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Motion in the third dimension

t

dz = ydx — xdy, Zr = J xdy — ydx = dedy — dydx
0

(x",y") — (0,0), 2" = t#0

z encode “microscopic” informations on the trajectory (x, y).
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Series solution to differential equations

The solution y of the differential equation

dy =f(y)dt,  yo=n

has the B-series representation

y=n+> V(0Mn

TEY

Elementary differentials /' defined as
V(@) =f(&), W) =W () (E)" - () (&)™

where f(&) = f(&) and f;(&) H‘h‘ Og, f &) derivatives of the
vectorfields.
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Trees
L finite set. Trees labeled by £, T

2 3 el
TR VY
fl=0 [ [-J]:R/, -

» Size of the tree |T]: [¢ | =1, [ty Tl =1+ |7y +

» Tree factorial t!: ! =1, [t ! = |1+ - TallTa! - -

o+l
Ty
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Driven differential equations

Given a collection of paths {x* € C}([0, T], R)},cc,n € R"
Analytic vectorfields {f, : R" — R"};c¢

The differential equation

ay: = fa(ye)dxf, Yo=1

admit locally the series solution

1
Yt =Ys + Z %MT)(%)XL Yo =T

T€T 4

where ¢/ (8,) (&) =f3(&), :
(T T90) (E) = fonn (8) T [0 (T ()%
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Smooth iterated integrals

Let X: Ty — G C C([0, T*;R)

t t_k
Xt'sa — J de, Xi[;cl...'rk]a _ J H X;;dxz- (1)
$i=1

S

Extend X to AT considering C, as an algebra with (commutative)
product (a 0 b)s = asbys fora, b € Cy. We let X! = 1.

Ty, T y'T T
X = XA X2 X, xlo Tl — J X Tyl

Bounds -

Alt —s|)'T

) < A=
T!
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Example

t
T, =t—s,  Tow ™ :J T .- Todu

S

By induction: Tj; = (¢t — s)lt (1
Lemma (Tree Binomial)
For every v € Tand a,b > 0 we have

|
Tl _ T. |Ti(1)| |Ti(2)‘
(a+b)™ = ; 7’51)!1(2)![1 b (2)

i i
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Theorem (tree multiplicative property)
XE=D X XL = X7 = Xi 4+ X+ X0
Connes-Kreimer coproduct:

A:AT - AT @ AT

algebra homomorphism defined recursively by

AlD)=1®T+ ) (B} ®@id)[A(B" (1))]
ael

T

0 otherwise

Example
AY=10Y + ¥ 01 4oy goeerados
Notation: At =Yt ® 12, reduced coproduct
At=At—1@t—1t®1
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Some examples

Forests with |t| < 3

L
, 5Xh = XXz,
A I =eX e 7
/ 0 X = 2X5, X0
A (oo) =2 X e i 7
A/I =1 Qe+ea] 5}(tus = XtIuX;s + Xt.uXLIt‘:
A,( I) —eReeteeR +I® + ®I ’I ° yee oo e I . . I
* coeeTeswe ot 6Xtus = XtuXus +Xfu Xus+XtuXus+XtuXuS
’
Blhmtorned BXE = 3XILXI, + 3X3, X0

A/v :o®oo+21®o
SXY = X7 X*? + ZXI X

tus tu“*us tu“*us
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Structure of solution to DDEs

Write yT = ¢ (1) (ys)/0(T) so that

yi—ys= ) Xgys

T€T,

For any t € T U{0} we have

yi—yi= > o)Xy
0ET s, pETF
¢’ counting function of reduced coproduct:

No=Y (o prep

TP
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Series truncation

Take the simplest truncation

Ye —Ys = f(ys) X5 + 71

Is 74 really negligible?
Take a partition {1;}; of [s, t] and try to recover the path from
accumulation of small increments:

yi—Ys =) Yr —Yx) Zf Yy ) X3 n,

i

Adding a point c between the points a, b of a partition gives a
contribution of

Fye) Xpe + f(ya) Xap — f(Ya) X5 = (F(ye) —f(ya)) Xpe ~ OUXG[1X5])

where we used the relation X3, = X?, + Xp.
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The sewing map

Assume a;; given and solve

s = fr —fs = tis + 15
with 74 = o(|t — s|). If a solution (f, r) exists it is unique.
Solution exists if day,s = a;s — ap, — ays is small (day,s = o(|t — s)).
Also 56g = 0 which gives da = —br.

The map A : da — ris called the sewing map :

O =a—Noa=(1—Ad)a

S5(1—Ad)a=0a—0Aba=0a—ba=0=a=20f
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Examples

» Convergence of sums:

S0 = Z Atipati = Z(‘Sf)tmtl + Z(”)t,-+1t,

i

= (8f ) + Z o(ltisa —tl) = fi —fo

» Young integrals: x € C¥,y > 1/2. Take a;; = @(x5)0xs

daps = 5(9(x)tu6xus = 0(|t - S|2Y)

=4 =1—-Ad)a= J.(p(x)dx
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(Step-2) Rough paths

Rough integrals (y > 1/3):
Xt.s = Sxts

SX[.]

tus

= X5 Xas
x*eey, X eey

Take
s = @(x) X5 + @ (x5) X!

Saus = (—8@(X)n + @' (1) X5) X0 — 50’ (X)uXie = o(|t —sPY)

jS@(x)dxz (1— A8)(a)
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v

v

v

v

Continuous map:

(0, X*, X1*)) 1 ﬁiw(x)dx
Renormalized sums:
S (0(t)X3 + @' (1)X" ) - ﬂip(x)dx

§ § dxdx = X'*!

A finite number of iterated integrals determines all the other
integrals.
sx N _ xllsll ylo]l | (o] llel]

= XUl — A (x(elxle) | xlolxllel)

and X = O(|t — s/>¥). And soon. ..
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Geometric rough paths

For smooth paths we have the shuffle relation :

de”l <oedx™ o dehl Y Z decl oo xSt

ceSh(a,b)

This relation reduces X* for T € T to a linear combination of
{XG}Geq%hcn .

Geometric rough-paths are the closure of smooth rough paths.
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Growing a branched rough path

Fix y € (0,1], consider g, : ¥ — R on forests as g (1) =1 for
ITl <1/vyand

. 1 .
gy(T) =1, if It < 1/y gy (t) = e Z qy(’r(l))qy(’r(z)) otherwise
Gy (T1- - T) =gy (T1) -+ Gy (Tn).

Given a partial homomorphism X : A,T; — C, satisfying the
multiplicative property

IXEl < BAWg, ()t =P, teTh

withy(n+1) > 1,then 3! X : AT; — €, with same bounds Vt € 7.

Construction via the equation: X* = A(XAT).
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Speed of growth?
Conjecture
gy (t) < C(Th) ™Y
True for linear Chen trees JChen:

-t h (et by
(k1Y (m)y =77 (nl)Y

, vye(0,1], a,b>0
k=0

Variant of Lyons’ neo-classical inequality

L aYkpy (n—k) (a+Db)Y"
2 TRty = < 7 Ty

“neo-classical tree inequality”?

avITPlpyit®)] (a + b)Y

OK for vy = 1: tree binomial formula.
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Controlled paths
Definition

Let n the largest integer such that ny < 1. Forany k € (1/(n+1),v] a
path y is a k-weakly controlled by X if

dy = Z X"y +yt, dy* = Z Z (0,7, p)XPy +y™, Te F!

1 —1
TETY o P

>

n—|t|)x

with y© € G‘leK,yﬁ'T € (‘3 . Then we write y € Q. (X; V).

Lemma (Stability)

Let @ € CHR5R) and y € Q(X;RY), then z: = @ (y;) is a weakly controlled path,
z € Q«(X; R) where its coefficients are given by

n—1

T (p_() T Tm ,Om =
L

o
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Integration of controlled paths

Theorem

The integral maps {I"},c ¢ can be extended to maps I* : Q (X) — 69« (X)

YEQ(X)m bz=I"(y) = X"z + ) X2 +2, (3)

TeT}

n+1)

where 2’ € (‘3;< ( ,2% =y, zlth = Y™ and zero otherwise.

Remark

Ify € QG R" @ RY) then {J°(-) = 3 ez (¥ ) Jpe, defines a family
of integrals with an associated branched rough path Y indexed by
T¢,. An explicit recursion is

Yo — Zla(yab), Y[Tl”'Tk]b — Z Iﬂ(yﬂby’fl 0---0 YTk), be Ly

acl ael
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Example

6y = X’y’ + XIyI + Xooyoo + X?y? ke Xzoyzo ke X?y? b Xoooyooo b Xi}
éy. _ X.(yz +2yoo) +X:(yi +y:0) +){oo(yzo +y? +3y"') +yo,ﬁ

Sy.. — X°* (y:o +y000) +yoo,jj
6y? = y?'u 6y:o = y:o'u éyooo = yooo'ﬁ 6yi = yi'ﬁ

5z = 8I(y) = X°y + X$y* + Xiyz + XYoo + X\‘zylo - ny? + X ¥ yeee 1
= X*z* + X:ZI + Xizi + X?Z? + Zﬂ
with

Zb = A Xoyﬁ + Xzy.'ﬁ + Xiy!:ﬁ + X?yoo'u + XYy?'ﬁ + X.}yzofﬁ + X.\z/.yooo'ﬂ
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Rough differential equations

Take vectorfields {f, € C!(R¥; RF)},cc and integral maps {I},c ¢ and
consider the rough differential equation

Sy =I(f(y), yo=neR

or equivalently

ye=ys+ Y foly)Xg +o(t —s|)

T:|t|<n

in the time interval [0, T1.
This rough differential equation has a global solution y € Q. (X; R¥)

for any initial condition n € R¥. If the vectorfields are C ™' the
solution is unique and has Lipshitz dependence on data.
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Euler methods

An equivalent construction of the solution can be obtained via
discretization:

Yier1)m = Yiyn + Z Fe W) Xles1) e n Yo=n
Ty|t|<1

for 0 < k/n < T. Then

Y=oy asn — oo
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PDE examples

v

The KdV equation as a rough path

v

The Navier-Stokes equation
» Heat equation with multiplicative noise

v

Nonlinear parabolic evolution equations
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The KdV equation

Our toy equation: the 1d periodic KdV equation

3 1 2 —
0su(t, &) + Oz u(t, &) + 30u(t, £)° =0 (t,§) e RxT
u(0,&) = uo(&)

with initial condition 1y € H*(T), T = [, 7).

» Low regularity theory [Bourgain, Kenig, Ponce , Vega,
Colliander, Keel, Staffilani, Takaoka, Tao, ... ]. Global solutions
for initial conditions in H~1/2.

» No uniformly continuous dependence on initial conditions for
o< —1/2.

» Using complete integrability the solution map can be extended
by continuity up to & = —1 [Kappeler, Topalov].

Mild form (Duhamel’s formula)

t

u(t) = U(Hug + J.O U(t—s)dzu(s)?ds

Linear part: Airy group F(U(t))(k) = e e k), k € Z.
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Abstract formulation

Taking advantage of the fact that U is a group (not just semi-group)
operate the change of variables v(t) = U(—t)u(t) :

t

o(t) = up+ L U(—s)0:[U(s)v(s)]* ds

Foralls <t ,

U = Us +J Xo(vg,v5)do
S

with vy = ug.

Bilinear operator

FXo(o1, @) (K) =ik ) e ¢ (k) s (k)
ki -+hko=k
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Expansion

o — 05 = X5 (022) + X3 (v X3)+X§s( x4y 1+ x¥ (v

where 74 is a remainder term.
Tree-indexed multi-linear operators appear:

t

Xe (g1, 92) = J Xo(01, @2)do

S

t
XES((Plz(PZ/ ©3) :J Xo (X5 (01, 92), @3)do

t

)+rts

x¥ (1., 02) :J KXo (X2, (01, 02), Xou(@3, 02))do

S

etc...

ths((Plr ©2,03) = Xfu(q)l, ©2,@3) + X55(<01, ®2, 93) + X7, (X7, (91, 02), @3)
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Regularity

Main observation: cancellations of high-frequency oscillations

X (o1, 02)(K) = 3 M RG] (k) )
k S

ki+ky=

¢1(k1) §2(k)

{ei(.’»kklkz)t - ei(skklkzjs]
k

T 3kiky

Easy analysis gives
X5l =y < 1t =]
withy <1/2, vy <14+, v < a/3+1/2.

Compensations of space and time regularity.
In any case always beyond Young integration = a real rough path !
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Rough path regularity

Theorem

1/2
13 gy + IXENY 2 ey 5 I — s

fory<1/2, vy <l4+oav<a/3+1/2, «>—1/2.

Taking v =

(1/3)+ we get « = 1/2+, almost as good as standard
theory.

Impossible to go beyond the o« = —1/2 boundary?
What about expansions to third order?
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Fixed point

KdV is a rough equation which can be solved with fixed-point
method and rough path estimates.

» Existence: show that there exists a converging sequence ("), of
paths in H* satisfying

v =y Xy + X vy + Ot — sPY)

where 3y > 1.
» Uniqueness: prove that there exists a unique path y satisfying

Ve = s + X (Ys, ys) + X3(ys, s, ys) + O(It — ')

Existence and uniqueness of (local) rough path solution for any initial
condition in H* with o > —1/2 (sincey > 1/3)
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Series solution

Explicit series representation of the solution:

v =0+ ) X3
T

Assuming 3y > 1 it is possible to obtain estimates for higher order

operators (e.g. X¥ and Xi) using the estimates on X® and x3.

Xl e < C¥gy ()]t —s[¥!

where (g (7))~ is a universal sequence of numbers depending only
onvy.

Problem: I do not know the asymptotics as |t| — oo of g, (7).
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12 conservation law

Original operator satisfies a basic symmetry wrt L? scalar product:

(01, Xs(@2, ©3)) + (@2, Xs(@1, @3)) + (@3, Xs(@2, 1)) =0

Lemma

(0, Xs(90,90) =0 2(0,X5:(0, 0, 90)) + (Xis(9, ), Xs(@, @)) =0

This implies some cancellations for the rough solution to KdV:

(vr, 1) — (05, 0s) = 2(Xss (05, Us) + X5 (05, U, Vs), V)
+ <Xt5(vsr vs)/ th(vsr vs)> + O(‘t - SPV)
=O(|t—sP*)

Theorem (Integral conservation law)

If v is a rough solution of KAV then |v|;> = [v|;2 for any t.
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Galerkin approximations

Consider projection Py onto modes with |k| < N and the approximate
evolution

1
o™ + 93N 4 EPNag(u(NJ)Z =0, u™N)(0) = Pyug

Then Ut(N] = U(—t)ut(N) are rough solution to the equation

o ,(N)
o™ = o™ 4 x5 ™ o) 4 x5 ™) 4 o(lt - sPY)
where X*N) = P\ X*(Py x Py) and where the trilinear operator
XV is defined as

,(N)
x¥™N(

S

t o
@1, P2, P3) = ZJ- dGJ' do1PnXo(Pn@1, PnXo, (Pn@2, PN@3))
S

S
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We (almost) have
xM™ 5 xe, xbN _xl

and the continuity of rough path estimates would imply that
v™N) — v: convergence of the Galerkin approximations in Holder
norm.

Back to reality: unfortunately x4 ™) 4 X3 but we can modify the
Galerkin approximation to overcome this difficulty and complete the
picture.

It is well known that naive Galerkin does not work due to symplectic
non-squeezing property of the KdV flow (which is Hamiltonian).
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Euler scheme

For any n > 0 let vjj = up and

L] :
v} = Xi/n,j/n(v?fl) + ;(i/n,/'/n(vlnfl)
fori>1.

Theorem
Let A} = v} —v;, then

|A? — Ao
sup % =0(n'=%).
0<i<j<nT li —j

The combination of this scheme with the Galerkin approximation
discussed before provide an implementable numerical approximation
scheme for the solutions of KdV with low regularity initial conditions
with explicit rates of convergence.
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The NS equation as a rough path

The d-dimensional NS equation has the abstract form

t

up = Spup + J St—sB(us, us) ds. 4)
0

S bounded semi-group on B, B symmetric bilinear operator.

Define ;

Xs(9<?) :J St uB(Su_s®, Susp)du

S

1

t
1
X7 @0) = [ S B (0¥, 5, o)

S

2

t
Xt[;fl”fz]((px(d(’cl)+d(’cz))) _ J St,uB(XTl ((pxd(’cl)),X;[cs ((pxd(’cz)))du

us
S

where d(7) is a degree function.
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Bounds on the operators and regularity

For suitable Banach space B

|t — s|eI™!

XL (@l < ol

N

C

where ¢ > 0 is a constant depending on B.

Norm convergent series representation

ut—st sus+ZX T))

T€TR
gives local solution, global for small data (for ¢ = 0).
Regularity: |ii(k)| < Ce 1M V?

[Le Jan & Sznitman, Cannone & Planchon, Sinai, Gallavotti ]
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Linear evolution equations [ joint work with S. Tindel |

Consider the SPDE

2

0 0

on the 1d torus T with initial condition ¥ € L?(T).
Mild formulation

t
0

Yt E) = Lr Gi(& — ENF(ENE! + J Lr Grs (& — £/)ys(E)x(ds, dE)

» Distributional Gaussian noise
Ex(dt,d&)x(dt’,d&) ~ 5(t — t')Q(E — &)

with Q(&) =3,z N, Ven(E), Aoy = —Aen.
» G; kernel of the analytic semigroup S; = !4
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Compact form
t

Yr = Sty + J- Stfsdxsys
0

Iterative solution methods make appear operator-valued increments:

t t ru
X}s(@) = J' Stfudxusufs(p ths((P) = J- J' Stfudxusufvdxvsvfs@ to
with kernels given by
t
XL (0)(2) =J U J Ge (& — &/)x(du, dE")Go o/ — a”)} Q(£")dE"
T T

S

and similar formulas for X".
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Regularity

Theorem
If X", n =1,2,3 are defined by It6 integrals then

X" € YU (Lys(HM HP)) N €% (Lps(H™; HM))
foranyn > 1/4,v > « satisfying
k<1/4—m+v/2 and Yy <1/2
where p+1 =y — kand v =min(v,1/2).

Proof: extended Garsia-Rodemich-Rumsey inequality for
convolutional increments + Gaussian estimates
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Convolutional multiplicative proprerty: for 0 <s <u <t,
Xis(@) = X3y, (Su—s0) + St X ( JFZXn -k Xk

Assume that y + 3« > 1, then
H=X'X3+X2X* + XX € €Y " (Lys(H"; H°))
so we can define X*, and so on: X" € €% (Lpus(H"; H"))

Convergent series expansion

Y = Stfs]/s + Z X?s]/s

n=1
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Non-linear equations
Consider now:

t
0

y(t &) = Lr Gi(& — ENG(ENE! + J Lr Grs (£ — ENlys(E)Px(ds, dE)

with a bilinear non-linearity. Abstractly:

t

Yr = Sty + J Stfsdst(yS/ yb)
0

Again, tree-indexed incremental operators:

t
Xt.s((pll (Pz) = J Stfudqu(Sufs(pll SH,S(pZ)

t
X2 (o1, 0%, ¢%) = J SiudtuB (Su_s', X2%(02, 0%)))

S

t
XY (0!, 2, ¢°, @Y =J St—udxuB (X3 (0", 9?), X3 (0%, 0*)))

S
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Thanks
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Resonances

3

A natural boundary appears at « = —1/2 due to a resonance in Xj,.
(non-linear interaction + linear propagation)

Decomposition

=34 -so
where || X3¢ =) < If—sPY forally < 1/2,7 <1+ &,y < a/3 +1/2.
But ||®||z(g«) < 1if and only if o« > —1/2.

Same kind of difficulty appears for fBM when H < 3/4 (resonances in
Fourier variable computations).

See recent works [Unterberger, Tindel-Nualart] about extension of
rough paths beyond the H = 1/4 boundary.

Still open problem (heavy computations to handle 3rd order terms).
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Additive stochastic forcing

Noisy KdV
dpu + d3u + dzu” = ©,0:B

where 9,0:B a white noise on R x T and where O is a linear operator
such that ®e; = Arex where {e;}Jkcz is the trigonometric basis and
where Ag = 0.

Rewrite as ;

V=05 + W — Ws + J Xo(vs,v0)do

where w; = U(—t)P0:B(t,-) and expand the solution for small t —s

t

U — Uy = Wy — Wy +J X (05, 05)do

s

t t o
+2J X (vs, ws — ws)do +2J XU(vS,J X, (vs,vs)do’)do 4+ remainder

S S

X;g(”s)
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Rough equation

v = vs + X5 (vs) + Xt:s(vs) + w; — ws + XY (vs) + O(Jt — s['T)

where it appears the (random) cross iterated integral:
t .
Xis(@) = J doXo (@, we — ws).
S
Under natural assumptions on @, almost surely
1/2
leor — sl + I XE e 5 1 =P

Theorem
Existence and uniqueness of rough solutions to the noisy KdV

This cover the results of [De Bouard-Debussche-Tsutsumi].
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On the meaning of the rough solutions

Theorem

Let v be the unique solution of the (transformed) rough KdV equation and let
u(t) = U(t)o(t). Let N(@)(t, &) = e (@(t, £)%)/2 for smooth functions @.
Then in the sense of distributions we have

N(Pyu) — N(u)

and
o+ 03u+N(u) =0

is satisfied in distributional sense.

The nonlinear term is not always defined, but it is defined on the KdV
solution.
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Uniqueness of weak solutions

Using rough path theory we can prove that the nonlinear term is
defined of every controlled path:

Any path y in H* such that
Ye =ys + X (z5) + Ol —s™)
for some other path z; regular enough enjoy the property that
N(Pny) = N(y)

distributionally: the non-linear term is well-defined.

In the space of controlled paths weak solutions to KdV are
well-defined and unique.
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Power series solutions to dispersive equations

Power series solutions to dispersive equations have been recently
explored
» [Christ] (modified) non-linear Schodinger equation
dpu +idFu + (Juf* — J uP)u=0
» [Nguyen| (modified) modified-KdV

U+ azu + (u* — Juz)agu =0

In both cases the existence result can be interpreted as the existence of
a rough solution. Rough path theory gives also a way to enforce
uniqueness of these weak solutions.
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