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Controlled paths

Controlled paths are paths which “looks like” a given path which often is
random (but not necessarily).

This proximity allows a great deal of computations to be carried on explicitly
on the base path and extends also to all controlled paths.

Successful approach which mixes functional analysis and probability.

Basic analogies
I Itô processes

dXt = ftdMt + gtdt

I Amplitude modulation

f (t) = g(t) sin(ωt)

with |supp ĝ|� ω.

[Joint work with H. Bessaih, R. Catellier, K. Chouk, A. Deya, P. Imkeller, N. Perkowski,
F. Russo, S. Tindel]
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Some interesting problems (I)

I Compute the value of a 1-form ϕ over an irregular curve γ∫
γ

ϕ =

∫ 1

0
〈ϕ(γσ), dγσ〉

I Solve driven ODEs (and SDEs) [Lyons]

∂ty(t) = f (y(t))∂tx(t), y(0) = y0

Study the Itô map x(·) 7→ y(T).
I Study models of vortex filaments γ : [0, T]× [0, 1]→ R3

d
dt
γσ(t) = vγ(t)(γσ(t)), vγ(t)(x) =

∫ 1

0
A(x − γσ(t))dσγσ(t)

when the initial condition γ(0) is not regular, e.g. a Brownian loop.
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Some interesting problems (II)

Define and solve the following kind of stochastic partial differential
equations.

I Burgers equations: u ∈ [0, T]× T→ Rn

∂tu = ∆u + f (u)Du + ξ

with ξ : [0, T]× T→ Rn space-time white noise.
I Parabolic Anderson model: u ∈ [0, T]× T2 → R

∂tu = ∆u + f (u)ξ

with ξ : T2 → R space white noise.
I Kardar-Parisi-Zhang equation [Hairer]

∂th = ∆h + "(Du)2 −∞" + ξ

with ξ : [0, T]× T→ Rn space-time white noise.
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Some interesting problems (III)

Define and study regularisation by noise phenomena in ODE/PDEs.

I Averaging along irregular curves w : [0, 1]→ Rd

f 7→ Tw
s,tf (x) =

∫ t

s
f (x + ws)ds

I Differential equations with distributional vector fields and additive
perturbations

xt = x0 +

∫ t

0
b(xs)ds + wt

I Non-linear dispersive equations with irregular modulation

∂tu(t, ξ) = ∂3
ξu(t, ξ)ξ(t) + ∂ξu(t, ξ)2

with ξ a time distribution (e.g. ξ = ∂tw).

Here w is (for example) a sample path of a fractional Brownian motion.
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What can go wrong?

Consider the sequence of functions xn : R→ R2

x(t) =
1
n
(cos(2πn2t), sin(2πn2t))

then xn(·)→ 0 in Cγ([0, T];R2) for any γ < 1/2. But

I(xn,1, xn,2)(t) =
∫ t

0
xn,1(s)∂txn,2(s)ds→ t

2
YET ANOTHER INTRODUCTION TO ROUGH PATHS 31

· · ·

Figure 10. Moving freely in the third direction.

where C2 depends only on C1 and T .
Now, if tnk ! s ! tnk + T2−n−1 ! t ! tnk+1, we get by combining the

previous estimates that

|xn
s,t| ! C0C2‖x‖α((t− T2−n−1)α + (T2−n−1 − s)α)

! 2α−1C0C2‖x‖α(t− s)α.

We have then proved (21) with a constant which is in addition propor-
tional to ‖x‖α. "

Let us come back to the Remark 6 following Lemma 8. For α ∈
(1/3, 1/2], let us consider xt = (0, 0,ϕt) where ϕ ∈ C2α([0, T ]; R), then
one can find xn ∈ C1

p([0, T ]; R) such that xn converges uniformly to 0,
xn = (xn, A(xn; 0, ·)) is uniformly bounded in Cα([0, T ]; A(R2)) and
converges in Cβ([0, T ]; A(R2)) to x for any β < α. For this, one may
simply consider (see Figure 10)

zn
t =

1

n
√

π
(cos(2πtn2)− 1, sin(2πtn2)),

and then set xn
t = zn

ϕt
.

Thus, moving freely in the “third direction” is equivalent to accu-
mulate the areas of small loops. Using the language of differential
geometry, which we develop below, this new degree of freedom comes
from the lack of commutativity of (A(R2), #): a small loop of radius√

ε around the origin in the plane R2 is equivalent to a small displace-
ment of length ε in the third direction. To rephrase Remark 6, even if
ϕ ∈ C1([0, T ]; R), then one has to see x as a path in C1/2([0, T ]; A(R2))
that may be approximated by paths in C1

p([0, T ]; A(R2)) which converge
to x only in ‖ · ‖β for any β < 1/2. Hence, we recover the problem
underlined in Section 3.2.

5.7. Construction of the integral. Let f be a differential form in
Lip(γ; R2 → R) with γ > 1/α− 1.

If x ∈ Cα([0, T ]; A(R2)) with α > 1/2, then from Lemma 8, x =

(x,x3
0 + A(x)) with x = (x1,x2). Hence we set I(x)

def
= I(x) =

∫
x|[0,·]

f

which is well defined as a Young integral.
The next proposition will be refined later.

I(xn,1, xn,2)(t) 6→ I(0, 0)(t) = 0

The definite integral I(·, ·)(t) is not a continuous map Cγ × Cγ → R for
γ < 1/2.

(Cyclic microscopic processes can produce macroscopic results. Resonances.)
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Functional analysis is not enough

Consider the random functions (Xn, Yn) : R→ R2

XN(t) =
∑

16n6N

gn

n
cos(2πnt) +

g ′n
n

sin(2πnt)

YN(t) =
∑

16n6N

gn

n
sin(2πnt) −

g ′n
n

cos(2πnt)

where (gn, g ′n)n>1 are iid normal variables. Then

I(XN, YN)(1) =
∫ 1

0
XN(s)∂sYN(s)ds = 2π

∑
16n6N

g2
n + (g ′n)2

n
→ +∞

almost surely as N →∞.

No continuous map on a space of paths can represent the integral I and allow
Brownian motion at the same time.
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Stochastic calculus is not enough

Itô theory has been very successful in handling integrals on Brownian motion
(and similar objects) are related differential equations. Key requirements:
I A "temporal" structure (filtration, adapted processes).
I A probability space.
I Martingales.

However sometimes:
I No (natural) temporal structure (no past/future, multidimensional

problems, Brownian sheets)
I Results independent of the probabilistic structure (many probabilities) or

of exceptional sets (continuity of Itô map with respect to the data).
I No (convenient) martingales around (SDEs driven by fractional

Brownian motion).
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Young integral

Let f , g two smooth functions, consider the bilinear form

I(f , g)t =

∫ t

0
ftdgr

Then Young proved that
I : Cρ × Cγ → Cγ

provided γ+ ρ > 1. Moreover h = I(f , g) is the unique function which satisfy

ht − hs = fs(gt − gs) + O(|t − s|γ+ρ) or ht − hs = lim
|Πs,t|→0

∑
ti∈Πs,t

fti(gti+1 − gti)

This result does not (and cannot) cover Brownian motion, for example it
cannot handle ∫ t

0
f (Bs)dBs.
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The area

Let f ∈ Cρ and g ∈ Cγ with γ+ ρ > 1. If γ+ ρ > 1 we can define
Φf ,g : [0, T]2 → R as

Φ
f ,g
s,t =

∫ t

s
(fu − fs)dgu

Φ
f ,g
s,t −Φ

f ,g
s,u −Φ

f ,g
u,t = (fs − fu)(gu − gt) and |Φ

f ,g
s,t | . |t − s|ρ+γ

Φs,u
f ,g Φu,t

f ,g

(fu, gu)

(ft, gt)

(fs, gs)

Φs,t
f ,g

(fu − fs) (gt − gu)
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Beyond Young: Controlled paths

When γ+ ρ 6 1 assume that exists Φf ,g such that

Φ
f ,g
s,t −Φ

f ,g
s,u −Φ

f ,g
u,t = (fs − fu)(gu − gt) and |Φ

f ,g
s,t | . |t − s|ρ+γ

Then for any h such that

ht − hs = h ′s(ft − fs) + O(|t − s|ρ+θ)

with h ′ ∈ Cθ, if ρ+ γ+ θ > 1 there exists a unique function z such that

zt − zs = hs(gt − gs) + h ′sΦ
f ,g
s,t + O(|t − s|γ+ρ+θ)

and

zt − zs = lim
|Πs,t|→0

∑
ti∈Πs,t

hti(gti+1 − gti) + h ′ti
Φ

f ,g
ti ,ti+1

=

∮ t

s
hrdgr

Observe that ∮ t

s
frdgr = fs(gt − gs) +Φ

f ,g
s,t
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(Controlled) Rough differential equations

Rough path (3γ > 1): x ∈ Cγ([0, T],Rd), X ∈ C
2γ
2 ([0, T]2;Rd ⊗Rd) with

X
i,j
s,t = X

i,j
s,u +X

i,j
u,t + (xi

u − xi
s)(x

j
t − xj

u), |Xs,t| . |t − s|2γ

Controlled path: y ∈ Dx: yx ∈ Cγ and y] ∈ C
2γ
2

yt − ys = yx
s (xt − xs) + y]

s,t

Stability upon non-linear maps: z = f (y) ∈ Dx

zt − zs = f ′(ys)yx
s (xt − xs) + z]s,t

Stability upon integration: h =
∮

zdx

ht − hs = f (ys)(xt − xs) + f ′(ys)yx
sXs,t + O(|t − s|3γ)

Result: good theory for differential equations driven by rough paths

yt = ξ+

∮ t

0
f (ys)dxs (integral form)

yt − ys = f (ys)(xt − xs) + f ′(ys)f (ys)Xs,t + O(|t − s|3γ) (diff form)
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Young integral as multiplication of distributions

We would like to extend the controlled approach to more general problem.
The real difficulty has been to give a meaning to the product

ft∂tgt

as a distribution. Young theory works if f ∈ Cρ, g ∈ Cγ with γ+ ρ > 1.

In general the point-wise product µ(F, G) = FG of two distributions F, G is a
continuous map

µ : Bs∞,∞ × Br∞,∞ → Bmin(s,r)∞,∞
for s, r ∈ R and s + r > 0.

Bs∞,∞ is a Besov space. It coincides with Cγ if γ ∈ (0, 1). We will abuse the
language and set Cs = Bs∞,∞. If g ∈ Cγ then ġ = ∂tg ∈ Cγ−1 and Young
integral says that f ġ is meaningful if γ− 1 + ρ > 0 and f ġ ∈ Cγ−1.

Advantage of this point of view: no reference to the dimension of the
parameter space. The non-trivial thing is the multiplication, not the integral.
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Littlewood-Paley blocks and Hölder-Besov spaces

We will measure regularity in Hölder-Besov spaces Cγ = Bγ∞,∞.

f ∈ Cγ, γ ∈ R iff
‖∆if‖L∞ . 2−iγ, i > 0

F(∆if )(ξ) = ρ(2−i|ξ|)f̂ (ξ)

where ρ : R→ R+ is a smooth function with support in [1/2, 5/2] and such
that ρ(x) = 1 if x ∈ [1, 2] and there exists θ : R→ R+ smooth and with
support [0, 1] such that θ(|x|) +

∑
i>0 ρ(2

−i|x|) = 1 for all x ∈ R.

F(∆−1f )(ξ) = θ(|ξ|)f̂ (ξ).

f =
∑
i>−1

∆if
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Paraproducts
Deconstruction of a product: f ∈ Cρ, g ∈ Cγ

fg =
∑

i,j>−1

∆if∆jg = π<(f , g) + π◦(f , g) + π>(f , g)

π<(f , g) = π>(g, f ) =
∑

i<j−1

∆if∆jg π◦(f , g) =
∑

|i−j|61

∆if∆jg

Paraproduct (Bony, Meyer et al.)

π<(f , g) ∈ Cmin(γ+ρ,γ)

π◦(f , g) ∈ Cγ+ρ if γ+ ρ > 0

Young integral: γ, ρ ∈ (0, 1)

fDg = π<(f , Dg)︸        ︷︷        ︸
Cγ−1

+π◦(f , Dg) + π>(f , Dg)︸                        ︷︷                        ︸
Cγ+ρ−1

Recall ∫ t

s
fudgu = fs(gt − gs) + O(|t − s|γ+ρ)
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(Para)controlled structure

Idea
Use the paraproduct to define a controlled structure. We say y ∈ D

γ,ρ
x if x ∈ Cγ

y = π<(yx, x) + y]

with yx ∈ Cρ and y] ∈ Cγ+ρ.

Paralinearization. Let ϕ : R→ R be a sufficiently smooth function and
x ∈ Cγ, γ > 0. Then

ϕ(x) = π<(ϕ ′(x), x) + C2γ

[ Compare with: ϕ(xt) −ϕ(xs) = ϕ ′(xs)(xt − xs) + O(|t − s|γ)]

. A first commutator: f , g ∈ Cρ, x ∈ Cγ

π<(f ,π<(g, h)) = π<(fg, h) + Cγ+ρ

Stability. (ρ > γ)
ϕ(y) = π<(ϕ ′(y)yx, x) + Cγ+ρ
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A key commutator

All the difficulty is concentrated in the "resonating" term

π◦(f , g) =
∑

|i−j|61

∆if∆jg

which however is smoother than π<(f , g).

Paraproducts decouple the problem from the source of the problem.

Commutator
The linear form R(f , g, h) = π◦(π<(f , g), h) − fπ◦(g, h) satisfies

‖R(f , g, h)‖α+β+γ . ‖f‖α‖g‖β‖h‖γ

with α ∈ (0, 1), β+ γ < 0, α+ β+ γ > 0.

Paradifferential calculus allow algebraic computations to simplify the form of
the resonating terms (π◦).
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The Besov area

Concrete example. Let B be a d-dimensional Brownian motion (or a
regularisation Bε) and ϕ a smooth function. Then B ∈ Cγ for γ < 1/2.

ϕ(B)DB = π<(ϕ(B), DB) + π◦(ϕ(B), DB) + π>(ϕ(B), DB)︸              ︷︷              ︸
C2γ−1

and
ϕ(B) = π<(ϕ ′(B), B) + C2γ

Then
π◦(ϕ(B), DB) = π◦(π<(ϕ ′(B), B), DB) + π◦(C2γ, DB)︸           ︷︷           ︸

OK

= π<(ϕ
′(B),π◦(B, DB)) + C3γ−1

Finally

ϕ(B)DB = π<(ϕ(B), DB) + π<(ϕ ′(B),π◦(B, DB)︸        ︷︷        ︸
"Besov area"

) + π>(ϕ(B), DB) + C3γ−1
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The Besov area (II)

The Besov area π◦(B, DB) can be defined and studied efficiently using
Gaussian arguments:

π◦(Bε, DBε)→ π◦(B, DB)

almost surely in C2γ−1 as ε→ 0.

Remark. If d = 1

π◦(B, DB) =
1
2
(π◦(B, DB) + π◦(DB, B)) =

1
2

Dπ◦(B, B)

which is well defined.

Tools: Besov embeddings Lp(Ω; Cθ)→ Lp(Ω; Bθ
′

p,p) ' Bθ
′

p,p(Lp(Ω)), Gaussian
hypercontractivity Lp(Ω)→ L2(Ω), explicit L2 computations.
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Au delá des paraproduits

Assume x ∈ Cγ and π◦(x, Dx) ∈ C2γ−1 with 3γ− 1 > 0.

For any controlled z = π<(zx, x) + z] ∈ D
γ,γ
x define

zDx = π<(z, Dx) + zxπ◦(x, Dx) + π>(z, Dx) + Q(zx, z], x, Dx)︸              ︷︷              ︸
C3γ−1

∈ D
γ−1,γ
Dx

Solutions to DE. A solution is given by y ∈ D
γ,γ
x such that

Dy = ϕ(y)Dx

distributionally, where the r.h.s. is defined in the sense above. Existence and
uniqueness in D

γ,γ
x .
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The Kardar–Parisi–Zhang equation

∆h(t, x)

h(t, x)

ξ(t, x)
diffusion

drift F (∇h(t, x))

noise

Large scale dynamics of the height h : [0, T]× T→ R of an interface

∂th ' ∆h + F(Dh) + ξ

The universal limit should coincide with the large scale fluctuations of the
KPZ equation

∂th = ∆h + [(Dh)2 −∞] + ξ

with ξ : [0, T]× T→ R space-time white noise

E[ξ(x, t)ξ(x ′, t ′)] = δ(x − x ′)δ(t − t ′).
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Stochastic Burgers equation
Take u = Dh

∂tu = ∆u + Du2 + Dξ

Mild formuation

ut = Ptu0 +

∫ t

0
Pt−sDξsds +

∫ t

0
Pt−sDu2

s ds = Xt + Bt(u, u)

Driving term

For all γ < −1/2, almost surely

X = P·u0 +

∫ ·
0

P·−sDξs ∈ C([0, T], Cγ(T)) = Cγ

is an OU process with invariant measure the white noise on T.

Bilinear map

For f ∈ Cα, g ∈ Cβ with α+ β > 0

B(f , g) =
∫ ·

0
DP·−s(fsgs)ds ∈ Cmin(α,β)+1−
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Structure of the solution

u = X + B(u, u) = X + B(X, X) + 2B(X, B(u, u)) + B(B(u, u), B(u, u)) = · · ·

X = B(X, X), X = B(X, X ), X = B(X, X ), X = B(X , X )

Theorem

X ∈ C−1/2−, X ∈ C0−, X , X ∈ C1/2−, X ∈ C1−.

u = X + X + u>2

u>2 = 2X + X + 2B(X, u>2) + 2B(X , u>2) + B(u>2, u>2)

Since we expect u>2 ' X ∈ C1/2− the term B(X, u>2) is problematic.

( 23 / 27 )



(Para)Controlled structure

B(X, u>2) = B<(u>2, X)︸         ︷︷         ︸
C1/2−

+B◦(u>2, X)︸         ︷︷         ︸
C1−

+B>(u>2, X)︸         ︷︷         ︸
C1−

We say that u is controlled if

u = X + X + 2X + B<(u ′, X) + u]

with u ′ ∈ C−1/2− and u] ∈ C1−.

For a controlled distribution we can decompose B(u, u) as

B(u, u) = X + 2X + 4X + X + 4B(X , X )

+2B(X, B<(u ′, X)) + 2B(X, u]) + 2B(X + 2X , B<(u ′, X) + u])

+B(B<(u ′, X) + u], B<(u ′, X) + u])

with

B(X, B<(u ′, X)) = B<(X, B<(u ′, X)) + B◦(X, B<(u ′, X)) + B>(X, B<(u ′, X))
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(Para)Controlled structure (II)

B◦(X, B<(u ′, X))(t) =
∫ t

0

∫ s

0
DPt−sπ◦(Xs, DPs−rπ<(u ′r , Xr))drds

=

∫ t

0

∫ s

0
DPt−sπ◦(Xs,π<(u ′r , DPs−rXr))drds + C1−

=

∫ t

0

∫ t

r
DPt−s[u ′rπ◦(Xs, DPs−rXr)ds]dr + C1−

And by probabilistic estimates we can get

‖π◦(Xs, DPs−rXr)‖0− . |s − r|−1+

which implies

X♦(u ′)t =

∫ t

0

∫ t

r
DPt−s[u ′rπ◦(Xs, DPs−rXr)ds]dr ∈ C1−
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Paracontrolled fixed point

It is now easy to show that in the space of controlled distribution of form

u = X + X + 2X + B<(u ′, X) + u]

with u ′ ∈ C−1/2− and u] ∈ C1− the fixed point equation u = Γ(u) with

Γ(u) = v = X + X + 2X + 2B<(Γ ′(u), X) + X♦(u ′) + Γ ](u)

Γ ′(u) = 2B<(u ′, X) + 4X + 2u]

Γ ](u) = X +4B◦>(X , X)+4B(X , X )+2X�(u ′)+2B>(B<(u ′, X), X)+B◦>(u], X)

+2B(X + 2X , B<(u ′, X) + u]) + B(B<(u ′, X) + u], B<(u ′, X) + u])

admits a unique solution which is an continuous function of the data of the
problem:

u0, X, X , X , X , X , X♦.
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Merci
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