Controlled paths and regularization in (S)PDEs

Massimiliano Gubinelli

CEREMADE Université Paris Dauphine

Cergy-Pontoise, January 27th 2012

Outline

I would like to show a zoo of regularization phenomena (for ODE/PDE/SPDEs) which share similar structural properties.

- ▶ Davie's theorem for SDEs with bounded drift
- \triangleright Korteweg–de Vries equation with distributional initial condition
- ▶ Schrödinger equation with random dispersion
- \triangleright Stochastic Burgers equation with derivative white noise perturbation

Go fast!

Consider this integral equation in R:

$$
x_t = x_0 + \int_0^t b(x_s) ds + \lambda t, \qquad 0 \leqslant t \leqslant 1
$$

where *b* is a continuous and **bounded** vectorfield.

Let
$$
x_t = \lambda t + u_t
$$
 and $G'(x) = b(x)/(\lambda + b(x))$:
\n
$$
u_t = x_0 + \int_0^t b(\lambda s + u_s) ds = x_0 + \int_0^t (\lambda + b(\lambda s + u_s)) G'(\lambda s + u_s) ds
$$
\n
$$
= x_0 + G(\lambda t + u_t) - G(x_0)
$$

If λ is large this reformulation of the equation implies uniqueness.

Define $\sigma_t(x) = \int_0^t b(\lambda s + x) ds$ and note that $(B' = b/\lambda)$: $|\sigma_t(x) - \sigma_t(y)| = |[B(\lambda t + x) - B(\lambda t + y)] + [B(x) - B(y)]| \leq C|x - y|$

In the same spirit: global solution of 2d Euler equation under strong rotation.

Davie's phenomenon

Consider this integral equation in R*^d* :

$$
x_t = x_0 + \int_0^t b(s, x_s) \mathrm{d} s + w_t, \qquad 0 \leqslant t \leqslant 1
$$

where $w \in C([0,1];{\mathbb R}^d)$ is a path picked according Wiener measure and b is a generic **bounded** vectorfield.

A. M. Davie showed that there exist a full measure set Γ ⊂ *C*([0, 1]; R*^d*) such that every $w \in \Gamma$ admits only one solution $x \in C([0,1]; \mathbb{R}^d)$ to the integral equation.

Related work: [Veretennikov, Krylov-Röckner, Flandoli-Priola-G.]

Smoothing effect of typical brownian paths

Let
$$
x_t = w_t + u_t
$$
, then $u_t = u_0 + \int_0^t b(s, w_s + u_s) ds$, $0 \le t \le 1$.

Interpret the equation as a Young integral equation:

$$
u_t = u_0 + \int_0^t \sigma_{ds}(u_s), \qquad 0 \leqslant t \leqslant 1
$$

where $\sigma_{t,s}(x) = \int_s^t b(r, w_r + x) dr$ and $\int_0^t \sigma_{ds}(u_s) = \lim_{\Delta t \to 0} \sum_i \sigma_{t_{i+1}, t_i}(u_{t_i}).$

$$
\mathbb{E}\left[\left|\sigma_{t,s}(x)-\sigma_{t,s}(y)\right|^p\right]\leqslant C_p|x-y|^p|t-s|^{p/2}
$$

 \Rightarrow The random field $x \mapsto \sigma_{ts}(x)$ is almost surely **log-Lipshitz**.

 \Rightarrow The log-Lipshitz regularity of σ is enough for the uniqueness of the ODE. Extension to fBM (with R. Catellier)

1d periodic KdV equation

$$
\begin{cases} \partial_t u(t,\xi) + \partial_{\xi}^3 u(t,\xi) + \frac{1}{2} \partial_{\xi} u(t,\xi)^2 = 0 \\ u(0,\xi) = u_0(\xi) \end{cases} (t,\xi) \in \mathbb{R} \times \mathbb{T}
$$

with initial condition $u_0 \in H^{\alpha}(\mathbb{T})$, $\mathbb{T} = [-\pi, \pi]$.

We look for solutions for any α > $-1/2$.

Airy group

$$
\mathcal{F}(U(t)\varphi)(k) = e^{-ik^3t}\hat{\varphi}(k), \qquad k \in \mathbb{Z}.
$$

Mild form

$$
u(t) = U(t)u_0 + \int_0^t U(t-s)\partial_{\xi}u(s)^2 ds
$$

Abstract formulation

After the change of variables $v(t) = U(-t)u(t)$:

$$
v(t) = v_0 + \int_0^t \underbrace{U(-s)\partial_{\xi} [U(s)v(s)]^2}_{\dot{x}_s(v_s,v_s)} ds
$$

= $v_0 + \int_0^t \dot{X}_s(v_s,v_s) ds = v_0 + \int_0^t X_{ds}^{\bullet}(v_s,v_s)$

with $X_{ts}^{\bullet}(\varphi_1, \varphi_2) = \int_s^t \dot{X}_{\sigma}(\varphi_1, \varphi_2) d\sigma$.

Now

$$
||X_{ts}^{\bullet}||_{\mathcal{L}(H^{\alpha})} \lesssim |t-s|^{\gamma}
$$

for $\gamma < 1/2$, $\gamma < 1 + \alpha$, $\gamma < \alpha/3 + 1/2$, $\alpha \ge -1/2$.

The time regularity of *X* • is not enough to use Young integrals.

Rough integral

Assume that *v* is *controlled* by *X* • :

$$
v_t = v_s + X_{ts}^{\bullet}(w_s, w_s) + O(|t - s|^{2\gamma})
$$

and define

$$
\int_0^t X_{\mathrm{ds}}(v_s, v_s) = \lim_{\Delta t \to 0} \sum_i X_{t_{i+1}, t_i}^{\bullet}(v_{t_i}, v_{t_i}) + X_{t_{i+1}, t_i}^{\bullet}(v_{t_i}, w_{t_i}, w_{t_i})
$$

with

$$
X_{ts}^{\mathbf{I}}(\varphi_1, \varphi_2, \varphi_3) = \int_s^t \dot{X}_{\sigma}(\varphi_1, X_{\sigma s}^{\bullet}(\varphi_2, \varphi_3)) d\sigma
$$

$$
\|X_{ts}^{\mathbf{I}}\|_{\mathcal{L}(H^{\alpha})} \lesssim |t - s|^{2\gamma}
$$

Then this rough integral is well defined and the equation

$$
v_t = v_0 + \int_0^t X_{\rm ds}(v_s,v_s)
$$

has a unique (local) solution in the space of controlled paths with values in H^{α} .

Uniqueness of weak solutions

Using rough path theory we can prove that the nonlinear term is defined of every controlled path:

Let $\mathcal{N}(\varphi)(t,\xi) = \partial_{\xi}(\varphi(t,\xi)^2)/2$ for smooth functions φ . Any path *y* in H^{α} such that

$$
y_t = y_s + X_{ts}^{\bullet}(z_s) + O(|t - s|^{2\gamma})
$$

for some other path *z^s* regular enough enjoy the property that

 $\mathcal{N}(P_N \mathcal{Y}) \to \mathcal{N}(\mathcal{Y})$

as space-time distribution. The non-linear term is well-defined.

The solution we found satisfy

$$
\partial_t u + \partial_{\xi}^3 u + \mathcal{N}(u) = 0
$$

as space-time distribution.

In the space of controlled paths these solutions are unique.

Additive stochastic forcing

Noisy KdV

$$
\partial_t u + \partial_{\xi}^3 u + \partial_{\xi} u^2 = \Phi \partial_t \partial_{\xi} B
$$

where $\partial_t \partial_{\xi} B$ a white noise on $\mathbb{R} \times \mathbb{T}$ and where Φ is a linear operator such that $\Phi e_k = \lambda_k e_k$ where $\{e_k\}_{k \in \mathbb{Z}}$ is the trigonometric basis and where $\lambda_0 = 0$.

Rewrite as

$$
v_t = v_s + w_t - w_s + \int_s^t \dot{X}_{\sigma}(v_{\sigma}, v_{\sigma})d\sigma
$$

where $w_t = U(-t) \Phi \partial_{\xi} B(t, \cdot)$.

Rough equation

For any path controlled in the sense that

$$
v_t = v_s + w_t - w_s + X_{ts}^{\bullet}(z_s) + O(|t - s|^{2\gamma})
$$

define

$$
\int_0^t X_{ds}(v_s, v_s) = \lim_{\Delta t \to 0} \sum_i X_{t_{i+1}, t_i}^{\bullet}(v_{t_i}, v_{t_i}) + X_{t_{i+1}, t_i}^{\bullet}(v_{t_i}, z_{t_i}, z_{t_i}) + X_{t_{i+1}, t_i}^w(v_{t_i})
$$

where it appears the (random) cross iterated integral:

$$
X_{ts}^w(\varphi)=\int_s^t d\sigma \dot{X}_{\sigma}(\varphi,w_{\sigma}-w_s).
$$

Under natural assumptions on Φ : $\|w_t - w_s\|_{H^{\alpha}} + \|X_{ts}^w\|_{\mathcal{L}H^{\alpha}}^{1/2} \lesssim |t - s|^{\gamma}$ and it is possible to solve

$$
v_t = v_0 + \int_0^t X_{d\sigma}(v_{\sigma}, v_{\sigma}) + w_t
$$

obtaning existence and uniqueness of rough solutions to the noisy KdV. This cover the results of [De Bouard-Debussche-Tsutsumi].

Power series solutions to dispersive equations

Power series solutions to dispersive equations have been recently explored

▶ [Christ] (modified) non-linear Schödinger equation

$$
\partial_t u + i \partial_{\xi}^2 u + (|u|^2 - \int |u|^2) u = 0
$$

▶ [Nguyen] (modified) modified-KdV

$$
\partial_t u + \partial_{\xi}^3 u + (u^2 - \int u^2) \partial_{\xi} u = 0
$$

In both cases the existence result can be interpreted as the existence of a rough solution. Rough path theory gives also a way to enforce uniqueness of these weak solutions.

Schrödinger equation with random dispersion

Consider the (Stratonovich-) stochastic Schrödinger equation

 $d\Phi_t = i\Delta\Phi_t \circ dB_t + |\Phi_t|^2\Phi_t dt$

for ϕ : $[0, T] \times \mathbb{T} \to \mathbb{C}$.

[Debussche–De Bouard]

Let

$$
U_t=e^{i\Delta B_t}
$$

so that distributionally

$$
dU_t = i\Delta U_t \circ dB_t
$$

and set $\psi_t = U_t^{-1} \phi_t$. Then

$$
\psi_t=\psi_0+\int_0^tU_s^{-1}(|U_s\psi_s|^2U_s\psi_s)ds.
$$

Regularization

Define

$$
X_t(\theta) = \int_0^t U_s^{-1}(|U_s\theta|^2 U_s\theta)ds
$$

It turns out that this random map has the following pathwise regularity

$$
||X_t(\theta) - X_s(\theta)||_{L^2(\mathbb{T})} \lesssim |t - s|^{\gamma} ||\theta||_{L^2(\mathbb{T})}^3
$$

for some $\gamma > 1/2$.

Then take any $\theta \in C^{\gamma}([0, T], L^2(\mathbb{T}))$ and consider

$$
\lim_{\Delta t \to 0} \sum_{i} [X_{t_{i+1}}(\theta_{t_i}) - X_{t_i}(\theta_{t_i})] = \int_0^t X_{ds}(\theta_s).
$$

By Young theory we have the estimate

$$
\left\|\int_0^{\cdot}X_{\mathrm{d} s}(\theta_s)\right\|_{C^{\gamma}([0,T],L^2(\mathbb{T}))}\lesssim_X \|\theta\|_{C^{\gamma}([0,T],L^2(\mathbb{T}))}^3.
$$

Existence and uniqueness of global solutions

The Schrödinger equation can be reformulated as a Young equation

$$
\psi_t = \psi_0 + \int_0^t X_{ds}(\psi_s)
$$

giving rise to local solutions

$$
\psi \in C^{\gamma}([0,T_*],L^2(\mathbb{T})).
$$

The *L* 2 conservation law allows to obtain global solutions.

Standard arguments for Young equations allows to prove convergence of the Euler scheme

$$
\psi_{t_{i+1}} = \psi_{t_i} + [X_{t_{i+1}}(\psi_{t_i}) - X_{t_i}(\psi_{t_i})]
$$

Stochastic Burgers equation

[joint work with M. Jara]

Here the stochastic Burgers equation on $\mathbb{T} = [-\pi, \pi]$

$$
du_t = \frac{1}{2}\partial_{\xi}^2 u_t(\xi)dt + \frac{1}{2}\partial_{\xi} (u_t(\xi))^2 dt + \partial_{\xi} dW_t
$$

where dW_t is space-time white noise.

The solution *u* would like to be the derivative of the solution of the Kardar–Parisi–Zhang equation

$$
dh_t = \frac{1}{2}\partial_{\xi}^2 h_t(\xi)dt + \frac{1}{2}(\partial_{\xi}h_t(\xi))^2 dt + dW_t.
$$
 (1)

which is believed to capture the macroscopic behavior of a large class of surface growth phenomena.

Problems with the weak formulation

For sufficiently smooth test functions $\varphi : \mathbb{T} \to \mathbb{R}$ look for solutions of

$$
u_t(\varphi) = u_0(\varphi) + \int_0^t u_s(\partial_{\xi}^2 \varphi) ds + \int_0^t \langle \partial_{\xi} \varphi, B(u_s) \rangle ds + W_t(\partial_{\xi} \varphi)
$$

 $where B(u_s)(\xi) = (u_s(\xi))^2.$

- \triangleright We would like to start the equation from initial condition u_0 which is space white noise, this is expected to be an invariant measure.
- \blacktriangleright The linearized equation

$$
X_t(\varphi) = u_0(\varphi) + \int_0^t X_s(\partial_{\xi}^2 \varphi) ds + W_t(\partial_{\xi} \varphi)
$$

has trajectories which look like white noise in space.

 \Rightarrow The nonlinear term $B(u_s)$ is not defined.

Lazy smoothing estimation

Call "good" a process *y* such that

$$
y_t(\phi) = y_0(\phi) + \int_0^t v_s(\partial_{\xi}^2 \phi) ds + \mathcal{A}_t(\phi) + W_t(\partial_{\xi} \phi)
$$

where

- \blacktriangleright $\mathcal{A}_t(\varphi)$ is a zero-quadratic variation process
- \blacktriangleright y_t is space-time white noise at all times
- ► The reversed process $\hat{y}_t = y_{T-t}$ has the same properties with drift $\widehat{A} = -A$.

Forward/backward Itô trick

Adding Itô formula for the finite quadratic variation process *y*

$$
h(y_t) = h(y_0) + \int_0^t L^0 h(y_s) ds + \int_0^t Dh(y_s) dA_s + M_t^+
$$

(here L^0 is the OU generator) with Itô formula for the backward process

$$
h(y_{T-t}) = h(y_T) + \int_T^{T-t} L^0 h(y_{T-s}) ds - \int_T^{T-t} Dh(y_{T-s}) dA_{T-s} + M_t^{-}
$$

gives

$$
M_t^+ - M_{T-t}^- + M_T^- = \int_0^t 2L^0 h(y_s) ds
$$

Easy to find an H such that $2L^0H = \mathfrak{d}_\xi B$ which allows to replace the Burgers drift

 \int_0^t 0 ∂ξ*B*(*ys*)d*s*

with a sum of forward and backward martingales such that

$$
\langle M^{\pm}(\varphi) \rangle_T = \int_0^T \mathcal{E}(\langle \varphi, H(\cdot) \rangle)(y_s) ds
$$

where

$$
\mathcal{E}(h)(x) = \sum_{q \in \mathbb{Z}_0} q^2 (D_q h)(x)^2.
$$

The function $\mathcal{E}(\langle \varphi, H(\cdot) \rangle)(y_s)$ is now well defined for y_s sampled according white noise and we can estimate it.

Formulation of the equation

Let $B_{\varepsilon}(x) = B(\rho_{\varepsilon} * x)$ a regularization of the non-linearity.

By previous arguments we have that for good processes *y* this limit exists

$$
\lim_{\varepsilon\to 0}\int_0^t\langle\varphi,\partial_{\xi}B_{\varepsilon}(y_s)\rangle ds=\mathcal{B}_t(\varphi)
$$

and we can use it to define the drift in the Burgers equation.

A solution *u* of the Burgers equation is a good process such that

$$
u_t(\varphi) = u_0(\varphi) + \int_0^t u_s(\partial_{\xi}^2 \varphi) ds + \mathcal{B}_t(\varphi) + W_t(\partial_{\xi} \varphi)
$$

The Itô trick provides compactness estimates for Galerkin approximation. Uniqueness is open (in this approach).

The process $\mathcal{B}_t(\varphi)$ is only 3/2– Hölder in time.

Thanks