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Outline

I would like to discuss three different regularization phenomena due to the
presence of noise which however share similar structural properties.

I Davie’s theorem for SDEs
I Stochastic Burgers equation
I Schrödinger equation with random dispersion
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Davie’s phenomenon

Consider this integral equation in Rd:

xt =

∫ t

0
b(s, xs)ds + wt, 0 6 t 6 1

where w ∈ C([0, 1];Rd) is a path picked according Wiener measure and b is a
generic bounded vectorfield.

A. M. Davie showed that there exist a full measure set Γ ⊂ C([0, 1];Rd) such
that every w ∈ Γ admits only one solution x ∈ C([0, 1];Rd) to the integral
equation.

Easy consequence: any discrete scheme will converge to this solution (in
particular non-adapted schemes).

Related work: [Veretennikov, Krylov-Röckner, Flandoli-Priola-G.]
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Smoothing effect of typical brownian paths

Let xt = ut + wt:

ut =

∫ t

0
b(s, ws + us)ds, 0 6 t 6 1

Key fact

E

[(∫ t

s
(b(r, Wr + x) − b(r, Wr + y))dr

)p
]
6 Cp|x − y|p|t − s|p/2

⇒ The random field (t, s, x) 7→
∫t

s b(r, Wr + x)dr is almost surely almost
Lipshitz in the space variable.

⇒ Via an approximation argument this results in uniqueness for the ODE.
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A simple argument, or the Itô trick

Consider the Fourier transform of local time of a Brownian motion. By Itô
formula

Y(t, ξ) =
∫ t

0
eiξ·Ws ds = 2

eiξ·Wt − eiξ·W0

|ξ|2
−

2iξ
|ξ|2
·
∫ t

0
eiξ·Ws dWs

And for large ξ ∈ Rd

E [|Y(t, ξ)|p] 6 Cp|ξ|
−p|t|p/2

so there is a gain of one power of ξwith respect to a trivial estimate.

Alternative approach using Gaussian computations

E
[
|Y(t, ξ)|2

]
=

∫ t

0

∫ t

0
E[eiξ·(Br−Bs)]dsdr

= 2
∫ t

0

∫ r

0
e−|ξ|2(r−s)/2dsdr .

t
|ξ|

⇒ Extensions to fBM [ongoing work with R. Catellier].
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Stochastic Burgers equation

[joint work with M. Jara]

Here the stochastic Burgers equation on T = [−π,π]

dut =
1
2
∂2
ξut(ξ)dt +

1
2
∂ξ(ut(ξ))

2dt + ∂ξdWt

where Wt(ξ) =
∑

k∈Z0
ek(ξ)β

k
t with Z0 = Z\{0}, ek(ξ) = eikξ/

√
2π and

(βk
t )t>0,k∈Z0 are complex Brownian motions with (βk

t )
∗ = β−k

t and covariance
E[βk

tβ
q
t ] = δq+k=0t.

The solution u would like to be the derivative of the solution of the
Kardar–Parisi–Zhang equation

dht =
1
2
∂2
ξht(ξ)dt +

1
2
(∂ξht(ξ))

2dt + dWt. (1)

which is believed to capture the macroscopic behavior of a large class of
surface growth phenomena.
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Problems with the weak formulation

For sufficiently smooth test functions ϕ : T→ R look for solutions of

ut(ϕ) = u0(ϕ) +

∫ t

0
us(∂

2
ξϕ)ds +

∫ t

0
〈∂ξϕ, B(us)〉ds + Wt(∂ξϕ)

where B(us)(ξ) = (us(ξ))
2.

I We would like to start the equation from initial condition u0 which is
space white noise, this is expected to be an invariant measure.

I The linearized equation

Xt(ϕ) = u0(ϕ) +

∫ t

0
Xs(∂

2
ξϕ)ds + Wt(∂ξϕ)

has trajectories which look like white noise in space.

⇒ The nonlinear term B(us) is not defined.
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Smoothing

Write ut = Xt + vt, then

vt(ϕ) =

∫ t

0
vs(∂

2
ξϕ)ds +

∫ t

0
〈∂ξϕ, B(Xs + vs)〉ds

The covariance of the OU process is

E[Xt(ek)Xs(em)] = δm+k=0e−m2|t−s|/2

Key fact

The quantity ∫ t

0
〈∂ξϕ, B(Xs)〉ds

is well defined due to the rapid space-time decorrelation of the OU process.
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Lazy smoothing estimation

Call "good" a process y such that

yt(ϕ) = y0(ϕ) +

∫ t

0
vs(∂

2
ξϕ)ds +At(ϕ) + Wt(∂ξϕ)

where
I At(ϕ) is a zero-quadratic variation process
I yt is space-time white noise at all times
I The reversed process ŷt = yT−t has the same properties with drift
Â = −A.
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Forward/backward Itô trick

Adding Itô formula for the finite quadratic variation process y

h(yt) = h(y0) +

∫ t

0
L0h(ys)ds +

∫ t

0
Dh(ys)dAs + M+

t

(here L0 is the OU generator) with Itô formula for the backward process

h(yT−t) = h(yT) +

∫T−t

T
L0h(yT−s)ds −

∫T−t

T
Dh(yT−s)dAT−s + M−

t

gives

M+
t − M−

T−t + M−
T =

∫ t

0
2L0h(ys)ds
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Easy to find an H such that 2L0H = ∂ξB which allows to replace the Burgers
drift ∫ t

0
∂ξB(ys)ds

with a sum of forward and backward martingales such that

〈M±(ϕ)〉T =

∫T

0
E(〈ϕ, H(·)〉)(ys)ds

where
E(h)(x) =

∑
q∈Z0

q2(Dqh)(x)2.

The function E(〈ϕ, H(·)〉)(ys) is now well defined for ys sampled according
white noise and we can estimate it.
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Formulation of the equation

Let Bε(x) = B(ρε ∗ x) a regularization of the non-linearity.

By previous arguments we have that for good processes y this limit exists

lim
ε→0

∫ t

0
〈ϕ,∂ξBε(ys)〉ds = Bt(ϕ)

and we can use it to define the drift in the Burgers equation.

A solution u of the Burgers equation is a good process such that

ut(ϕ) = u0(ϕ) +

∫ t

0
us(∂

2
ξϕ)ds +Bt(ϕ) + Wt(∂ξϕ)

The Itô trick provides compactness estimates for Galerkin approximation.
Uniqueness is open (in this approach).

The process Bt(ϕ) is only 3/2− Hölder in time.
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Schrödinger equation with random dispersion

Consider the (Stratonovich-) stochastic Schrödinger equation

dφt = i∆φt ◦ dBt + |φt|
2φtdt

for φ : [0, T]× T→ C.
[Debussche–De Bouard]

Let
Ut = ei∆Bt

so that distributionally
dUt = i∆Ut ◦ dBt

and set ψt = U−1
t φt. Then

ψt = ψ0 +

∫ t

0
U−1

s (|Usψs|
2Usψs)ds.
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Regularization

Define

Xt(θ) =

∫ t

0
U−1

s (|Usθ|
2Usθ)ds

It turns out that this random map has the following pathwise regularity

‖Xt(θ) − Xs(θ)‖L2(T) . |t − s|γ‖θ‖3
L2(T)

for some γ > 1/2.

Then take any θ ∈ Cγ([0, T], L2(T)) and consider

lim
∆t→0

∑
i

[Xti+1(θti) − Xti(θti)] =

∫ t

0
Xds(θs).

By Young theory we have the estimate∥∥∥∥∫ ·
0

Xds(θs)

∥∥∥∥
Cγ([0,T],L2(T))

.X ‖θ‖3
Cγ([0,T],L2(T))

.
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Existence and uniqueness of global solutions

The Schrödinger equation can be reformulated as a Young equation

ψt = ψ0 +

∫ t

0
Xds(ψs)

giving rise to local solutions

ψ ∈ Cγ([0, T∗], L2(T)).

The L2 conservation law allows to obtain global solutions.

Standard arguments for Young equations allows to prove convergence of the
Euler scheme

ψti+1 = ψti + [Xti+1(ψti) − Xti(ψti)]

Similar phenomena for the deterministic KdV equation

∂tut = ∂
3
ξut + ∂ξu2

t .

with initial conditions in Hα(T) for α > −1/2. [see paper on CPAA]

( 15 / 16 )



Thanks
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