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The regularizing effects of irregular functions

Regularization by noise in ODEs/PDEs:

Addition of noise has positive effects on the theory of the equation (in some pathwise sense)

→ ODEs:

Xt = x+
∫

0

t

b(Xs)ds + Wt

where (Wt) is a BM in Rd and b a less-than-Lipshitz vectorfield. Many results: Vereten-
nikov, Davie, Krylov-Röckner, Flandoli, Attanasio, Fedrizzi, Proske, ... Essentially:
bounded b: (in L∞ or with some particular integrability: LPS condition).

→ Transport equation:

dtu(t, x) + b(x) ·∇u(t, x)dt =∇u(t, x) · dWt

good theory for L∞ solutions and preservation of regularity. Flandoli–G.–Priola, Flandoli–
Attanasio, Flandoli–Maurelli, Flandoli–Beck–G.–Maurelli

→ Some other PDE: Vlasov–Poisson, point vortices in 2d.



Irregularity and regularization

We want to provide a deterministic framework to discuss regularization.

• A notion of irregular functions.

• The averaging operator along irregular functions.

• Non-linear Young integral and ODEs.

• Regularization by irregular functions in the linear transport equation.

• Regularization by irregular functions in dispersive equations: NLS & KdV.



The averaging operator

Given a function w: [0, 1]→Rd define the averaging operator

Tt
wf(x) =

∫

0

t

f(x+ ws)ds, Tt,s
w f =Tt

wf −Ts
wf

acting on functions (or distributions) f :Rd→R.

◃ d=1, wt = t. Then if F ′(x)= f(x) we have Tt
wf(x)=

∫
0

t
F ′(x+ s)ds=F (x+ t)−F (x)

and T w: L∞→Lip:

|Tt
wf(x)−Tt

wf(y)|" ∥f ∥∞|x− y |, |Tt,s
w f(x)|" ∥f ∥∞|t− s|

◃ Tao–Wright: if w “wiggles enough” then Tt
w maps Lq into Lq ′

with q ′> q.

◃ Davie: if w is a sample of BM then a.s. (the exceptional set depends on f)

|Tt,s
w f(x)−Tt,s

w f(y)|" Cw∥f ∥∞|x− y |1−|t− s|1/2−

Problem: study the mapping properties of Tw for w the sample path of a stochastic process.



Irregular functions

Consider

Yt
w(ξ) =

∫

0

t

ei⟨ξ,ws⟩ds

then Tt
wf =F−1(Yt

wF(f)).

Mapping properties of Tw in (Hs)s∈R spaces can be discussed in terms of Y w: ∥Tt,s
w f ∥Hs =∥∥(1 + ξ2)s/2Yt,s

w (ξ)Ff(ξ)
∥∥

Hξ
s.

In our setting more convenient to look at the scale (FLα)α.

∥f ∥FLα =
∫

|f(ξ)|(1 + ξ2)α/2dξ

since Cα ⊆FLα.

Definition 1. We say that w is (ρ, γ)–irregular if there exists a constant K for which

|Yt,s
w (ξ)|" K(1+ |ξ |)−ρ|t− s|γ

for ξ ∈Rd and 0" s " t" 1.



Where we find irregularity?

◃ The fBM of Hurst index H is ρ–irregular for any ρ < 1/2H. (Catellier-G.)

⇒ there exists functions of arbitrarily high irregularity and arbitrarily L∞-near any given
continuous function.

◃ An irregular function cannot be too regular.

If w ∈Cθ with αθ + γ > 1 and α∈ [0, 1], using the Young integral, we find

|t− s|= |eia(t− s)|=

∣∣∣∣∣∣

∫

s

t

eia−iawr

︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸
Cαθ

drYr
w(a)︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸
Cγ

∣∣∣∣∣∣

"C Kw (|t− s|γ + |t− s|αθ+γ |a|α)∥w∥θ(1+ |a|)−ρ→ 0

if t > s and α < ρ. This implies that is not possible that θ > (1− γ)/ρ.



Facts about irregularity

◃ Not easy to say if a function is irregular.

◃ In d = 1 smooth functions are (ρ, γ) irregular for ρ + γ = 1. In particular if we insist on
γ > 1/2 we have ρ < 1/2.

◃ For d > 1 smooth functions are not irregular: if |t− s|≪ 1

∫

s

t

ei⟨a,wr⟩dr≃
∫

s

t

ei⟨a,ws
′⟩(t−s)dr≃ (1 + |⟨a, ws

′ ⟩|)−1#(1 + |a|)−ρ.

◃ If w is ρ–irregular and ϕ is a C1 perturbation then w + ϕ is at least ρ− (1− γ) irregular
since:

Yt,s
w+ϕ(ξ) =

∫

s

t

ei⟨ξ,wr+ϕr⟩dr =
∫

s

t

ei⟨ξ,ϕr⟩drYs,r
w (ξ)

and we can use Young integral estimates.

◃ If W is a fBM and Φ an adapted smooth perturbation then W + Φ is as irregular as W
(via Girsanov theorem).



Irregularity, what for?

If w is ρ–irregular then

T w: Hs→Hs+ρ

and

T w:FLα→FLα+ρ

Indeed

∥Tt,s
w f ∥FLα+ρ =

∫
dξ (1+ |ξ |)α+ρ|Yt,s

w (ξ)(Ff)(ξ)|

"Kw|t− s|γ
∫

dξ (1+ |ξ |)α|(Ff)(ξ)|= Kw|t− s|γ∥f ∥FLα.



ODEs and the averaging operator

In order to exploit the averaging properties of w in the study of the ODE

xt =x0 +
∫

0

t

b(xs)ds + wt

we rewrite it in order to make the action of the averaging operator explicit: let θt = xt −wt:

θt = θ0 +
∫

0

t

b(ws + θs)ds = θ0 +
∫

0

t

(dsGs)(θs)

where Gs(x) =Ts
wb(x) so that dsGs(x) = f(ws +x).

If we assume that G is Cγ in time (γ >1/2) with values in a space of regular enough functions
we can study this equation as a Young type equation for θ ∈Cγ.

◃ Non-linear Young integral:

∫

0

t

(dsGs)(θs) = lim
Π

∑

i

Gti+1,ti(θti)

This limit exists if θ ∈Cγ and G∈Ct
γCx

ν with γ(1+ ν)> 1. The integral is in Ct
γ.



Young equations

The integral equation

θt = θ0 +
∫

0

t

(dsGs)(θs)

is well defined for θ ∈Cγ and G∈Ct
γCx

ν with (1 + ν)γ > 1.

• Existence of global solutions.

• Uniqueness if G∈Ct
γCx

ν+1 and differentiable flow.

• Smooth flow if G∈Ct
γCx

ν+k.

◃ The equation

xt =x0 +
∫

0

t

b(xs)ds + wt

has a unique solution for w ρ–irregular and b∈FLα for α > 1− ρ. In this case we can take
θ ∈C1 above and the condition for uniqueness is G∈Ct

γCx
1+.



Distributional vectorfields

Say that x is controlled by w if θ = x−w ∈Cγ. In this case we have

Ix(b)=
∫

0

t

b(xs)ds =
∫

0

t

(dsTs
wb)(θs)

and the r.h.s. is well defined as soon as T wb∈Ct
γCx

ν.

If w is ρ irregular and b∈FLα then Twb∈Ct
γFLx

α+ρ so if α + ρ $ ν we have Twb∈Ct
γCx

ν.

In this case Ix(b) can be extended by continuity to all b∈FLα and in particular we have given
a meaning to

∫

0

t

b(xs)ds

when b is a distribution provided x is controlled by a ρ-irregular path.

For controlled paths the ODE

xt =x0 +
∫

0

t

b(xs)ds + wt

make sense even for certain distributions b as a Young equation for θ.



Transport equations driven by irregular paths

(Work in progress with Catellier)

We want to give a meaning to the transport equation

(∂t + b(x) ·∇+ ∂twt ·∇)u(t, x)= 0

for u∈L∞ and w ∈Cσ with σ > 1/2 (simplest case, possible to remove this condition).

Weak formulation: ut(ϕ) =
∫

dxϕ(x)u(t, x).

ut,s(ϕ)=
∫

s

t

ur(∇ · (bϕ))dr +
∫

s

t

ur(∇ϕ)drwr

We assume that ut(∇ϕ)∈Ct
σ so that the last integral is a Young integral.

Using the flow of the Young equation it is possible to show existence and uniqueness of
solutions to this equation for b which are not necessarily Lipshitz (for example just in FLα

for α∈ (0, 1)).

For the moment only in the case div b = 0.



Dispersive equations modulated by irregular signals

Two simple dispersive models with ρ-irregular modulation w:

• Non-linear Schödinger equation: x∈T,R, t$ 0

∂tϕ(t, x) = i∆ϕ(t, x)∂twt + i|ϕ(t, x)|p−2ϕ(t, x).

• Korteweg–de Vries equation: x∈T,R, t$ 0

∂tu(t, x)= ∂x
3u(t, x)∂twt + ∂x(u(t, x))2.

To be compared to the non-modulated setting where ∂twt = 1 and studied in the scale of
(Hs)s spaces.

The equations are understood in the mild formulation

u(t) =Ut
wu(0) +

∫

0

t

Ut
w(Us

w)−1∂x(u(s))2ds.

with Ut
w = eiwt∂x

3
. (similarly for NLS). Here w can be an arbitrary continuous function.



Young formulation

Rewrite the mild formulation as

v(t) = (Ut
w)−1u(t) = u(0) +

∫

0

t

(dsXs)(v(s))

where X is the bi-linear operator

Xt(ϕ) = Xt(ϕ, ϕ) =
∫

0

t

(Us
w)−1∂x(Us

wϕ)2ds.

If w is ρ irregular then X ∈Cγ Liploc(Hα) for α >−ρ and ρ > 3/4.

The above equation has local solutions for initial conditions in Hα with locally Lipshitz flow.
Uniqueness in CγHα (for v).

⇒ Regularization by modulation. In the non-modulated case it is known that there cannot
be continous flow for a"−1/2 on T and α "−3/4 on R.

◃ Global solutions thanks to the L2 conservation and smoothing for α > 0 or an adaptation
of the I-method for −3/2 " α < 0 and α >−ρ/(3− 2γ).

◃ NLS: global solutions for α $ 0 and ρ > 1/2.



Strichartz estimates

A different line of attack to the modulated Schrödinger equation comes from the application
of the following Strichartz type estimate which can be proved under the same ρ-irregularity
assumption.

Theorem 2. Let T > 0, p ∈ (2, 5],ρ > min (3

2
− 2

p
, 1) then there exists a finite constant

Cw,T > 0 and γ⋆(p) > 0 such that the following inequality holds:

∣∣∣∣

∣∣∣∣
∫

0

.

U.(Us)−1 ψs d s

∣∣∣∣

∣∣∣∣
Lp([0,T ],L2p(R))

≤Cw T γ⋆(p)|| ψ ||L1([0,T ],L2(R))

for all ψ ∈L1([0, T ], L2(R)).



Application of Strichartz estimates

As an application we obtain global well-posedness for the modulated NLS equation with
generic power nonlinearity i e:N (φ)= |φ|µ φ: (Debussche–de Bouard, Debussche–Tsutsumi)

Theorem 3. Let µ∈ (1,4], p= µ+1, ρ>min (1, 3/2− 2

p
) and u0∈L2(R) then there exists

T ⋆ > 0 and a unique u∈Lp([0, T ], L2p(R)) such that the following equality holds:

ut = Ut u0 + i

∫

0

t

Ut(Us)−1 (|us|µ us) d s

for all t∈ [0, T ⋆]. Moreover we have that ||ut||L2(R) = || u0||L2(R) and then we have a global
unique solution u ∈Lloc

p ([0, +∞), L2p(R)) and u ∈C([0, +∞), L2(R)). If u0∈H1(R) then
u∈C([0,∞), H1(R)).



Thanks.


