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Outline

I would like to show a zoo of regularization phenomena (for
ODE/PDE/SPDEs) which share similar structural properties.

» Davie’s theorem for SDEs with bounded drift
» Korteweg—de Vries equation with distributional initial condition
> Schrodinger equation with random dispersion

> Stochastic Burgers equation with derivative white noise perturbation
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Go fast!

Consider this integral equation in IR:
t
xt:x0+Jb(xs)d5+At, 0<t«1
0
where b is a continuous and bounded vectorfield.
Letx; = Mt +u; and G'(x) = b(x) /(A + b(x)):

t t

b(As + us)ds = xp + J (A +b(As +us))G' (As + ug)ds

Ht:x0+J
0

0

= x0 + G(At + u) — G(x0)

If A is large this reformulation of the equation implies uniqueness.
Define oy (x) = jg b(As + x)ds and note that (B’ = b/A):
lo¢(x) — ot(y)| = |[B(M +x) — B(At +y)] + [B(x) — B(y)ll < Clx —y|

In the same spirit: global solution of 2d Euler equation under strong rotation.
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Davie’s phenomenon

Consider this integral equation in R”:

t

xt:xo—O—J b(s, xs)ds + w;, 0<t«1
0

where w € C([0, 1];RY) is a path picked according Wiener measure and b is a
generic bounded vectorfield.

A. M. Davie showed that there exist a full measure set T c C([0,1]; R%) such
that every w € T" admits only one solution x € C([0, 1];R?) to the integral
equation.

Related work: [Veretennikov, Krylov-Rockner, Flandoli-Priola-G.]
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Smoothing effect of typical brownian paths

Let x; = w; + u;, then u; = uy + féb(s,ws + u,)ds, 0<t< 1.
Interpret the equation as a Young integral equation:

t
ut:uo+J ogs(1s), 0<t<1
0

where 0;4(x) = fﬁ b(r,w, + x)dr and jé 0gs(Us) = Umar0 )_; 0,y p, (Uy,).

E [los(x) — 015 ()] < Cplx —yPIt — sPP/?
= The random field x — o;,(x) is almost surely log-Lipshitz.

= The log-Lipshitz regularity of o is enough for the uniqueness of the ODE.
Extension to fBM (with R. Catellier)
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1d periodic KdV equation

3 1 2
{GMU£J+aﬂU£J+2%ﬂ“5)_O (L&) eRXT

u(0,&) = uo(&)
with initial condition g € H*(T), T = [, 7).
We look for solutions for any o > —1/2.
Airy group
FUMB)K) =e ™ok, keZ

Mild form ,

u(t) = U(Hug + L U(t —s)0:u(s)*ds
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Abstract formulation

After the change of variables v(t) = U(—t)u(t) :

t

o(t) = vy + L U(—s)0: [U(s)v(s)]* ds

Xs (0s,05)

t t
=+ J X, (vs, vs)ds = vy + J X3 (vs,vs)
0 0
with X3, (@1, @2) = ﬁ Xo(@1, @2)do .

Now
1 X5 2 ey S 1t —s[Y

fory<1/2, y<l+a,v<oa/3+1/2, ax>-1/2.

The time regularity of X* is not enough to use Young integrals.
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Rough integral

Assume that v is controlled by X*:
Uy =0Us + Xt.s(wsrws) + O(‘t - S‘Zy)

and define

t
J de('l)s,'l)s) = lim X (Utz,vti)+XI (Utl,wtl,wtl)

n At—0 tiyati tiy1ti
i

with .

Xtts(cm,(pz, ®3) :J Xo (@1, X% (@2, @3))do

s

1%L ogers) 5 It — P
Then this rough integral is well defined and the equation

t

v =Tg + J Xas(vs,05)
0

has a unique (local) solution in the space of controlled paths with values in
H«*.
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Uniqueness of weak solutions

Using rough path theory we can prove that the nonlinear term is defined of
every controlled path:

Let N()(t &) = 9:(@(t, £)?)/2 for smooth functions ¢. Any path y in H*
such that
Y = Ys + Xi(z:) + O(It — ")

for some other path z; regular enough enjoy the property that
N(Pny) = N(y)

as space-time distribution. The non-linear term is well-defined.

The solution we found satisfy
Ou + aéu +N(u)=0

as space-time distribution.
In the space of controlled paths these solutions are unique.
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Additive stochastic forcing

Noisy KdV
O+ 03u+ 9 u” = ®,0:B
3

where 0,0:B a white noise on R x T and where ® is a linear operator such
that e, = Arex where {eiJicz is the trigonometric basis and where Ay = 0.

Rewrite as ,

V= Vs + W — W +J Xs (v, v5)do

S

where w; = U(—t)D®0:B(t, ).
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Rough equation

For any path controlled in the sense that
v = s + Wy — ws + X5 (z5) + O(|t — s[?Y)

define

t
des(vs,vs)—hm X3, (0, 04X (o, 20,2) + X2, ()

0 At—0 i-+1di i1t

where it appears the (random) cross iterated integral:

t

X2(p) :J 0¥ ) e — )}

S

Under natural assumptions on @: ||w; — ws||ge + || X5 ||1L/I-ZI°< < |t —s[Y and itis

possible to solve
t

U =70p + J X4 (05, 0s) + Wy
0

obtaning existence and uniqueness of rough solutions to the noisy KdV.

This cover the results of [De Bouard-Debussche-Tsutsumi].
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Power series solutions to dispersive equations

Power series solutions to dispersive equations have been recently explored

» [Christ] (modified) non-linear Schodinger equation
0 + iaiu + (Juf — J [uP)u=0
» [Nguyen] (modified) modified-KdV
0 + a%u + (u? — [uz)agu =0

In both cases the existence result can be interpreted as the existence of a
rough solution. Rough path theory gives also a way to enforce uniqueness of
these weak solutions.
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Schrodinger equation with random dispersion

Consider the (Stratonovich-) stochastic Schrodinger equation
ddy = iAd; o dB; + |yt

forp:[0,T] x T — C.
[Debussche-De Bouard]
Let
U, = B

so that distributionally
dUt = lAut e] dBt

and set \; = U; '¢;. Then
t

b= + J U (U b, PULD. ) ds.

0
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Regularization

Define

t
&w):JUEummHLm®
0

It turns out that this random map has the following pathwise regularity
1%:(8) — X () Iz (ry S It — I 1181132

for somey > 1/2.

Then take any 6 € CY([0, T, L*(T)) and consider

At—0 &= =
1

wu—xdwn:Lxumy

By Young theory we have the estimate

fxaa)

0

<x 181} 2(1))°
CY ([0,T],L2(T)) criomeEm)

(14 /22)



Existence and uniqueness of global solutions

The Schrodinger equation can be reformulated as a Young equation

t
Uy =g + J Xas(s)

0

giving rise to local solutions

Y € CY([0, T.], L*(T)).

The L? conservation law allows to obtain global solutions.

Standard arguments for Young equations allows to prove convergence of the
Euler scheme

Yy =y + X, () — X5 (D))
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Stochastic Burgers equation

[joint work with M. Jara]

Here the stochastic Burgers equation on T = [, 7]

1 1
duy = 50F i (£)dt + 50¢ (w,(£))*dt + 0 dW,

where dW; is space-time white noise.

The solution u would like to be the derivative of the solution of the
Kardar—Parisi-Zhang equation

which is believed to capture the macroscopic behavior of a large class of
surface growth phenomena.

(16 /22)



Problems with the weak formulation

For sufficiently smooth test functions ¢ : T — IR look for solutions of

t

1(9) = o) + JO (02 @)ds + J0<aa@,B(lls)>dS - Wi(0e )

where B(u,) (&) = (us(&))%

» We would like to start the equation from initial condition 1o which is
space white noise, this is expected to be an invariant measure.

> The linearized equation
t

X,(9) = ol ) + L X.(32@)ds + Wi(0c )

has trajectories which look like white noise in space.

= The nonlinear term B(u;) is not defined.
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Lazy smoothing estimation

Call "good" a process y such that

t

1(0) = yole) + Lvs(a%,mds - A() + Wi(Bc @)

where
» A;(@) is a zero-quadratic variation process
> Y is space-time white noise at all times

» The reversed process i = yr_; has the same properties with drift
A=—-A
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Forward/backward Itd trick

Adding It6 formula for the finite quadratic variation process y
i i

h(y:) = hiyo) + J L%(ys)ds + J Dh(ys)dAs + M
0 0

(here L? is the OU generator) with Ito formula for the backward process
T—t T—t
yr—) =hlyr) + [ Lohlyr-ds— | Dhtyr- )z + My
T T
gives

t
M} —M; ,+M; = J 2L%(y;)ds
0
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Easy to find an H such that 2L°H = 9B which allows to replace the Burgers
drift

t
J 0:B(ys)ds
0

with a sum of forward and backward martingales such that

T

(M (@)1 = L &((¢, H())) (y)ds

where

E(h)(x) = Y (Dyh)(x)

9€Zy

The function €({¢p, H(-)))(ys) is now well defined for y; sampled according
white noise and we can estimate it.
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Formulation of the equation

Let B (x) = B(p. * x) a regularization of the non-linearity.

By previous arguments we have that for good processes y this limit exists

limJ (@, 0eBe (ys))ds = B (@)

e—=0 Jo

and we can use it to define the drift in the Burgers equation.

A solution u of the Burgers equation is a good process such that
t

u(9) = wo(@) + | w.(0F@)ds+Bil¢) + Wi(210)
0

The It6 trick provides compactness estimates for Galerkin approximation.
Uniqueness is open (in this approach).

The process B, () is only 3/2— Holder in time.
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