktriangledown,\sharp} + X^{\blacktriangledown} y^{\blacksquare,\sharp} + X^{\blacktriangledown} y^{\bullet,\bullet,\sharp} \right].$$

Rough differential equations

Take vectorfields $\{f_a \in C_b^n(\mathbb{R}^k; \mathbb{R}^k)\}_{a \in \mathcal{L}}$ and integral maps $\{I^a\}_{a \in \mathcal{L}}$ and consider the *rough differential equation*

$$\delta y = I^{a}(f_{a}(y)), \qquad y_{0} = \eta \in \mathbb{R}^{k}$$
(6)

in the time interval [0, T].

Theorem

The rough differential equation (6) has a global solution $y \in \mathcal{Q}_{\gamma}(X; \mathbb{R}^k)$ for any initial condition $\eta \in \mathbb{R}^k$. If the vectorfields are C_b^{n+1} the solution is unique and has Lipshitz dependence on data.

The KdV equation

1d periodic KdV equation:

$$\partial_t u(t,\xi) + \partial_\xi^3 u(t,\xi) + \frac{1}{2} \partial_\xi u(t,\xi)^2 = 0, \quad u(0,\xi) = u_0(\xi), \qquad (t,\xi) \in \mathbb{R} \times \mathbb{T}$$

where initial condition $u_0 \in H^{\alpha}(\mathbb{T})$, $\mathbb{T} = [-\pi, \pi]$. Linear part: Airy group U(t) (isometries on H^{α}). Go to Fourier variables and let $v_t = U(-t)u_t$:

$$v_t(k) = v_0(k) + \frac{ik}{2} \sum_{k_1}^{t} \int_0^t e^{-i3kk_1k_2s} v_s(k_1) v_s(k_2) ds, \quad t \in [0, T], k \in \mathbb{Z}_*$$

where $k_2 = k - k_1$ and $v_0(k) = u_0(k)$. Restrict to $v_0(0) = 0$. It has the form

$$v_t = v_s + \int_s^t \dot{X}_{\sigma}(v_{\sigma}, v_{\sigma}) d\sigma, \qquad t, s \in [0, T].$$

where $\dot{X}_{\sigma}(\phi,\phi) = \frac{ik}{2} \sum_{k_1}' e^{-i3kk_1k_2\sigma} \phi(k_1)\phi(k_2)$.

The KdV equation

Expansion

$$\delta v_{ts} = X^{\bullet}(v^{\times 2}) + X^{\bullet}(v^{\times 3}) + X^{\bullet}(v^{\times 4}) + X^{\bullet}(v^{\times 4}) + r \tag{7}$$

with multi-linear operators X^{τ} :

$$X_{ts}^{\bullet}(\varphi_1, \varphi_2) = \int_s^t \dot{X}_{\sigma}(\varphi_1, \varphi_2) d\sigma;$$

$$X_{ts}^{[\tau^1]}(\varphi_1,\ldots,\varphi_{m+1}) = \int_s^t \dot{X}_{\sigma}(X_{\sigma s}^{\tau^1}(\varphi_1,\ldots,\varphi_m),\varphi_{m+1})d\sigma$$

and

$$X_{ts}^{[\tau^{1}\tau^{2}]}(\varphi_{1},\ldots,\varphi_{m+n}) = \int_{s}^{t} \dot{X}_{\sigma}(X_{\sigma s}^{\tau^{1}}(\varphi_{1},\ldots,\varphi_{m}),X_{\sigma s}^{\tau^{2}}(\varphi_{m+1},\ldots,\varphi_{m+n}))d\sigma.$$

Eq.7 is a rough equation which can be solved with fixed-point:

$$\delta v = (1 - \Lambda \delta)[X^{\bullet}(v^{\times 2}) + X^{\dagger}(v^{\times 3})]$$

Shadows of the conservation law

Lemma

$$\begin{split} \langle \phi_1, \dot{X}_s(\phi_2, \phi_3) \rangle + \langle \phi_2, \dot{X}_s(\phi_1, \phi_3) \rangle + \langle \phi_3, \dot{X}_s(\phi_2, \phi_1) \rangle &= 0, \qquad s \in [0, T] \\ \langle \phi, X_{ts}(\phi, \phi) \rangle &= 0 \qquad 2 \langle \phi, X_{ts}^2(\phi, \phi, \phi) \rangle + \langle X_{ts}(\phi, \phi), X_{ts}(\phi, \phi) \rangle &= 0 \end{split}$$

$$\begin{split} [\delta\langle v,v\rangle]_{ts} &= 2\langle X_{ts}(v_s,v_s) + X_{ts}^2(v_s,v_s,v_s) + v_{ts}^{\flat},v_s\rangle \\ &+ \langle X_{ts}(v_s,v_s),X_{ts}(v_s,v_s)\rangle + 2\langle X_{ts}(v_s,v_s),v_{ts}^{\sharp}\rangle + \langle v_{ts}^{\sharp},v_{ts}^{\sharp}\rangle \\ &= 2\langle v_{ts}^{\flat},v_s\rangle + 2\langle X_{ts}(v_s,v_s),v_{ts}^{\sharp}\rangle + \langle v_{ts}^{\sharp},v_{ts}^{\sharp}\rangle = O(|t-s|^{3\gamma}) \end{split}$$

Theorem (Integral conservation law)

If v is a solution of KdV then $|v_t|_0^2 = |v_0|_0^2$ for any t.

The NS equation

The *d*-dimensional NS equation (or the Burgers' equation) have the abstract form

$$u_t = S_t u_0 + \int_0^t S_{t-s} B(u_s, u_s) \, ds. \tag{8}$$

S bounded semi-group on \mathfrak{B} , B symmetric bilinear operator. Define $d(\tau)$ -multilinear operator by

$$X_{ts}^{\bullet}(\varphi^{\times 2}) = \int_{s}^{t} S_{t-u} B(S_{u-s}\varphi, S_{u-s}\varphi) du$$

$$X_{ts}^{[\tau^1]}(\varphi^{\times (d(\tau^1)+1)}) = \int_s^t S_{t-u} B(X_{us}^{\tau^1}(\varphi^{\times d(\tau^1)}), \varphi) du$$

and

$$X_{ts}^{[\tau^{1}\tau^{2}]}(\varphi^{\times(d(\tau^{1})+d(\tau^{2}))}) = \int_{s}^{t} S_{t-u}B(X_{us}^{\tau^{1}}(\varphi^{\times d(\tau^{1})}), X_{us}^{\tau^{2}}(\varphi^{\times d(\tau^{2})}))du$$

where $d(\tau)$ is an appropriate degree function.

Bounds on the operators and regularity

The X operators allow bounds in \mathcal{B} of the form

$$|X^{\tau}(\varphi^{\times d(\tau)})|_{\mathcal{B}} \leqslant C \frac{|t-s|^{\varepsilon|\tau|}}{(\tau!)^{\varepsilon}} |\varphi|_{\mathcal{B}}^{d(\tau)}$$

where $\varepsilon \geqslant 0$ is a constant depending on the particular Banach space ${\mathfrak B}$ we choose.

We have the (norm convergent) series representation

$$u_t = S_t u_0 + \sum_{\tau \in \mathfrak{I}_B} X_{t0}^{\tau} (u_0^{\times d(\tau)})$$
 (9)

which gives local solutions to NS.

Regularity: $|u(k)| \le Ce^{-|k|\sqrt{t}}$ by controlling growth of the terms in the series.

Convolution integrals

- A cochain complex $(\hat{C}_*, \hat{\delta})$ adapted to the study of convolution integrals.
- ► Coboundary $\tilde{\delta}h = \delta h ah ha$ with $a_{ts} = S_{t-s}$ Id the 2-increment associated to the semi-group (parallel transport).
- Associated integration theory ($\tilde{\Lambda}$ -map as inverse to $\tilde{\delta}$).
- ▶ Algebraic relations , e.g.:

$$\tilde{\delta} X^{\P}(\phi^{\times 3}) = X^{\bullet}(X^{\bullet}(\phi^{\times 2}), \phi)$$

► Applications to stochastic partial differential equations (SPDEs):

$$u_t = S_t u_0 + \int_0^t S_{t-s} dw_s f(u_s)$$

Perspectives & open problems

- Rough integrals as renormalized integrals
- ► Growth of *X* and generalized B-series:

$$\sum_{\tau} c_{\tau} \frac{a^{|\tau|}}{(\tau!)^{\varepsilon}}$$

- Birkhoff decomposition for PDEs (cf. ERGE)
- Scaling in PDEs (RG):
 - Blowup of solutions via series methods (cf. Sinai for cNS)
 - Long-time asymptotics
- Nonperturbative solutions of DSE
- Hochschild cohomology for (C, δ)