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Prologue.
(or, what not to expect)

You will hear something about rough paths, however. . .

There will be very few rough paths (at least in the form you could
expect)
I will touch very little on the probabilistic side of the problem. (we
describe the “bones” and leave apart the “flesh” of the theory).
The aim is to give a flavour of the approach. Concrete results and
detailed report are being worked over (still. joint work with S.
Tindel [Nancy]).
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Problem of the day

Our concern today are path-wise solutions for equations of the form

yt = S(t)y0 +

∫ t

0
S(t − s)dxs f (ys)

where S is an analytic semigroup on a Banach space B, y0 ∈ B some
initial condition, f some function on B and dx some irregular noise.

Main example
B = L2([0, 1]), S heat semigroup, x is a gaussian noise with covariance

E[xu(ξ)xv(η)] = cH,ν |u− v|2H|ξ − η|−ν , u, v ∈ [0,T], ξ, η ∈ [0, 1]

f some function acting as f (y)(ξ) = f (y(ξ)), ξ ∈ [0, 1].

H = 1/2 Brownian motion in time, ν = 1 white noise in space
Act on functions ϕ ∈ B as (xuϕ)(ξ) = xu(ξ)ϕ(ξ), ξ ∈ [0, 1]
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Rough paths

Rough paths are structures on paths for which a meaningful
integration theory can be constructed in a general setting.
We can define and solve differential equations driven by rough
paths, the solution has nice continuity property with respect to the
data.
Brownian motion can be used to build a simple non-trivial example
of a rough path. (Historically this is the main motivation for the
development of rough path theory)
We are going to review an alternative approach to the “classical”
rough path theory (as introduced by T. Lyons).
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k-Increments
[M. G. , “Controlling rough paths”, JFA (2004)]

Definition
A k-increment is a continuous function g : [0,T]k+1 → V such that
gt0···tk = 0 whenever ti = ti+1. Denote them Ck(V).

Example
g ∈ C0 is a function on [0,T]

Given f ∈ C0, set gts = ft − fs, then g ∈ C1.

Basic fact
g ∈ C1 is given by gts = ft − fs for some f ∈ C0 iff it satisfy

gts − gsu − gus = 0

A cocycle property.
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A cochain complex

Increments forms a cochain complex (C∗, δ) with coboundary map

δ : Ck → Ck+1 (δg)t1···tk =
k∑

i=1

(−1)igt1···̂ti···tk

C0
δ→ C1

δ→ C2
δ→ C3

δ→ · · ·

δδ = 0 and Kerδ|Ck+1 = Imδ|Ck so the complex is acyclic.
In particular, g ∈ C1 is a 1-cocycle (or closed 1-increment) if

δgtus = −gus + gts − gtu = 0.

Then there exists f ∈ C0 such that g = δf : closed 1-increments
are exact.
(cfr. de-Rham cohomology of Rn: closed differential forms are exact)
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Some (useful) notation. . .

Definition
For a ∈ Ck and b ∈ Cm we define the product ab ∈ Ck+m as

(ab)t1···tk+m+1 = at1···tk+1btk+1···tk+m+1

Notation
When x, f1, f2 ∈ C0 and smooth, we will mean(∫

ϕ(x)dx
)

ts
=

∫ t

s
ϕ(xr)dxr

and (∫
df1df2

)
ts

=

∫ t

s

(∫ u

s
drf1,r

)
duf2,u

as elements of C1.
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. . . and interesting relations

Easy to check:

δ

∫
df1 = 0 δ

∫
df1df2 =

∫
df1

∫
df2 = δf1δf2

for any smooth f1, f2 ∈ C0.
And more generally

δ

∫
df1 · · · dfn =

n−1∑
k=1

∫
df1 · · · dfk

∫
dfk+1 · · · dfn

Moral: δ splits interated integral into “simpler” objects (and Λ put
them together again...)
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Norms on Increments

Definition
For g ∈ C1,h ∈ C2 let

‖g‖µ = sup
t,s∈[0,T]

|gts|
|t − s|µ

‖h‖ρ,σ = sup
t,s,u∈[0,T]3

|htus|
|t − u|ρ|u− s|σ

and

‖h‖µ = inf

{∑
i

‖hi‖ρi,µ−ρi : h =
∑

i

hi, 0 < ρi < µ

}
Denote Cµ

k the subset of Ck with finite ‖ · ‖µ norm (k = 1, 2).
Let C1+

k = ∪µ>1Cµ
k – the small increments.

mg (pisa) rough evolution eqns. 12 / 43



The Λ map

Fact
We have BC1+

1 = C1+
1 ∩ Imδ = {0}: no nontrivial small 1-coboundaries.

Theorem
There exists a unique bounded linear map Λ : BC1+

2 → C1+
1 such that

δΛg = g.

(BC1+
2 = C1+

2 ∩ Imδ)

If g ∈ C1 and δg ∈ BC1+
2 , then

g = Λδg + δf
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What an integral is made of?

Taylor formula∫ t

s
ϕ(xr)dxr = ϕ(xs)

∫ t

s
dxr +

∫ t

s

(∫ u

s
ϕ′(xr)dxr

)
dxu

with our “brand new” notation reads∫
ϕ(x)dx = ϕ(x)

∫
dx +

∫
ϕ′(x)dxdx

as elements of C1.
We look in more detail to the iterated integral by dissecting it:

δ

∫
ϕ′(x)dxdx =

∫
ϕ′(x)dx

∫
dx = δϕ(x)δx ∈ C2

3
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Young integration

Then ∫
ϕ(x)dx = ϕ(x)δx + Λ (δϕ(x)δx)

The integral on the l.h.s is equal to an expression which do not
need x to be differentiable.
Essentially x must be γ-Hölder with γ > 1/2 – Young integration
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Go on. . .

Again ∫
ϕ(x)dx = ϕ(x)

∫
dx +

∫
ϕ′(x)dxdx

But now continue Taylor expansion one step further:∫
ϕ(x)dx = ϕ(x)

∫
dx + ϕ′(x)

∫
dxdx +

∫
ϕ′′(x)dxdxdx

The remainder is now a three-fold integral:

δ

∫
ϕ′′(x)dxdxdx =

∫
ϕ′′(x)dx︸ ︷︷ ︸
δϕ′(x)

∫
dxdx +

∫
ϕ′′(x)dxdx︸ ︷︷ ︸

δϕ(x)−ϕ′(x)δx

∫
dx
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∫
dxdx +

∫
ϕ′′(x)dxdxdx

The remainder is now a three-fold integral:

δ

∫
ϕ′′(x)dxdxdx =

∫
ϕ′′(x)dx︸ ︷︷ ︸
δϕ′(x)

∫
dxdx +

∫
ϕ′′(x)dxdx︸ ︷︷ ︸

δϕ(x)−ϕ′(x)δx

∫
dx
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Rough paths

Putting things together∫
ϕ(x)dx = (1− Λδ)

[
ϕ(x)δx + ϕ′(x)

∫
dxdx

]
(if the argument of Λ is small enough).

To make sense of the r.h.s we need a small
∫

dxdx such that

δ

∫
dxdx = δxδx

(which is a highly nontrivial non-linear relation).∫
dxdx is the “Levy area” of the rough path theory.
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Rougher and rougher.

This procedure can be iterated to recover the hierarchy of (Lyons’)
rough paths which are given by a sequence of iterated integrals of
the form ∫

dx,
∫

dxdx,
∫

dxdxdx, . . .

Watch out: to prove smallness of some terms we need geometric
rough paths, i.e. which satisfy relations like

[(δx)ts]
2 = 2

(∫
dxdx

)
ts
.

(smooth integrals OK, Stratonovich OK, Itô NO! – but we do not
need it).

mg (pisa) rough evolution eqns. 20 / 43



Rougher and rougher.

This procedure can be iterated to recover the hierarchy of (Lyons’)
rough paths which are given by a sequence of iterated integrals of
the form ∫

dx,
∫

dxdx,
∫

dxdxdx, . . .

Watch out: to prove smallness of some terms we need geometric
rough paths, i.e. which satisfy relations like

[(δx)ts]
2 = 2

(∫
dxdx

)
ts
.

(smooth integrals OK, Stratonovich OK, Itô NO! – but we do not
need it).

mg (pisa) rough evolution eqns. 20 / 43



Difference equations

A remark
Given a rough path (

∫
dx,

∫
dxdx) the solutions y of the diff. eqn.

dy = ϕ(y)dx

is the unique path which satisfy the difference equation

δy = ϕ(y)
∫

dx + ϕ′(y)ϕ(y)
∫

dxdx + r, r ∈ C1+
1

The integral equation
This remainder is uniquely determined and we must have

δy = (1− Λδ)[ϕ(y)
∫

dx + ϕ′(y)ϕ(y)
∫

dxdx]

which can be solved by fixed point method.
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Extended Garcia-Rodemich-Rumsey inequality

To prove path-wise regularity of 1-increments defined by stochastic
integrals we have the following useful lemma:

Lemma
For any γ > 0 and p ≥ 1 there exists a constant C such that for any
g ∈ C1

‖g‖γ ≤ C(Uγ+2/p,p(g) + ‖δg‖γ).

where

Uγ,p(g) =

[∫
[0,T]2

(
|gts|

|t − s|γ

)p

dtds

]1/p

.

This reduces to the well known GRR inequality when gts = ft − fs.
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Increments of convolutions

Let S(t), t ≥ 0 be a semigroup.
Look at

gt =

∫ t

0
S(t − u)dxuf (xu)

Then

(δg)ts = atsgs +

∫ t

s
S(t − u)dxuf (xu)

with ats = S(t − s)− 1

Remark

(δa)tus = atuaus, t ≥ u ≥ s ≥ 0

due to the semigroup property of S.
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A connection

Idea
Introduce the “perturbed” coboundary δ̂ = (δ − a)

δ̂ is a coboundary

δ̂δ̂f = (δ − a)(δf − af ) = δ2f − δ(af )− aδf + aaf

= −(δa− aa)f = 0

Increments of convolutions

(δ̂g)ts =

∫ t

s
S(t − u)dxuf (xu) =

(∫
d̂x f (x)

)
ts
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Ingredients

a scale of Banach spaces {Bα}α∈R associated with S (|ϕ|α = |(−A)αϕ|B)

∆n = {(t0, t1, . . . , tn) : T ≥ t0 ≥ t1 ≥ · · · ≥ tn ≥ 0}.

n-increments Ĉn(V) = C(∆n; V) vanishing on diagonals.

Norms for g ∈ Ĉ1 and h ∈ Ĉ2 :

‖g‖µ,α ≡ sup
(t,s)∈∆1

|gts|Bα

|t − s|µ
, and ‖h‖γ,ρ,α = sup

(t,u,s)∈∆2

|htus|Bα

|t − u|γ |u− s|ρ

‖h‖µ,α ≡ inf

{∑
i

‖hi‖ρi,µ−ρi,α; h =
∑

i

hi, 0 < ρi < µ

}
,

and corresponding spaces Ĉµ,α
k , k = 1, 2.

Moreover Eµ,α
j = ∩ε≤µĈµ−ε,α+ε

j j = 1, 2

mg (pisa) rough evolution eqns. 26 / 43



Ingredients

a scale of Banach spaces {Bα}α∈R associated with S (|ϕ|α = |(−A)αϕ|B)

∆n = {(t0, t1, . . . , tn) : T ≥ t0 ≥ t1 ≥ · · · ≥ tn ≥ 0}.
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The perturbed complex

We have another acyclic cochain complex (Ĉ∗, δ̂)

B → Ĉ0
δ̂→ Ĉ1

δ̂→ Ĉ2
δ̂→ Ĉ3

δ̂→ · · ·

0-cocycles: f ∈ Ĉ0, δ̂f = 0 ⇒ ft = S(t)f0
For µ > 1, there exists a unique bounded operator
Λ̂ : BĈµ,α

2 → Eµ,α
1 such that

δ̂Λ̂h = h,

Convergence of sums: if δ̂f ∈ BĈµ,α
2 ,

[(1− Λ̂δ̂)f ]ts = lim
|Πts|→0

∑
i

S(t − ti+1)fti+1 ti
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0-cocycles: f ∈ Ĉ0, δ̂f = 0 ⇒ ft = S(t)f0
For µ > 1, there exists a unique bounded operator
Λ̂ : BĈµ,α
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Young theory

The simplest expansion gives

(δ̂z)ts =

∫ t

s
d̂xuf (yu) =

∫ t

s
d̂xuf (ys) +

∫ t

s
d̂xu[f (yu)− f (ys)]

or in compact notation

δ̂z = J [d̂xf (y)] = J (d̂x)f (y) + J [d̂xδf (y)]

Assume
δ̂J [d̂xδf (y)] = J (d̂x)δf (y) ∈ Ĉ1+

2

Young convolution integral

δ̂z = J (d̂x)f (y) + Λ̂[J (d̂x)δf (y)]
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Young evolution equations

Given J (d̂x) ∈ Ĉ1(L(B;B)) and the integral problem

yt = S(t)y0 + J0t(d̂x f (y))

we find solutions by solving the equation

δ̂y = J (d̂x f (y)) = J (d̂x)f (y) + Λ̂[J (d̂x)δf (y)]

by fixed points methods.
SPDEs driven by FBM (H > 1/2), joint work with A. Lejay and
S. Tindel.
When ν = 1 (white noise in space) we are limited to H > 3/4. In
any case this approach is limited to H > 1/2.
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Given J (d̂x) ∈ Ĉ1(L(B;B)) and the integral problem

yt = S(t)y0 + J0t(d̂x f (y))

we find solutions by solving the equation

δ̂y = J (d̂x f (y)) = J (d̂x)f (y) + Λ̂[J (d̂x)δf (y)]

by fixed points methods.
SPDEs driven by FBM (H > 1/2), joint work with A. Lejay and
S. Tindel.
When ν = 1 (white noise in space) we are limited to H > 3/4. In
any case this approach is limited to H > 1/2.

mg (pisa) rough evolution eqns. 30 / 43



Young evolution equations
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A (bi-)linear equation

Let us play with the solution y of the (bi-)linear integral equation

yt = S(t − s)ys +

∫ t

s
S(t − u)dxuyu.

Expand the r.h.s. in a truncated series of iterated integrals:

yt = S(t − s)ys +

∫ t

s
S(t − u)dxuS(u− s)ys +

∫ t

s
S(t − u)dxu

∫ u

s
S(u− v)dxvyv

In our notation this reads:

δ̂y = J (d̂xS) y + J (d̂xd̂x y) = J (d̂xS) y + J (d̂xd̂xS) y + J (d̂xd̂xd̂x y)︸ ︷︷ ︸
remainder
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Convolution rough paths

Working a bit we get to

δ̂y = (1− Λ̂δ̂)
[
J (d̂xS)y + J (d̂xd̂xS)y

]
where we used the fact that δ̂J (d̂xd̂xS) = J (d̂xS)J (d̂xS)

This express the solution y as a function of the couple

J (d̂xS) J (d̂xd̂xS)

suitable notion of rough path for this linear convolution equation.
The solution can be expressed as a series

yt = S(t)y0 + J0t(d̂xS)y0 + J0t(d̂xd̂xS)y0 + · · ·+ J0t[(d̂x)nS]y0 + · · ·
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A general class of integrands

Controlled paths

A controlled path y is such that exists yx ∈ Ĉ0 and y] ∈ Ĉ1

δ̂y = J (d̂x)yx + y]

Then
δ̂z = J (d̂xy) = J (d̂xS)y + J (d̂xδ̂y)

and
δ̂z = J (d̂xS)y + J (d̂xd̂x)yx + J (d̂xy])

Integration of controlled paths
Controlled paths can be integrated against d̂x:

J (d̂xy) = J (d̂xS)y + J (d̂xd̂x)yx + Λ̂[J (d̂xS)y] + J (d̂xd̂x)δyx]
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Outline

To start

1 Review of the “classical” theory
Abstract integration
Exercise of deconstruction
Rough paths

2 Rough evolution equations
Convolution integrals
Young theory
More irregular noises
Fully non-linear case
Summary of the approach
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Non-commutativity

Problem
Controlled paths are not stable under natural maps. f (y) is not
controlled in general (even if f is linear).

δ̂z = J (d̂x f (y))

[Non-commutativity of the semigroup with multiplication.]

Idea
Expand δf (y) in a Taylor-like series

δf (y) = B(δy⊗ f ′(y)) + r

r some small remainder
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Non-linear integrals

δ̂z = J (d̂x f (y)) = J (d̂x) f (y) + J (d̂xδf (y))

Assume y is controlled, and expand f (y):

δ̂z = J (d̂x) f (y) + J (d̂xB(δy⊗ Id))f ′(y) + J (d̂xr)

The dissection of the last term gives

δ̂J (d̂xr) = J (d̂x)r + J (d̂xB(δy⊗ Id))δf ′(y)

The term J (d̂xB(δy⊗ Id)) can be defined using the “linear” theory
for the controlled path y
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The linear part

First, reduce it to having δ̂y instead of δy,

J (d̂xB(δy⊗ Id)) = J (d̂xB(δ̂y⊗ Id)) + J (d̂xB(a⊗ Id))︸ ︷︷ ︸
Q

(y⊗ Id)

then

J (d̂xB(δ̂y⊗ Id)) = J (d̂xB(d̂x⊗ Id))︸ ︷︷ ︸
M

(yx ⊗ Id) + J (d̂xB(y] ⊗ Id))

At last

J (d̂xf (y)) = J (d̂x)f (y) + Q(y⊗ f ′(y)) + M(yx ⊗ f ′(y)) + Λ̂[· · · ]

Note

Q : Ĉθ1
1 (L(Bδ ⊗ Bδ;Bρ)), M : Ĉθ2

1 (L(Bδ ⊗ Bδ;Bρ))
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The full rough path

(Quasi)Theorem
If

δ̂y = nyx + y], δf (y) = B(δy⊗ f ′(y)) + r

then

δ̂z = J (d̂xf (y)) = J (d̂x)f (y) + Q(y⊗ f ′(y)) + M(yx ⊗ f ′(y)) + Λ̂[· · · ]

with n = J (d̂x), Q = J (d̂xB(a⊗ Id)) and M = J (d̂xB(d̂x⊗ Id)),
N = J (d̂xB(S ⊗ Id))

δ̂Q = N(a⊗ Id) δ̂M = N(n⊗ Id)

z is a controlled path: δ̂z = J (d̂x)zx + z]
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Plain talk

The quadruplet (n,N,Q,M) is the new rough path.

nts : B → B; Nts,Qts,Mts : B ⊗ B → B.

Some expressions

Qts(ϕ⊗ ψ) = [J (d̂xB(a⊗ Id))]ts(ϕ⊗ ψ)

=

∫ t

s
S(t − u)dxuB[(ausϕ)⊗ ψ]

and

Mts(ϕ⊗ ψ) = [J (d̂xB(d̂x⊗ Id))]ts(ϕ⊗ ψ)

=

∫ t

s
S(t − u)dxuB

[(∫ u

s
S(u− v)dxvϕ

)
⊗ ψ

]
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Rough evolution equations

1 Given x prove the existence of path-wise regular versions of
n,N,Q,M with right algebraic properties and in the right operator
spaces [Estimates on stochastic integrals, Kolmogorov-like
criterion, HS norms].

2 Given n,N,Q,M define controlled paths and integrate them
against x

3 Find fixed points of the map y 7→ S(·)y0 + J0·[d̂xf (y)] in the space
of controlled paths.

Our preferred 1d example
Within this approach we can handle H > 1/3 for sufficiently small ν.
When ν = 1 (white noise) we must have H > 2/3.
Still not enough to handle space-time white noise.
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Summary

Lyons’ rough paths are particular cases of more general structure
(rough increments).
We tried to emphasize an algorithm for the “creation” of useful
notions of rough increments.
In particular we have shown how to implement rough increment
which “support” pathwise solutions of evolution equations.
To handle space-time white noise (even in the 1d situation) we
need to devise an expansion to higher order (analogy with the
situation for fBm with H < 1/3). Conjecture: We need at least 4th
order expansion.

Outlook
I Path-wise SPDEs (joint work with S. Tindel).
I Rough sheets (multiparameter integrals).
I Explore the computational relevance of such results.
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