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Outline

I will exhibith various applications of the idea of a "controlled path".

I Rough path theory and controlled distributions
I Averaging by oscillations
I Non-linear PDEs with random dispersion
I Stochastic Burgers equation with derivative white noise perturbation
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Rough differential equations

I A central theme of stochastic analysis is the study of stochastic differential
equations

dtYt = ϕ(Yt)dXt =
∑

i

ϕi(Yt)dtXi
t

where for example X is a Brownian motion (M-dimensional),
(Vi : R

d → Rd)i=1,...,M a collection of vector fields on Rd (smooth). Standard
framework: Itô theory of stochastic integration:

Yt = Y0 +

∫ t

0
ϕ(Yt)dXt

The integral on the r.h.s. is defined as a limit in L2(P).
I Rough path theory (T. Lyons) is a way to give a meaning to the above integral

path-wise: take a sample x of the Brownian motion X and try to solve the equation

yt = y0 +

∫ t

0
ϕ(yt)dxt

in the space of continuous functions: y ∈ C([0, T];Rd).
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Problems

I What is the meaning of the integral
∫t

0ϕ(yt)dxt?

I Fact: x is only C1/2−([0, T];RM). We expect the same regularity from y.

I Thenϕ(y) ∈ C1/2− and ∂tx ∈ C−1/2− (Here for convenience Cγ = Bγ∞,∞)
I The productϕ(y)∂tx is not well defined.

In Itô theory the product turn out to be defined (in some sense) due to the stochastic
cancellations due to the independece of the increments of x (and the fact that y does not
"look into the future").
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What goes wrong?

Take f ∈ Cγ(R), g ∈ Cρ(R), γ,ρ ∈ (0, 1)

The problem is how to define
fDg

when f , g are Holder functions (Dg(t) = g ′(t)).

I (Inhomogeneous) Littlewood-Paley decomposition

f =
∑

i>−1

∆if

where∆if contains the oscillations of f on the scale 2i:

‖Dn∆if‖L∞ . 2(n−γ)i

I Paraproduct

fDg =
∑

i,j

∆if∆jDg = π<(f , Dg) +π◦(f , Dg) +π>(f , Dg)

with π<(f , g) =
∑

i<j−1∆if∆jg, π◦(f , g) =
∑

|i−j|61∆if∆jg,
π>(f , g) = π<(g, f).
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Area

I Fact: π<(f , Dg) and π>(f , Dg) are always well defined:

π<(f , Dg) ∈ Cρ−1, π>(f , Dg) ∈ Cγ+ρ−1

I The problem is here: π◦(f , Dg). Well defined only if γ+ ρ > 0 and in this case

π◦(f , Dg) ∈ Cγ+ρ−1

I Seems not enough for Brownian motion (γ = ρ < 1/2).

Area process
Take x, y two independent samples of Brownian motion, then it is possible to show that

π◦(x, Dy)

exists and belongs to C0− almost surely. Again: stochastic cancellations.

So at least xDy well defined. What else?
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Controlled Besov distributions

[Joint work with N. Perkowski and P. Imkeller]

Fix 1/3 < γ < 1/2 and assume x, y ∈ Cγ with π◦(x, Dy) ∈ C2γ−1.

Let f be controlled by x in the following sense:

f = π<(f ′, x) + f ]

with f ′ ∈ Cγ and f ] ∈ C2γ. (f looks like x in the small scales).

Commutator estimate
Set R(f ′, x, Dy) = π◦(π<(f ′, x), Dy) − f ′π◦(x, Dy)

‖R(f ′, x, Dy)‖3γ−1 . ‖f ′‖γ‖x‖γ‖Dy‖γ−1

But now

fDy = π<(f , Dy) + f ′π◦(x, Dy +π>(f , Dy)︸                             ︷︷                             ︸
C2γ−1

+π◦(f ], Dy) + R(f ′, x, Dy)︸                              ︷︷                              ︸
C3γ−1

and all the objects in the r.h.s. are well defined.
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Solving RDEs

Reconsider

ft = f0 +
∫ t

0
ϕ(fs)Dxsdt

with x a sample from a M-dimensional Brownian motion. Then x ∈ Cγ for some
1/3 < γ < 1/2 and π◦(xi, Dxj) ∈ C2γ−1 for all i, j = 1, . . . , M.

We can now solve this equation in the space of f controlled by x:

I Paralinearization theorem: ϕ(f) = π<(∇ϕ(f), f) + smoother remainder
I Controlled hypothesis f ' π<(f ′, x) implies
ϕ(f) = π<(∇ϕ(f)f ′, x) + smoother remainder

I Product: ϕ(f)Dx = π<(ϕ(f), Dx) +∇ϕ(f)f ′π◦(x, Dx) + smoother remainder
I Integration:∫
ϕ(f)Dx = π<(ϕ(f), x) +∇ϕ(f)f ′

∫
π◦(x, Dx) + smoother remainder

So the map

Γ(f) = f0 +
∫ t

0
ϕ(fs)Dxsdt

remain in the space of controlled paths and we can set up a fixed point.
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Averaging along a Brownian motion

Take a bounded function b : Rd → Rd and a d-dimensional Brownian motion (Bm) W.
A. Davie has showed that the average of b along the Brownian trajectory w:

σw
s,t(b)(x) =

∫ t

s
b(wr + x)dr

satisfy
E|σW

s,t(b)(y) −σW
s,t(b)(x)|2p .p ‖b‖L∞ |x − y|2p|t − s|p

from which follows

|σw
s,t(b)(y) −σw

s,t(b)(x)| .w,b |x − y||t − s|1/2(1 + log1/2
+

1
|x − y|

+ log1/2
+

1
|t − s|

)

From this it is possible to deduce that the ODE (not SDE)

xt = x +

∫ t

0
b(xs)ds + wt

has a unique solution in C(R+;Rd) for almost every sample path w of the Brownian
motion.
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Fractional Brownian motion

To have the freedom to vary the regularity of the driving paths and retain many nice
features of the Brownian motion (Gaussian, stationary increments, scaling) a
convenient model for noise is the fractional Brownian motion (fBm) BH of Hurst index
H ∈ (0, 1).

(BH
t )t∈[0,T] is a Gaussian process with stationary increments, zero mean and covariance

E[(BH
t − BH

s )
2] = |t − s|2H

Setting H = 1/2 gives Brownian motion back.
The fBm BH has trajectories almost surely in any Cγ for any γ < H.
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Averaging along an fBm

Let FLα the set of distribution b : Rd → Rd such that

Nα(b) =

∫
Rd

(1 + |ξ|)α|b̂(ξ)|dξ < +∞.

Then it is possible to show that if (wt)t>0 is the sample path of a d-dim. fractional
Brownian motion and x ∈ Qw

γ ⊂ C(R;Rd) is controlled by w in the sense that

xt − xs = wt − ws + O(|t − s|ρ)

for some ρ > 1/2, for all b ∈ FLα with α > 1 − 1/2H the integral

lim
n→∞

∫ t

0
bn(xs)ds =:

∫ t

0
b(xs)ds

is well defined for any sequence of smooth function (bn)n>1 such that Nα(b − bn)→ 0
and independent of the sequence. Moreover the map t 7→

∫t
0 b(xs)ds is Cγ for some

γ > 1/2.

[joint work with R. Catellier]
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Regularization by oscillations

If α > 2 − 1/2H the averaging map

σx
s,t(b)(y) =

∫ t

s
b(xr + y)dr

is Lipshitz: ∣∣σx
s,t(b)(y) −σx

s,t(b)(z)
∣∣ .x,w Nα(b)|y − z||t − s|γ.

The previous results allows to study the the ODE in Rd

xt = x0 +

∫ t

0
b(xs)ds + wt

where b ∈ FLα.

I Existence in Qw
γ for α > 1 − 1/2H

I Uniqueness in Qw
γ for α > 2 − 1/2H + Lipshitz flow.

I If b is not random we can have uniqueness for α > 1 − 1/2H.
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Nonlinear PDEs with random dispersion
[joint work with K. Chouk]

Consider (Stratonovich-) stochastic nonlinear PDEs of the form

∂tφt = Aφt∂tBt + N(φt)

forφ : [0, T]× T→ C or R where B is a (1d) Brownian motion.

Various cases:
I NSE:φ complex, A = i∂2

ξ and N(φ) = ±i|φ|2φ

I ∂NSE:φ complex, A = i∂2
ξ and N(φ) = ±i∂ξ(|φ|2φ)

I KdV:φ real, A = ∂3
ξ and N(φ) = ∂ξφ

2

Recent work of [Debussche–De Bouard] on randomly modulated NSE in T (motivated
by dispersion management in optical fibers)

Spaces
|φ|α = ‖(1 + |ξ|2)α/2φ̂(ξ)‖L2

ξ

where φ̂ is the space Fourier transform ofφ.

Almost sure results (with a universal exceptional set):
I NSE: Global unique solution in L2 + Lipshitz flow map
I KdV: Local unique solution in H−1+ + Lipshitz flow map
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Formulation of the equation
Let Ut = eABt so that

∂tUt = AUt∂tBt

thenφ should solve

φt = Ut(φ0 +

∫ t

0
U−1

s N(φs)ds).

The pathφ ∈ C([0, T], Hα) is controlled if

φt = Utψt

withψt ∈ Cρ([0, T], Hα) for some ρ > 1/2.

Introduce the map Xs,t : Hα→ Hα given by

Xs,t(ψ) =

∫ t

s
U−1

r N(Urψ)dr

Key estimate

‖Xs,t(ψ) − Xs,t(ψ
′)‖α . F(‖ψ‖α + ‖ψ ′‖α)|t − s|γ‖ψ−ψ ′‖α

for some γ > 1/2.
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Formulation as a controlled path problem

The mild equation take the form

ψt = ψ0 +

∫ t

0
U−1

s N(Usψs)ds = ψ0 +

∫ t

0

[
d
ds

X0,s

]
(ψs)

= ψ0 +

∫ t

0
Xds(ψs) = ψ0 + lim

∑
i

Xti ,ti+1(ψti)

The key estimate implies

t 7→
∫ t

0
Xds(ψs) =

∫ t

0
U−1

s N(φs)ds

is in Cγ([0, T]; Hα) for any controlled pathφ and coincide with the limit

lim
n→∞

∫ t

0
U−1

s N(Pnφs)ds =
∫ t

0
Xds(ψs)

(Pn is the projector on the Fourier modes |k| 6 n) and is γ-Hölder in time for some
γ > 1/2 and locally Lipshitz inφ (in the controlled path norm).

By standard fixed-point argument we get a (unique) local solution to the PDE.
In the NSE case the L2 conservation law allow to extend the solution to a global one.
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Thanks
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