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Outline

I will exhibith various applications of the idea of a "controlled path".
> Rough path theory and controlled distributions
> Averaging by oscillations
> Non-linear PDEs with random dispersion

» Stochastic Burgers equation with derivative white noise perturbation
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Rough differential equations

> A central theme of stochastic analysis is the study of stochastic differential
equations
deYe = @ (Y)dX; = Z @i(Ye)diX}

where for example X is a Brownian motion (M-dimensional),
(Vi :RY — IRd)izl,m,M a collection of vector fields on R? (smooth). Standard
framework: Itd theory of stochastic integration:

t
Yo = Yo+ | o(¥ax,
The integral on the r.h.s. is defined as a limit in L2(IP).

> Rough path theory (T. Lyons) is a way to give a meaning to the above integral
path-wise: take a sample x of the Brownian motion X and try to solve the equation

t
w:m+L@MMm

in the space of continuous functions: y € C([0, T]; R4 ).
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Problems

> What is the meaning of the integral jé @ (y:)dx?

> Fact: x is only C1/2~ ([0, T];RM). We expect the same regularity from y.

> Then @ (y) € C/?~ and 9;x € C~1/2~ (Here for convenience C¥ = BY, )
> The product ¢ (y)0;x is not well defined.

In Itd theory the product turn out to be defined (in some sense) due to the stochastic
cancellations due to the independece of the increments of x (and the fact that y does not
"look into the future").
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What goes wrong?

Takef € CY(R),g € C°(R),v,p € (0,1)

The problem is how to define
fDg
when f, g are Holder functions (Dg(t) = g’(t)).

> (Inhomogeneous) Littlewood-Paley decomposition

f=2 Af

i>—1
where A;f contains the oscillations of f on the scale 2:
ID"Af | 5 20"

» Paraproduct

fDg =) AfADg =7~ (f,Dg) + 7 (f, Dg) + 7= (f, Dg)
if

with 7w (f,8) = 3_icj 1 AfAjg, T (f,8) = X jiji<1 Af AR
i~ (f,8) = < (g, f)-
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Area

> Fact: 7~ (f, Dg) and 7t~ (f, Dg) are always well defined:
n<(f,Dg) €C°7',  m.(f,Dg) € CYtP!
> The problem is here: 71, (f, Dg). Well defined only if v + p > 0 and in this case
7 (f, Dg) € CY+e—1

> Seems not enough for Brownian motion (y = p < 1/2).

Area process

Take x,y two independent samples of Brownian motion, then it is possible to show that
70 (%, Dy)
exists and belongs to CO~ almost surely. Again: stochastic cancellations.

So at least xDy well defined. What else?
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Controlled Besov distributions

[Joint work with N. Perkowski and P. Imkeller]
Fix1/3 < v < 1/2 and assume x,y € CY with 7, (x, Dy) € C?¥~1L.

Let f be controlled by x in the following sense:

f=n(fx)+f*
withf’ € CY and f# € C?. (f looks like x in the small scales).

Commutator estimate

Set R(f’,x,Dy) = 7o (< (f’,x),Dy) — f' 7t (x, Dy)
IRCF' 2% Dy llzy—1 S F' Ml 11y 1Dyl

But now

Dy = 7t (f,Dy) + f' 7 (x, Dy + 7~ (f, Dy) + 76 (f%, Dy) + R(f’, x, Dy)

c2vy—1 c3v—1

and all the objects in the r.h.s. are well defined.
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Solving RDEs

Reconsider .
fimfot L o (£, ) Dxsdlt

with x a sample from a M-dimensional Brownian motion. Then x € CY for some
1/3 <y < 1/2and 7, (x',D¥) € C?¥Lforalli,j=1,...,M.

We can now solve this equation in the space of f controlled by x:

> Paralinearization theorem: @ (f) = 7t (V@ (f),f) + smoother remainder

> Controlled hypothesis f ~ 7t~ (f’, x) implies
@ (f) = (Vo(f)f', x) + smoother remainder

» Product: @ (f)Dx = 7t (@ (f), Dx) + V@ (f)f 7 (x, Dx) + smoother remainder

> Integration:
Jo(f)IDx=mn_(@(f),x) + Vo (f)f [ 7 (x,Dx) + smoother remainder

So the map
t
I'if) =fo+ Jo @ (fs)Dxsdt

remain in the space of controlled paths and we can set up a fixed point.
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Averaging along a Brownian motion

Take a bounded function b : RY — R? and a d-dimensional Brownian motion (Bm) W.
A. Davie has showed that the average of b along the Brownian trajectory w:

o (b)(x) = J b(w, + x)dr
satisfy
Elog}(b) (y) — ogr(b) ()17 $p [1bllroe lx — yI? 1t — sl
from which follows

1 1
1633 (8) () = 0% (0) ()| Swp [x = yllt —sl/2(1 + log* = +log* =)

From this it is possible to deduce that the ODE (not SDE)
t
Xt =x+ J b(xs)ds + wy
0
has a unique solution in C(RR; R?) for almost every sample path w of the Brownian

motion.
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Fractional Brownian motion

To have the freedom to vary the regularity of the driving paths and retain many nice
features of the Brownian motion (Gaussian, stationary increments, scaling) a
convenient model for noise is the fractional Brownian motion (fBm) BH of Hurst index
He (0,1).

(BH),¢ (0,7] is @ Gaussian process with stationary increments, zero mean and covariance

E[(Bf — Bf)?] = |t — s

Setting H = 1/2 gives Brownian motion back.
The fBm BH has trajectories almost surely in any CY for any v < H.
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Averaging along an fBm

Let FL* the set of distribution b : R? — RY such that
Na®) = [ (14 EDIB(E)IdE < +oo
R

Then it is possible to show that if (w;);>0 is the sample path of a d-dim. fractional
Brownian motion and x € Qf C C(R; R?) is controlled by w in the sense that

Xt — xXs = wy — ws + O(|t —s|P)

for some p > 1/2,forallb € FL* with « > 1 — 1/2H the integral

¢ ¢
lim J by (xs)ds ::J b(xs)ds
n—oo 0 0

is well defined for any sequence of smooth function (by,),>1 such that No (b —b,) — 0

and independent of the sequence. Moreover the map ¢ — f(t) b(xs)dsis CY for some
Y >1/2.

[joint work with R. Catellier]

(11/16)



Regularization by oscillations

If o« > 2 — 1/2H the averaging map

t
o5 (D) (y) = J b(x, +y)dr

is Lipshitz:
{o-git(b)(y) - Gét(h) (Z)I Sxw No((b)l]/_zllt —s|”.

The previous results allows to study the the ODE in IR?
t
Xt = Xg +J b(xs)ds + wy
0
where b € FL*.

> Existence in Qf for « > 1—1/2H
> Uniqueness in QY for o > 2 — 1/2H + Lipshitz flow.
> If b is not random we can have uniqueness for o« > 1 —1/2H.
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Nonlinear PDEs with random dispersion
[joint work with K. Chouk]

Consider (Stratonovich-) stochastic nonlinear PDEs of the form
Orpr = Ad+0:Br + N(bt)
for ¢ : [0,T] x T — C or R where B is a (1d) Brownian motion.

Various cases:
> NSE: ¢ complex, A = 1'62£ and N(¢) = i| b2
> ONSE: ¢ complex, A = 1'62a and N(¢) = +id¢ (|d2d)
» KdV: ¢ real, A = 6% and N(¢) = 3¢ >

Recent work of [Debussche-De Bouard] on randomly modulated NSE in T (motivated
by dispersion management in optical fibers)

Spaces

|ble = 111+ 1E) 2 (£) 12
where ¢ is the space Fourier transform of .
Almost sure results (with a universal exceptional set):

> NSE: Global unique solution in L2 + Lipshitz flow map
» KdV: Local unique solution in H Lt Lipshitz flow map
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Formulation of the equation

Let U; = 45 so that
o:U; = AU; 0By

then ¢ should solve
¢
= Ui+ | U N (o)),

The path ¢ € C([0, T], H*) is controlled if

& = Uy
with \{; € CP ([0, T],H*) for some p > 1/2.

Introduce the map X,; : H* — H* given by

t
Xt (W) :J U IN(UAp)dr

S

Key estimate

X5t (W) = Xst (W)l S FU[W o + [0 o) It =51 [0 — [l

for somey > 1/2.
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Formulation as a controlled path problem

The mild equation take the form

t t d
wwmm+LUENwmum:wij@XQ(m)

:w+[&4> ot im 3 X, ()
The key estimate implies
t t
= | Xacto) = | uTN(@s)as

isin CY ([0, T]; H*) for any controlled path ¢ and coincide with the limit

t t
lmeW%%m:Lhwd

n—o0

(P, is the projector on the Fourier modes |k| < n) and is y-Holder in time for some
v > 1/2 and locally Lipshitz in ¢ (in the controlled path norm).

By standard fixed-point argument we get a (unique) local solution to the PDE.
In the NSE case the L? conservation law allow to extend the solution to a global one.
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