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Controlled paths

Controlled paths are paths which “looks like” a given path which often is
random (but not necessarily).

This proximity allows a great deal of computations to be carried on explicitly
on the base path and extends also to all controlled paths.

Successful approach which mixes functional analysis and probability.

Basic analogies

> It6 processes
dXt :ﬁth +gtdt

> Amplitude modulation

with |supp ¢l < w.

[Joint work with H. Bessaih, R. Catellier, K. Chouk, A. Deya, P. Imkeller, N. Perkowski,
F. Russo, S. Tindel]
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Some interesting problems (I)

» Compute the value of a 1-form @ over an irregular curve y

0

1
| o=] 0wra)ave
v
» Solve driven ODEs (and SDEs) [Lyons]

ay(t) =fly))oex(t),  y(0) =wo
Study the Itd6 map x(-) — y(T).
» Study models of vortex filaments y : [0, T] x [0,1] — R®

d

1
qYet) = "Oye(t), oV = J Alx —vo(t))dove(t)

0

when the initial condition y(0) is not regular, e.g. a Brownian loop.
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Some interesting problems (II)

Define and solve the following kind of stochastic partial differential
equations.

> Burgers equations: u € [0,T] x T — R"
0su = Au+ f(u)Du + &

with & : [0, T] x T — R" space-time white noise.
» Parabolic Anderson model: u € [0,T] x T? - R

0 = Au+f(u)é

with & : T> — R space white noise.

» Kardar-Parisi-Zhang equation [Hairer]
Oth = Ah+"(Du)?* — 00" + &

with & : [0, T] x T — IR" space-time white noise.
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Some interesting problems (III)

Define and study regularisation by noise phenomena in ODE/PDEs.

» Averaging along irregular curves w: [0,1] — R?

t

f=Tof(x) :Jf(x-l—ws)ds

S

» Differential equations with distributional vector fields and additive

perturbations
t

X = Xo + J b(xs)ds + w;
0

» Non-linear dispersive equations with irregular modulation
duult, &) = d%u(t, £)E(H) + dgult, &)

with & a time distribution (e.g. & = 0,w).

Here w is (for example) a sample path of a fractional Brownian motion.
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What can go wrong?

Consider the sequence of functions x" : R — RR?
1 20\ o p)
x(t) = E(cos(Zrm t),sin(27mn"t))
then x"(-) — 01in CY([0, T];R?) for any y < 1/2. But

I(X"’l,xn'z)(t) _ txn1(s)atx ( )ds — E

L

16", 2"2)(1) # 1(0,0)(£) = 0

The definite integral I(-, -)(¢) is not a continuous map C¥ x C¥ — IR for
vy <1/2.

(Cyclic microscopic processes can produce macroscopic results. Resonances.)
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Functional analysis is not enough

Consider the random functions (X", Y") : R — R?

XN = Z n cos(2mnt) + 8n sin(27nt)
n

n
1<n<N

YN(t) = Z % sin(27mnt) — 8n cos(27mnt)

n
1<nN

where (g, 8, )n>1 are iid normal variables. Then

1 /
I(XN,YN)(l):J XV(s),YN(s)ds =2 St (&)l | o
0

almost surely as N — co.

No continuous map on a space of paths can represent the integral I and allow
Brownian motion at the same time.
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Stochastic calculus is not enough

Itd theory has been very successful in handling integrals on Brownian motion
(and similar objects) are related differential equations. Key requirements:

» A "temporal" structure (filtration, adapted processes).
> A probability space.
> Martingales.

However sometimes:

» No (natural) temporal structure (no past/future, multidimensional
problems, Brownian sheets)

> Results independent of the probabilistic structure (many probabilities) or
of exceptional sets (continuity of Itd map with respect to the data).

» No (convenient) martingales around (SDEs driven by fractional
Brownian motion).
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Young integral

Let f, g two smooth functions, consider the bilinear form

15,50 = [ i,

Then Young proved that
[:CP xCY =Y

provided y + p > 1. Moreover h = I(f, ) is the unique function which satisfy

—h=fi(g—g)+O(t—s"") or h—ho= lm > fi(g,, —8)

TTs¢|—0
[TTs ¢ heTlus

This result does not (and cannot) cover Brownian motion, for example it
cannot handle

Jf £(B)dB..

0
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The area

Letf € C° and g € CY withy+ p > 1. If y + p > 1 we can define
8.0, 7> > Ras

/% — J(f —£)dg

O — 8 8 = (f, —f)(g.—g) and |08 < |t—slotY
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Beyond Young: Controlled paths

When v + p < 1 assume that exists ®/$ such that
Off — Off — O = (f —f)(gu—g) and O] S|t -5t
Then for any & such that
hi —hs = h(fi — ;) + O(|t — 5°™°)
with b’ € C°, if p +7v + 0 > 1 there exists a unique function z such that
2t — 2, = hy(ge — g5) + ML + O(It — s +0+9)

and

Observe that ,
j@‘ fidgr =Fi(gi —g5) + V5
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(Controlled) Rough differential equations
Rough path 3y > 1): x € C¥([0, T], R?), X € €37 ([0, T, R? ® RY) with
XY = X+ X0+ (@ =) =), Xl s le—sPY
Controlled path: y € D,: y* € C¥ and i € €3

Yi—ys =95 (0 —x5) + o,

Stability upon non-linear maps: z = f(y) € D,

Zt — Zs —f Ys ]/X xt_xs) +Zst
Stability upon integration: h = § zdx
he —hs = f(ys) (e — x5) + £ ()Xo + O(1t — sPY)

Result: good theory for differential equations driven by rough paths
t
yi=&+ ii; f(ys)dxs (integral form)
0
Ve —Ys =f(ys) (e — x) + f/ (Y )f ()Xo + O(It —sPY)  (diff form)
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Young integral as multiplication of distributions

We would like to extend the controlled approach to more general problem.
The real difficulty has been to give a meaning to the product

ftargt
as a distribution. Young theory works if f € C?, g € CY withy +p > 1.

In general the point-wise product u(F, G) = FG of two distributions F, G is a
continuous map
(e B < B’ N Bmin(s,r)

fors,re Rands-+r > 0.

B, « is a Besov space. It coincides with C¥ if y € (0,1). We will abuse the
language and set C* = B;_ . If g € C¥ then ¢ = 0,g € C¥ ! and Young
integral says that f¢ is meaningful if y — 1+ p > 0and f¢ € C¥ 1.

Advantage of this point of view: no reference to the dimension of the
parameter space. The non-trivial thing is the multiplication, not the integral.
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Littlewood-Paley blocks and Holder-Besov spaces

We will measure regularity in Holder-Besov spaces C¥ = BY, .

fecCy,yeRiff

WV
o

1Afllo s 277,

F(Af)(E 271E)f ()

where p : R — R is a smooth function with support in [1/2,5/2] and such
that p(x) = 1if x € [1,2] and there exists 6 : R — R, smooth and with
support [0, 1] such that 6(|x|) + Z,>O p(27x]) =1 forall x € R.

A_1f)(E) = O(IENF(E).
f=) Af

i>—1
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Paraproducts
Deconstruction of a product: f € C°, g € C¥

fr=) AfAg=7(f,8) +To(f,8) + - (f,Q)

ij>—1

n(f,8) =m-(8.f) = D AfAg  m(f.8)= D AfAg

i<j—1 li—jl<1

Paraproduct (Bony, Meyer et al.)
n-(f,g) € Ccmin(y+e,v)
T (f,g) € CVFP ify+p>0
Young integral: y,p € (0,1)

ng: 7T<(leg)+7To(f/Dg) +7T>(f/Dg)
~—

cy—1 Ccy+p—1

Recall ,
qudgu — g — ) + Ol —s["*°)
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(Para)controlled structure

Idea
Use the paraproduct to define a controlled structure. We say y € DY° if x € C¥

y=m(y,x) +y
with y* € C° and y* € CY*°.

Paralinearization. Let ¢ : R — R be a sufficiently smooth function and

x € CY,y >0. Then
@(x) =7 (@' (x),x) + C?

[ Compare with: @ (x¢) — @ (x5) = @’ (xs) (xr — x5) + O(|t —s]Y)]
> A first commutator: f,g € C°, x € C¥
ni(f, m<(g,h) = m<(fg, h) + CY*P

Stability. (p > vv)
o(y) =n (o' (y)y*, x) +CV*P°
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A key commutator

All the difficulty is concentrated in the "resonating” term

m(f,8) = Y AfAg

li—jl<1
which however is smoother than m_ (f, g).
Paraproducts decouple the problem from the source of the problem.

Commutator

The linear form R(f, g, h) = . (n-(f,g), h) — (g, h) satisfies
IR(f, 8 Mllocrp+v < [Ifllcllgllp 1]l
withe € (0,1),+v<0,x+p+v>0.

Paradifferential calculus allow algebraic computations to simplify the form of
the resonating terms (7).
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The Besov area

Concrete example. Let B be a d-dimensional Brownian motion (or a
regularisation B®) and ¢ a smooth function. Then B € CY fory < 1/2.

©(B)DB = nt.(@(B), DB) + 7, (¢(B), DB) + 7~ (@(B), DB)
~——— —

c2v—1
and
¢(B) =7n-(¢'(B),B) + C¥
Then
7. (@(B), DB) = 7o (n-(¢'(B), B), DB) 4+ 7, (C*¥, DB)
—_————
OK
=mn.(¢’'(B), m(B,DB)) + C¥ !
Finally

©(B)DB =t (@(B),DB) 4 n. (@’ (B), 7. (B, DB)) + 7~ (¢(B), DB) 4 C*~!
————

"Besov area"
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The Besov area (II)

The Besov area 7, (B, DB) can be defined and studied efficiently using
Gaussian arguments:

(B¢, DB®) — m, (B, DB)

almost surely in C*¥ ! as ¢ — 0.

Remark. If d =1
7, (B,DB) = %(WO(B,DB) + 7,(DB, B)) = %DT[O(B,B)

which is well defined.

Tools: Besov embeddings L/ (Q;C®) — U’(Q;Bg;,) ~ B,?,;, (LP(Q)), Gaussian

hypercontractivity L (Q) — L2(Q), explicit L? computations.
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Au deld des paraproduits

Assume x € CY and 7, (x, Dx) € C*~ ! with3y —1 > 0.

For any controlled z = 7t (5, x) + z* € DY define
zDx = mi.(z, Dx) + z°m, (x, Dx) + 7= (2, Dx) + Q(2%, 2, x, Dx) € DY WY
(S —
c3v—1
Solutions to DE. A solution is given by y € DY such that

Dy = ¢(y)Dx

distributionally, where the rh.s. is defined in the sense above. Existence and
uniqueness in DY,
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The Kardar-Parisi-Zhang equation

noise
diffusion

{ oo
. drift m

F(Vh(t,z)) e

h(t,z)

Large scale dynamics of the height /2 : [0, T] x T — R of an interface
0th ~ Ah + F(Dh) + &

The universal limit should coincide with the large scale fluctuations of the
KPZ equation
0 = Ah + [(Dh)*> — ool + &

with & : [0, T] x T — R space-time white noise

E[E(x, t)E(x, )] = &(x — x")8(t — t').
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Stochastic Burgers equation
Take u = Dh
O = Au + Du? + DE

Mild formuation

t

Mt:Pt“0+J

t
P,_,Dé&.ds + J P, ;Du*ds = X, + B,(u, u)
0 0

Driving term

For all y < —1/2, almost surely
X =P.uy +J P._,D&s € C([0,T],CY(T)) =CY
0
is an OU process with invariant measure the white noise on T.

Bilinear map

Forf € C*,g € CP withax+ B >0

B-8) :J DP._,(figs)ds € Cmin(«B)+1=
0
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Structure of the solution

u=X+B(u,u) = X+ B(X,X) +2B(X,B(u,u)) + B(B(u,u), B(u,u)) = ---

XY =B(X,X), X¥=B(XXY), X*=BXX9, x¥Y=BXYX")
Theorem
XeCV xVel, X4 X'ec/, xYec-.

u=X+X"+u?
w? =2X% + XY + 2B(X, u”?) + 2B(XY, u”?) + B(u??, u*?)

Since we expect u>? =~ X¥ € €/~ the term B(X, u>?) is problematic.
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(Para)Controlled structure

B(X/ u>2) = B< (M>Z,X) + Bo(u>2/ X) + B>(M>Z,X)
_— Y
cl/2— cl cl

We say that u is controlled if
u=X+X"+2XY+B_(u,X)+ut
withu’ € C/2~ and uf € C'~.
For a controlled distribution we can decompose B(u, 1) as
B(u,u) = XY +2x¥ +4x¥ + X¥ +4B(x¥, X%

+2B(X, B (u’, X)) + 2B(X, u') + 2B(XY + 2X%, B (', X) + u)
+B(B (1!, X) +u*,B_ (u', X) + u*)
with

B(X/ B\ (M/,X)) = B<(X/B<(MI/X)) + BO(X/ B<(H//X)) +B>(X,B<(MI,X))
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(Para)Controlled structure (IT)

t prs
B.(X, B~ (u’, X)) (¢) :J j DPy_yo(X,, DPs_ - (u!, X,))drds

0J0

t s
=J J DP,_m,(X,, . (u!, DP,_.X,))drds + C'~
0J0

_ L: r DP,_,[u/m.(X,, DP,_,X,)dsldr + C-
And by probabilistic estimates we can get

(17t (Xs, DPs— X:)[lo— < Is — [
which implies

t ot
X(u'), = J J DP,_,[u!m,(X,, DP,_,X,)dsldr € C'~
0Jr
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Paracontrolled fixed point

It is now easy to show that in the space of controlled distribution of form
u=X+X"+2X"+B_(u,X)+u
with u’ € C7%/2~ and u* € C!~ the fixed point equation u = I'(u) with
Mu)=v=X+X"+2XY+2B_(I"(u),X) + X° () + M (u)
I(u) = 2B (', X) + 4X " + 2u°
M (u) = X¥+4B,- (XY, X)+4B(X?, X¥)+2X° (u')+2B- (B~ (u’, X), X)+Bo- (1, X)

+2B(XY +2XY, B_(u’, X) + u*) + B(B-(u', X) + u*, B (u’, X) + u?)

admits a unique solution which is an continuous function of the data of the
problem:

u, X, XV, X%, x% x¥, x°.
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