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Outline

I'would like to discuss three different regularization phenomena due to the
presence of noise which however share similar structural properties.

» Davie’s theorem for SDEs
» Stochastic Burgers equation

> Schrodinger equation with random dispersion
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Davie’s phenomenon

Consider this integral equation in IR%:
t
Xt :J b(s, xs)ds + w;, 0<tg1
0

where w € C([0, 1];RY) is a path picked according Wiener measure and b is a
generic bounded vectorfield.

A. M. Davie showed that there exist a full measure set I' ¢ C([0, 1]; R%) such
that every w € I' admits only one solution x € C([0, 1]; RY) to the integral
equation.

Easy consequence: any discrete scheme will converge to this solution (in
particular non-adapted schemes).

Related work: [Veretennikov, Krylov-Rockner, Flandoli-Priola-G.]

(3/16)



Smoothing effect of typical brownian paths

Let x; = u; + wy:

N
N

t
Uy =J b(s, ws + us)ds, 0<t<1
0

Key fact

E

(

= The random field (¢, s, x) — f: b(r, W, + x)dr is almost surely almost
Lipshitz in the space variable.

¢ r
J (b(r, W, +x) —b(r, W, + y))dr) } < Gplx —ylPlt — s|P/2

s

= Via an approximation argument this results in uniqueness for the ODE.
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A simple argument, or the Ito trick

Consider the Fourier transform of local time of a Brownian motion. By Itd
formula

t P& W _ i Wy 2i t
Y(t &) = J etWids =2 ——F— — ﬁ; ' J = d W,
0 |E] 1€ Jo

And for large & € R?
E(Y(t E)IF] < Cyl&| PIHP/2

so there is a gain of one power of & with respect to a trivial estimate.
Alternative approach using Gaussian computations

E [[Y(t &)]] :J J Ele'® B8] dsdr

0J0

=2 e1Er ’s/zdsdr<—
,[0 Jo &)

= Extensions to fBM [ongoing work with R. Catellier].
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Stochastic Burgers equation

[joint work with M. Jara]

Here the stochastic Burgers equation on T = [—7, 7]

1 1
du, = Eaiut(a)dt L Eaa(u,(a))%lt + 0:dW,

where W; (&) = Zkezo ex (&) Bk with Zy = Z\{0}, e (&) = e*& / /2 and
(Blg)t>0,kezo are complex Brownian motions with ()" = B;* and covariance
EIBBY = 8y kot.

The solution u would like to be the derivative of the solution of the
Kardar-Parisi-Zhang equation

1 1
dh, = Eaiht(é)dt + E(aght(a])zdt + dW,. (1)

which is believed to capture the macroscopic behavior of a large class of
surface growth phenomena.
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Problems with the weak formulation

For sufficiently smooth test functions ¢ : T — R look for solutions of

t

() = uo(@) + L 11,(22 0)ds + J0<aa@,B(lls)>dS - Wi(0e )

where B(u,) (&) = (us(&))>.

> We would like to start the equation from initial condition u#, which is
space white noise, this is expected to be an invariant measure.

> The linearized equation
t
X,(9) = tfp) + | X.(030)ds + Wi(dce)
0
has trajectories which look like white noise in space.

= The nonlinear term B(u;) is not defined.
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Smoothing

Write u; = X; + v, then

t

05(07@)ds + | (0=, B(X; + v5))ds
& 0

o) :J

0

The covariance of the OU process is

IE[Xt(ek)Xs (em)] = 5m+k:0eimz‘tis‘/2

Key fact
The quantity

L(aa@fB(Xs))dS

is well defined due to the rapid space-time decorrelation of the OU process.
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Lazy smoothing estimation

Call "good" a process y such that

t

1(9) = yol@) + Lvs(aécp)ds + Ai(@) + Wi(dc@)

where
» A;(@) is a zero-quadratic variation process
> Y, is space-time white noise at all times

» The reversed process #; = yr_; has the same properties with drift
A=—-A
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Forward/backward Ito trick

Adding It6 formula for the finite quadratic variation process y
t t
h(y:) = h(yo) + J L°h(ys)ds + J Dh(ys)dAs + M}
0 0
(here L? is the OU generator) with Ito formula for the backward process
T—t T—t
Myr) =hiyr)+ | Lbyr_ds— | Dhlyr_)dr +M;
T T
gives

t
M| —M; ,+M; = J 2L%(ys)ds
0
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Easy to find an H such that 2L°H = 9, B which allows to replace the Burgers
drift

JtaaBﬁh)dS

0
with a sum of forward and backward martingales such that

T

<MﬂmhzjeuQHmm%Ms

0

where

EM)(x) = Y q*(Dgh)(x).

9€2Z,

The function E({¢, H(-)))(y;) is now well defined for y; sampled according
white noise and we can estimate it.
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Formulation of the equation

Let B (x) = B(p. * x) a regularization of the non-linearity.

By previous arguments we have that for good processes y this limit exists

limJ (9, B. (1,))ds = By (@)

e—=0 Jo

and we can use it to define the drift in the Burgers equation.

A solution u of the Burgers equation is a good process such that
t

(9) =) + | (0 @lds+Bi(p) + Wild:0)
0

The It6 trick provides compactness estimates for Galerkin approximation.
Uniqueness is open (in this approach).

The process B, () is only 3/2— Holder in time.
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Schrodinger equation with random dispersion

Consider the (Stratonovich-) stochastic Schrodinger equation
ddy = iAd; o dB; + | P dt
for g :[0,T] x T — C.

[Debussche—De Bouard]
Let
U, = 2B
so that distributionally
dut = lAut o dBt
and set \; = U; ' ¢;. Then

t

by = + J U (U, UL, ) ds.

0
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Regularization

Define

t
X,(0) :j U (UL6PUL8)ds
0

It turns out that this random map has the following pathwise regularity
1X¢(8) — Xs(0) |2 ¢ry < It —s"118]32

for somey > 1/2.
Then take any 6 € CY([0, T, L?>(T)) and consider
t
lim Y (X, ., (8,) — X, (8,)] = j X4s(64).
0

At—0 &=
1

By Young theory we have the estimate

J' Xas(60,)

0

3
<X HeHcv([o,T],LZ(T)]'
CY ([0,T],L2(T))
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Existence and uniqueness of global solutions

The Schrodinger equation can be reformulated as a Young equation

t

wt = 1I)O + J de(ll)s)

0

giving rise to local solutions

P € CY([0, T.], L3(T)).

The L? conservation law allows to obtain global solutions.

Standard arguments for Young equations allows to prove convergence of the
Euler scheme

Yy =Wy + X, (b)) — X5 ()]

Similar phenomena for the deterministic KdV equation
0iuy = a%ut + aauf.

with initial conditions in H*(T) for o > —1/2. [see paper on CPAA]
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