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The KdV equation

Our toy equation: the 1d periodic KdV equation

3 1 2 —
osu(t, &) + Oz ult, &) + 30u(t, £)° =0 (t,§) e RxT
u(0,&) = uo(&)

with initial condition 1y € H*(T), T = [, 7.

» Low regularity theory [Bourgain, Kenig, Ponce , Vega,
Colliander, Keel, Staffilani, Takaoka, Tao, ... ]. Global solutions
for initial conditions in H~1/2.

» No uniformly continuous dependence on initial conditions for
o< —1/2.

» Using complete integrability the solution map can be extended
by continuity up to o = —1 [Kappeler, Topalov].

Mild form (Duhamel’s formula)

t

u(t) = U(tug + Jo U(t—s)0zu(s)ds

Linear part: Airy group F(U(t)e)(k) = e e k), k € Z.
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Abstract formulation

Taking advantage of the fact that U is a group (not just semi-group)
operate the change of variables v(t) = U(—t)u(t) :

t

o(t) = up + L U(—s)0:[U(s)v(s)]* ds

Foralls <t ,

U = Us —|—J’ Xs(vs,v5)do
S

with vy = ug.

Bilinear operator

FXol1, @2)(K) =ik ) e, (k) s (k)
ki +hko=k
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Expansion

o — vy = X0(0X2) + X3 (0 X3)+X§s( %4y 1 XY (074) + g

where 74 is a remainder term.
Tree-indexed multi-linear operators appear:

t
X5 (01, 92) :J Xs(@1, @2)do

t

) :J Xo (X2 (01, 902), 93)do

s
t

x¥ (1., 02) :J KXo (X2 (01, 02), Xou(@3, @4))do

S

etc...
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Regularity

Main observation: cancellations of high-frequency oscillations

TXa (o1, 02)K) = 3 M e H1ga) G k)l
ki-+ko=k s

¢1(k1) §2(k2)

{ei(.’»kklkz)t . ei(skklkz)s]
k

T 3kiky

Easy analysis gives
IXE |l (pre) S 18— ]
withy <1/2, vy <14+ o, v < a/3+1/2.

Compensations of space and time regularity.
In any case always beyond Young integration = a real rough path !
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Rough path regularity

Theorem

1/2
1X3 e gy + IXENY 2 ) 5 I — sl

fory<1/2, vy <l4+av<a/34+1/2, > —1/2.

Taking v =

(1/3)+ we get o« = 1/2+, almost as good as standard
theory.

Impossible to go beyond the o« = —1/2 boundary?
What about expansions to third order?

(7/33)



Resonances

!

A natural boundary appears at « = —1/2 due to a resonance in X,.
(non-linear interaction + linear propagation)

Decomposition

=34 -so
where || X3¢ =) < I — s forally < 1/2,7 <1+ &,y < a/3 +1/2.
But ||®|| ¢ (g« $ 1if and only if o« > —1/2.

Same kind of difficulty appears for fBM when H < 3/4 (resonances in
Fourier variable computations).

See recent works [Unterberger, Tindel-Nualart] about extension of
rough paths beyond the H = 1/4 boundary.

Still open problem (heavy computations to handle 3rd order terms).
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Fixed point

» Existence: show that there exists a converging sequence ("), of
paths in H* satisfying

vt =y Xyl + X3yt v ) + Ol — sPY)

where 3y > 1.
» Uniqueness: prove that there exists a unique path y satisfying

Ve =Ys + X (Ys, ys) + X’(ys,ys,ys) +O(|t —s/'")

Theorem

Existence and uniqueness of (local) rough path solution for any initial
condition in H* with « > —1/2 (sincey > 1/3)
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Chen on trees

The main ingredient of the proof is the multiplicative properties of
the operator x3:

Xtts(cpl, P2, 03) = X}u(cpl, 02, ©3) + ng((ﬁ)l/ ®2, 93) + X5, (X3, (01, 92), ©3)

At higher order this kind of relations involves non-commutative
generalization of Chen’s relation: rough path indexed by trees and
the Hopf algebra of Connes-Kreimer.
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Trees

L finite set. Trees labeled by L, T,

2 3 el
o2 I? ‘%’1 IaVll ylz
B

(1, ) —t=[t, -, a

o] =] [-,[-nzkf, etc. ..

» Size of the tree [T|: e | =1, [ty Tl =1+ || +

» Tree factorial !: o! =1, [t Tl = |[t1 - - TallTa! - -

ol
- Ty!
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Theorem (tree multiplicative property)
Xp=) Xi Xi =Xol = Xi+ Xi + X0T
Connes-Kreimer coproduct:

A AT — AT AT

algebra homomorphism defined recursively by

AlD)=1®T+ ) (B} ®@id)[A(B" (1))]
acl

T

0 otherwise

Example
AY =10 Y + Y ©1 4oy goeerodos
Notation: At = Yt ® 12, reduced coproduct
Alt=At—1@1t—1t®1
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Some examples

Forests with |t| < 3

LT A ST
, 5%}, = x3,%,

A I =eX e 7

! 5X;H.S = ZX;UXL.IQ
A (oo) =2 X e i 7
A/I = I ®’+'®I 5Xtus = XtIuX;s + Xt.uXLIt‘:

A(s]) =seeuresoeilaereal 5378 = X2 xoeyxrexo 4+ X5 x2 4 X0, %L,
!
Alhmtorned X5 = 3XIL X1, + 3X3, X0

A/v :o®oo+21®o
SXY = X7 X + ZXI X

tus tu“*us tu“*us
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Series solution

Explicit series representation of the solution:

v =0+ ) X3
T

Assuming 3y > 1 it is possible to obtain estimates for higher order

operators (e.g. X¥ and Xi) using the estimates on X*® and x3.

IXEllcme < C™gy (1)t — s

where (g (7)) is a universal sequence of numbers depending only
onvy.

Problem: I do not know the asymptotics as |t| — oo of g, (7).

(14 /33)



Speed of growth
Conjecture
gy (t) < C(T) ™Y

True for linear Chen trees T¢hen:

i apvH (a4 b
(k!

Ty S gy YEO1 ab>0

k=0

Variant of Lyons’ neo-classical inequality

L aYkpy (n=k) (a+Db)Y"
<c
;) (YR!ly(n —kymlt =" (yn)!
“neo-classical tree inequality” ?

av* VIt (g 4 p)yial
Oy (o ST @y

OK for y = 1: tree binomial formula.
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12 conservation law

Original operator satisfies a basic symmetry wrt L? scalar product:

(01, Xs(@2, ©3)) + (@2, Xs(@1, ©3)) + (@3, Xs(@2, 1)) =0

Lemma

(0, Xs(90,90) =0  2(¢,Xi(0,0,0)) + (Xis(9, ), Xis(@, @)) =0

This implies some cancellations for the rough solution to KdV:

(vr, 1) — (05, 0s) = 2(Xss (05, Us) + X5 (05, 0, Vs), V)
+ <Xt5(vsr vs)/ th(vsr vs)> + O(‘t - SPY)
=O(|t—sP*)

Theorem (Integral conservation law)

If v is a rough solution of KAV then |v|;> = [vo|;2 for any t.
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Galerkin approximations

Consider projection Py onto modes with |k| < N and the approximate
evolution

1
o™ + 03u™) + S Py (u™)? =0,  u™(0) = Pyug
. 2

Then UEN) = U(—t)ut(N) are rough solution to the equation

. (N
o™ = o™ 4 x5 ™ (0™) 4 k5™ (M) 4 O(t - sPY)

where X*N) = PyX*®(Py x Py) and where the trilinear operator
XV is defined as

,(N)
x¥MN(

S

t o
@1, P2, P3) = ZJ dGJ do1PnXs(Pn@1, PnXo, (Pn@2, PN@3))
S

S
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We (almost) have
x*W L xe,  xEN x1

and the continuity of rough path estimates would imply that
vN) — v: convergence of the Galerkin approximations in Holder
norm.

Back to reality: unfortunately x4 £ x3 but we can modify the
Galerkin approximation to overcome this difficulty and complete the
picture.

It is well known that naive Galerkin does not work due to symplectic
non-squeezing property of the KdV flow (which is Hamiltonian).
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Euler scheme

For any n > 0 let vjj = up and

b
v} = Xi./n,j/n(v?fl) + ;(i/n,/'/n(vlnfl)
fori>1.

Theorem
Let A? = 0! —v;/, then

|A} — A«
sup % =0(n'=3).
0<i<j<nT li —j

The combination of this scheme with the Galerkin approximation
discussed before provide an implementable numerical approximation
scheme for the solutions of KdV with low regularity initial conditions
with explicit rates of convergence.
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Additive stochastic forcing

Noisy KdV
dpu + d3u + d:u = ©;0:B

where 9,0:B a white noise on R x T and where O is a linear operator
such that ®e; = Arex where {e;}Jkcz is the trigonometric basis and
where A\g = 0.

Rewrite as ;

UV =05 + W — Ws + J Xo(vs,vq)do

where w; = U(—t)P0:B(t,-) and expand the solution for small t —s

t

U — Uy = Wy — Wy +J X (05, 05)do

s

t t o
+2J X (vs, We —ws)d0+2j XG(vS,J X, (vs,vs)do’)do + remainder

S S

X2 (vs)
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Rough equation

v = vs + X5 (vs) + Xt:s(vs) + wp — ws + XP(vs) + O(|t — s')

where it appears the (random) cross iterated integral:
t .
Xis(@) = J doXs (@, we — ws).
S
Under natural assumptions on @, almost surely
1/2
e — sl + I XN 5 =P

Theorem
Existence and uniqueness of rough solutions to the noisy KdV

This cover the results of [De Bouard-Debussche-Tsutsumi].
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On the meaning of the rough solutions

Theorem

Let v be the unique solution of the (transformed) rough KdV equation and let
u(t) = U(t)o(t). Let N(@)(t, &) = e (@(t, &)%) /2 for smooth functions @.
Then in the sense of distributions we have

N(Pyu) — N(u)

and
dpu + 33u+ N(u) =0

is satisfied in distributional sense.

The nonlinear term is not always defined, but it is defined on the KdV
solution.
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Uniqueness of weak solutions

Using rough path theory we can prove that the nonlinear term is
defined of every controlled path:

Any path y in H* such that
ye =ys + X (z5) + Ollt —s™)
for some other path z; regular enough enjoy the property that
N(Pny) — N(y)

distributionally: the non-linear term is well-defined.

In the space of controlled paths weak solutions to KdV are
well-defined and unique.
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Power series solutions to dispersive equations

Power series solutions to dispersive equations have been recently
explored
» [Christ] (modified) non-linear Schodinger equation
o + iaéu + (luf? — J uP)u=0
» [Nguyen| (modified) modified-KdV

o+ azu + (u? — Juz)agu =0

In both cases the existence result can be interpreted as the existence of
a rough solution. Rough path theory gives also a way to enforce
uniqueness of these weak solutions.

(24/33)



The NS equation as a rough path

The d-dimensional NS equation has the abstract form

t
up = Spup + J St—sB(us, us) ds. (1)
0
S bounded semi-group on B, B symmetric bilinear operator.

Define ;

X4 (9<?) =J St uB(Su s, Susp)du

S

1

t
1
X7 (@) = [ S BXE (024, 5, o)

S

and

2

t
X[Tl’rz] ((px(d(’rl)+d(’rz))) _ J' St,uB(XTl ((pxd(Tl)),X;[rs ((de(Tz)))du

ts us
s

where d(7) is a degree function.
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Bounds on the operators and regularity

For suitable Banach space B

|t — s|eI™!

T d(T)
|th((p>< )|'B <C (T!)E

d
oA

where ¢ > 0 is a constant depending on B.

Norm convergent series representation

Uy = Stfsus + Z X;(ust(T))

T€Tp
gives local solution, global for small data (for ¢ = 0).
Regularity: |ii(k)| < Ce~1MV?

[Le Jan & Sznitman, Cannone & Planchon, Sinai, Gallavotti ]
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Linear evolution equations [ joint work with S. Tindel |

Consider the SPDE

2

0 0

on the 1d torus T with initial condition ¥ € L?(T).
Mild formulation

t
0

Yt E) = Lr Gi&— £)7(E/)dE! +J Lr Grs (& — £y (E)x(ds, dE)

» Distributional Gaussian noise
Ex(dt,d&)x(dt’,d&) ~ 5(t — t')Q(E — &)

with Q(&) =3,z N, Ven(E), Aoy = —Auey.
» G; kernel of the analytic semigroup S; = !4
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Compact form
t

Yr = Sty + J Stfsdxsys
0

Iterative solution methods make appear operator-valued increments:

t t ru
X}s((p) :J Stfudxusufs(p ths((P) = J J Stfudxusufvdxvsvfs(p to
with kernels given by
t
XL (0)(2) :J U J Geul& — &/)x(du, dE")Gy o/ — a”)} (£")dE"
T T

S

and similar formulas for X".
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Regularity

Theorem
If X", n =1,2,3 are defined by It6 integrals then

X" € YU (Lys(HM; HP)) N €% (Lps(H™; HM))
foranyn > 1/4,v > « satisfying
k<1/4—m+v/2 and vy <1/2
where p+1 =y — kand vV =min(v,1/2).

Proof: extended Garsia-Rodemich-Rumsey inequality for
convolutional increments + Gaussian estimates
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Convolutional multiplicative proprerty: for 0 <s <u <t,
Xis(@) = X5, (Su—s0) + S Xjs (@) + Z Xi, k Xk

Assume that y + 3« > 1, then
H=X'X>+X2X* + XX € €Y " (Lys(H"; H°))
so we can define X*, and so on: X" € €3*(Lps(H"; H"))

Convergent series expansion

Y = Stfs]/s + Z X?s]/s

n=1
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Non-linear equations
Consider now:

t
0

Yt E) = JT Gi(E — EF(E))dE! +J Lr Grs(E— EN)lys () Px(ds, dE)

with a bilinear non-linearity. Abstractly:

t

Y = Sty + J Stfsdst(yS/ yb)
0

Again, tree-indexed incremental operators:

t
Xt.s((pll (Pz) = J Stfudqu(Sufs(pll SH,S(QZ)

t
X2 (01, 0%, ¢%) = J SudtuB (Su_s', X2(02, 0%)))

S

t
XY (0!, 2, @3, @) :J St—udxuB (X3(@", 9?), X3 (0%, 0*)))

S
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Conclusions

v

Rough paths appear naturally in (infinite-dimensional)
deterministic problems

v

They are operators which encode "microscropic information" on
the dynamics

v

Rough paths are indexed by trees

v

Examples of non-linear distributions
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Thanks
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