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Outline

I would like to show a zoo of regularization phenomena (for
ODE/PDE/SPDEs) which share similar structural properties.

◮ Davie’s theorem for SDEs with bounded drift

◮ Korteweg–de Vries equation with distributional initial condition

◮ Schrödinger equation with random dispersion

◮ Stochastic Burgers equation with derivative white noise perturbation

( 2 / 22 )



Go fast!

Consider this integral equation in R:

xt = x0 +

∫ t

0

b(xs)ds + λt, 0 6 t 6 1

where b is a continuous and bounded vectorfield.

Let xt = λt + ut and G ′(x) = b(x)/(λ+ b(x)):

ut = x0 +

∫ t

0

b(λs + us)ds = x0 +

∫ t

0

(λ+ b(λs + us))G
′(λs + us)ds

= x0 + G(λt + ut) − G(x0)

If λ is large this reformulation of the equation implies uniqueness.

Define σt(x) =
∫t

0 b(λs + x)ds and note that (B ′ = b/λ):

|σt(x) − σt(y)| = |[B(λt + x) − B(λt + y)] + [B(x) − B(y)]| 6 C|x − y|

In the same spirit: global solution of 2d Euler equation under strong rotation.
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Davie’s phenomenon

Consider this integral equation in Rd:

xt = x0 +

∫ t

0

b(s, xs)ds + wt, 0 6 t 6 1

where w ∈ C([0, 1];Rd) is a path picked according Wiener measure and b is a
generic bounded vectorfield.

A. M. Davie showed that there exist a full measure set Γ ⊂ C([0, 1];Rd) such
that every w ∈ Γ admits only one solution x ∈ C([0, 1];Rd) to the integral
equation.

Related work: [Veretennikov, Krylov-Röckner, Flandoli-Priola-G.]
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Smoothing effect of typical brownian paths

Let xt = wt + ut, then ut = u0 +
∫t

0 b(s, ws + us)ds, 0 6 t 6 1.

Interpret the equation as a Young integral equation:

ut = u0 +

∫ t

0

σds(us), 0 6 t 6 1

where σt,s(x) =
∫t

s b(r, wr + x)dr and
∫t

0 σds(us) = lim∆t→0

∑

i σti+1,ti
(uti

).

E
[
|σt,s(x) − σt,s(y)|

p]
6 Cp|x − y|p|t − s|p/2

⇒ The random field x 7→ σt,s(x) is almost surely log-Lipshitz.

⇒ The log-Lipshitz regularity of σ is enough for the uniqueness of the ODE.

Extension to fBM (with R. Catellier)
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1d periodic KdV equation

{

∂tu(t,ξ) + ∂
3
ξu(t,ξ) + 1

2
∂ξu(t,ξ)2 = 0

u(0,ξ) = u0(ξ)
(t,ξ) ∈ R× T

with initial condition u0 ∈ Hα(T), T = [−π,π].

We look for solutions for any α > −1/2.

Airy group

F(U(t)ϕ)(k) = e−ik3tϕ̂(k), k ∈ Z.

Mild form

u(t) = U(t)u0 +

∫ t

0

U(t − s)∂ξu(s)2 ds
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Abstract formulation

After the change of variables v(t) = U(−t)u(t) :

v(t) = v0 +

∫ t

0

U(−s)∂ξ[U(s)v(s)]2
︸                     ︷︷                     ︸

Ẋs(vs ,vs)

ds

= v0 +

∫ t

0

Ẋs(vs, vs)ds = v0 +

∫ t

0

X•

ds(vs, vs)

with X•
ts(ϕ1,ϕ2) =

∫t

s Ẋσ(ϕ1,ϕ2)dσ .

Now
‖X•

ts‖L(Hα) . |t − s|γ

for γ < 1/2, γ < 1 + α, γ < α/3 + 1/2, α > −1/2.

The time regularity of X• is not enough to use Young integrals.
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Rough integral

Assume that v is controlled by X•:

vt = vs + X•

ts(ws, ws) + O(|t − s|2γ)

and define
∫ t

0

Xds(vs, vs) = lim
∆t→0

∑

i

X•

ti+1,ti
(vti

, vti
)+X•

•

ti+1,ti
(vti

, wti
, wti

)

with

X•
•

ts(ϕ1,ϕ2,ϕ3) =

∫ t

s
Ẋσ(ϕ1, X•

σs(ϕ2,ϕ3))dσ

‖X•
•

ts‖L(Hα) . |t − s|2γ

Then this rough integral is well defined and the equation

vt = v0 +

∫ t

0

Xds(vs, vs)

has a unique (local) solution in the space of controlled paths with values in
Hα.
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Uniqueness of weak solutions

Using rough path theory we can prove that the nonlinear term is defined of
every controlled path:

Let N(ϕ)(t,ξ) = ∂ξ(ϕ(t, ξ)
2)/2 for smooth functions ϕ. Any path y in Hα

such that
yt = ys + X•

ts(zs) + O(|t − s|2γ)

for some other path zs regular enough enjoy the property that

N(PNy) → N(y)

as space-time distribution. The non-linear term is well-defined.

The solution we found satisfy

∂tu + ∂3
ξu +N(u) = 0

as space-time distribution.
In the space of controlled paths these solutions are unique.
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Additive stochastic forcing

Noisy KdV
∂tu + ∂3

ξu + ∂ξu2 = Φ∂t∂ξB

where ∂t∂ξB a white noise on R× T and whereΦ is a linear operator such
that Φek = λkek where {ek}k∈Z is the trigonometric basis and where λ0 = 0.

Rewrite as

vt = vs + wt − ws +

∫ t

s

Ẋσ(vσ, vσ)dσ

where wt = U(−t)Φ∂ξB(t, ·).
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Rough equation

For any path controlled in the sense that

vt = vs + wt − ws + X•

ts(zs) + O(|t − s|2γ)

define
∫ t

0

Xds(vs, vs) = lim
∆t→0

∑

i

X•

ti+1,ti
(vti

, vti
)+X•

•

ti+1,ti
(vti

, zti
, zti

) + Xw
ti+1,ti

(vti
)

where it appears the (random) cross iterated integral:

Xw
ts(ϕ) =

∫ t

s

dσẊσ(ϕ, wσ − ws).

Under natural assumptions onΦ: ‖wt − ws‖Hα + ‖Xw
ts‖

1/2
LHα . |t − s|γ and it is

possible to solve

vt = v0 +

∫ t

0

Xdσ(vσ, vσ) + wt

obtaning existence and uniqueness of rough solutions to the noisy KdV.

This cover the results of [De Bouard-Debussche-Tsutsumi].
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Power series solutions to dispersive equations

Power series solutions to dispersive equations have been recently explored

◮ [Christ] (modified) non-linear Schödinger equation

∂tu + i∂2
ξu + (|u|2 −

∫

|u|2)u = 0

◮ [Nguyen] (modified) modified-KdV

∂tu + ∂3
ξu + (u2 −

∫

u2)∂ξu = 0

In both cases the existence result can be interpreted as the existence of a
rough solution. Rough path theory gives also a way to enforce uniqueness of
these weak solutions.
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Schrödinger equation with random dispersion

Consider the (Stratonovich-) stochastic Schrödinger equation

dφt = i∆φt ◦ dBt + |φt|
2φtdt

for φ : [0, T]× T→ C.
[Debussche–De Bouard]

Let
Ut = ei∆Bt

so that distributionally
dUt = i∆Ut ◦ dBt

and set ψt = U−1
t φt. Then

ψt = ψ0 +

∫ t

0

U−1
s (|Usψs|

2Usψs)ds.
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Regularization

Define

Xt(θ) =

∫ t

0

U−1
s (|Usθ|

2Usθ)ds

It turns out that this random map has the following pathwise regularity

‖Xt(θ) − Xs(θ)‖L2(T) . |t − s|γ‖θ‖3
L2(T)

for some γ > 1/2.

Then take any θ ∈ Cγ([0, T], L2(T)) and consider

lim
∆t→0

∑

i

[Xti+1
(θti

) − Xti
(θti

)] =

∫ t

0

Xds(θs).

By Young theory we have the estimate

∥∥∥∥
∫ ·

0

Xds(θs)

∥∥∥∥
Cγ([0,T],L2(T))

.X ‖θ‖3
Cγ([0,T],L2(T))

.
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Existence and uniqueness of global solutions

The Schrödinger equation can be reformulated as a Young equation

ψt = ψ0 +

∫ t

0

Xds(ψs)

giving rise to local solutions

ψ ∈ Cγ([0, T∗], L2(T)).

The L2 conservation law allows to obtain global solutions.

Standard arguments for Young equations allows to prove convergence of the
Euler scheme

ψti+1
= ψti

+ [Xti+1
(ψti

) − Xti
(ψti

)]
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Stochastic Burgers equation

[joint work with M. Jara]

Here the stochastic Burgers equation on T = [−π,π]

dut =
1

2
∂2
ξut(ξ)dt +

1

2
∂ξ(ut(ξ))

2dt + ∂ξdWt

where dWt is space-time white noise.

The solution u would like to be the derivative of the solution of the
Kardar–Parisi–Zhang equation

dht =
1

2
∂2
ξht(ξ)dt +

1

2
(∂ξht(ξ))

2dt + dWt. (1)

which is believed to capture the macroscopic behavior of a large class of
surface growth phenomena.
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Problems with the weak formulation

For sufficiently smooth test functions ϕ : T→ R look for solutions of

ut(ϕ) = u0(ϕ) +

∫ t

0

us(∂
2
ξϕ)ds +

∫ t

0

〈∂ξϕ, B(us)〉ds + Wt(∂ξϕ)

where B(us)(ξ) = (us(ξ))
2.

◮ We would like to start the equation from initial condition u0 which is
space white noise, this is expected to be an invariant measure.

◮ The linearized equation

Xt(ϕ) = u0(ϕ) +

∫ t

0

Xs(∂
2
ξϕ)ds + Wt(∂ξϕ)

has trajectories which look like white noise in space.

⇒ The nonlinear term B(us) is not defined.
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Lazy smoothing estimation

Call "good" a process y such that

yt(ϕ) = y0(ϕ) +

∫ t

0

vs(∂
2
ξϕ)ds +At(ϕ) + Wt(∂ξϕ)

where

◮ At(ϕ) is a zero-quadratic variation process

◮ yt is space-time white noise at all times

◮ The reversed process ŷt = yT−t has the same properties with drift

Â = −A.
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Forward/backward Itô trick

Adding Itô formula for the finite quadratic variation process y

h(yt) = h(y0) +

∫ t

0

L0h(ys)ds +

∫ t

0

Dh(ys)dAs + M+
t

(here L0 is the OU generator) with Itô formula for the backward process

h(yT−t) = h(yT) +

∫T−t

T

L0h(yT−s)ds −

∫T−t

T

Dh(yT−s)dAT−s + M−
t

gives

M+
t − M−

T−t + M−
T =

∫ t

0

2L0h(ys)ds
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Easy to find an H such that 2L0H = ∂ξB which allows to replace the Burgers
drift ∫ t

0

∂ξB(ys)ds

with a sum of forward and backward martingales such that

〈M±(ϕ)〉T =

∫T

0

E(〈ϕ, H(·)〉)(ys)ds

where
E(h)(x) =

∑

q∈Z0

q2(Dqh)(x)2.

The function E(〈ϕ, H(·)〉)(ys) is now well defined for ys sampled according
white noise and we can estimate it.
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Formulation of the equation

Let Bε(x) = B(ρε ∗ x) a regularization of the non-linearity.

By previous arguments we have that for good processes y this limit exists

lim
ε→0

∫ t

0

〈ϕ,∂ξBε(ys)〉ds = Bt(ϕ)

and we can use it to define the drift in the Burgers equation.

A solution u of the Burgers equation is a good process such that

ut(ϕ) = u0(ϕ) +

∫ t

0

us(∂
2
ξϕ)ds +Bt(ϕ) + Wt(∂ξϕ)

The Itô trick provides compactness estimates for Galerkin approximation.
Uniqueness is open (in this approach).

The process Bt(ϕ) is only 3/2− Hölder in time.
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Thanks
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