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The regularizing effects of irregular functions

Regularization by noise in ODEs/PDEs:

Addition of noise has positive effects on the theory of the equation (in some pathwise sense)

—  ODEs:

t
Xi=x +/ b(Xs)ds + W;
0

where (17;) is a BM in R? and b a less-than-Lipshitz vectorfield. Many results: Vereten-
nikov, Davie, Krylov-Rockner, Flandoli, Attanasio, Fedrizzi, Proske, ... Essentially:
bounded b: (in L™ or with some particular integrability: LPS condition).

—  Transport equation:
dyu(t, x) + b(x) - Vu(t, z)dt = Vu(t,z) - dW,

good theory for L°° solutions and preservation of regularity. Flandoli-G.—Priola, Flandoli-
Attanasio, Flandoli-Maurelli, Flandoli-Beck—G.—Maurelli

—  Some other PDE: Vlasov—Poisson, point vortices in 2d.



Irregularity and regularization

We want to provide a deterministic framework to discuss regularization.

e A notion of irregular functions.

e The averaging operator along irregular functions.

e Non-linear Young integral and ODEs.

e Regularization by irregular functions in the linear transport equation.

e Regularization by irregular functions in dispersive equations: NLS & KdV.



The averaging operator
Given a function w: [0, 1] — RY define the averaging operator
Tef@) = [ fawdds, TS =TT
acting on functions (or distributions) f: R?— IR.
> d=1, w;=t. Then if F'(x)= f(x) we have T}"f fo "(x+s)ds=F(x+t)— F(x)
and T'": L°° — Lip:
T () =TEF W) < flloclz —wl [T f (@) <N f lloolt — s

> Tao-Wright: if w “wiggles enough” then T} maps L? into L9 with ¢’ > g.

> Davie: if w is a sample of BM then a.s. (the exceptional set depends on f)
T f (2) = T f(9)] S Cull f ool =yl |t = s]1/27

Problem: study the mapping properties of 7™ for w the sample path of a stochastic process.



Irregular functions

Consider

then Tj" f = F=1(V;F(f)).

Mapping properties of 7 in (H*)scr spaces can be discussed in terms of Y || 13 f || gs =

|1+ €2V (O FF ()] e

In our setting more convenient to look at the scale (FL%),.

T / F(6)](1+ €2)/2de
since C'* C FL“.

Definition 1. We say that w is (p, ~)—irregular if there exists a constant K for which

V(OIS KL+ (€))7t — s[7

for EcRY and 0 <s<t<1.



Where we find irregularity?

> The fBM of Hurst index H is p—irregular for any p <1/2H. (Catellier-G.)

= there exists functions of arbitrarily high irregularity and arbitrarily L°°-near any given
continuous function.

> An irregular function cannot be too regular.

If we C? with af +~>1 and a €0, 1], using the Young integral, we find

t
yt—sy:yew(t—s)y:/ gia—iawn y(g)

SO Ky ([t =57+ [t = s[*]a|*)[wlle(1 +|a])~*—0

if t>s and a < p. This implies that is not possible that 6 > (1 —~)/p.



Facts about irregularity

> Not easy to say if a function is irregular.

> In d =1 smooth functions are (p, ) irregular for p + v = 1. In particular if we insist on
v>1/2 we have p<1/2.

> For d > 1 smooth functions are not irregular: if |t —s| <1

t t
/€i<a,wr>drg/ €i<a,w;>(t—8)dr2(1+\(a,w@\)_l%(lﬂab_p-

> If w is p—irregular and ¢ is a C'! perturbation then w + ¢ is at least p — (1 — ) irregular
since:

t

t
Yt’i";r@(é-):/ ei<£,wr+s0r>d7a:/ €i<€’%>dq~Y;fT(€)

S

and we can use Young integral estimates.

> If W is a fBM and ® an adapted smooth perturbation then W + ® is as irregular as W
(via Girsanov theorem).



Irregularity, what for?

If w is p—irregular then
Tw. [Js _, fJs+e
and
TV: FL® — FLotP
Indeed

\ T f g = / A€ (1+ €)Y ()(F)(E)]

<Kwrt—sw/ A€ (1+ [€)°|(FP) ()] = Kt — 5| F ]l 71



ODEs and the averaging operator

In order to exploit the averaging properties of w in the study of the ODE

t
Ty =To+ / b(xs)ds + wy
0

we rewrite it in order to make the action of the averaging operator explicit: let 0, = x; — wy:

t t
0, = Oy + / b(ws + 0,)ds = Oy + / (d,G)(0)
0 0
where G () =T"b(z) so that d;Gs(x) = f(ws+ x).

If we assume that G is C'7 in time (7 > 1/2) with values in a space of regular enough functions
we can study this equation as a Young type equation for 6 € C7.

> Non-linear Young integral:

t
|| @GO =1m > Gua 0

This limit exists if 6 € C7 and G € C/CY with (14 ) > 1. The integral is in C}'.



Young equations

The integral equation

0, = 0y + /0 (.G (6.)

is well defined for 6 € C7 and G € C,CY with (1 +v)y > 1.
e Existence of global solutions.

e Uniqueness if G C)CY"! and differentiable flow.

e Smooth flow if G eC)CYt"

> The equation

'
Ti=To+ / b(zs)ds + wy
0

has a unique solution for w p—irregular and b € FL® for &« > 1 — p. In this case we can take
# € C" above and the condition for uniqueness is G € C;'C. T



Distributional vectorfields
Say that z is controlled by w if § =2 —w € C7. In this case we have
t t
I.(b) = / b(z.)ds / (d.T)(6,)
0 0

and the r.h.s. is well defined as soon as T"b € C/CY.

If wis p irregular and b€ FL® then T"bc C]FLE " so if o+ p> v we have T"bc C]CY.

In this case I..(b) can be extended by continuity to all b€ FL® and in particular we have given

a meaning to
t
/ b(zs)ds
0

when b is a distribution provided x is controlled by a p-irregular path.

For controlled paths the ODE

‘
Tt =To+ / b(zs)ds + wy
0

make sense even for certain distributions b as a Young equation for 6.



Transport equations driven by irregular paths

(Work in progress with Catellier)

We want to give a meaning to the transport equation

for u e L> and w e C? with o > 1/2 (simplest case, possible to remove this condition).

Weak formulation: ui(p) = [ daxp(x)u(t,x).

ut,s(¢)=/: ur(V-(bw))dH/j ur(Vo)dyw,

We assume that u.(V ) € Cf so that the last integral is a Young integral.

Using the flow of the Young equation it is possible to show existence and uniqueness of

solutions to this equation for b which are not necessarily Lipshitz (for example just in FL®
for a € (0,1)).

For the moment only in the case div b =0.



Dispersive equations modulated by irregular signals

Two simple dispersive models with p-irregular modulation w:

e Non-linear Schodinger equation: xt € T IR, t >0
Opo(t, x) =iAp(t, x)0pws +i|@(t, z)|P~2p(t, z).
e Korteweg—de Vries equation: x € T, R, t >0
Owu(t, ) = 03u(t, x)Ow; + Op(ult, )2

To be compared to the non-modulated setting where 0;w; = 1 and studied in the scale of
(H?®)s spaces.

The equations are understood in the mild formulation
t
u(t) =Uu(0) +/ UL (UPYLD,(u(s))?ds.
0

with YUY = w9z (similarly for NLS). Here w can be an arbitrary continuous function.
t y y



Young formulation

Rewrite the mild formulation as

v(t) = U") " u(t) =u(0) + /Ot (dsXs)(v(s))

where X is the bi-linear operator

Xio)=Xdeoo)= | L U)0,Ur) s

If w is p irregular then X € C7 Lipjo.(H®) for o> —p and p>3/4.
The above equation has local solutions for initial conditions in H“ with locally Lipshitz flow.
Uniqueness in C7H (for v).

= Regularization by modulation. In the non-modulated case it is known that there cannot
be continous flow for a < —1/2 on T and o< —3/4 on R.

> Global solutions thanks to the L? conservation and smoothing for oz > 0 or an adaptation
of the I-method for —3/2<a <0 and aa>—p/(3 —27).

> NLS: global solutions for & >0 and p > 1/2.



Strichartz estimates

A different line of attack to the modulated Schrédinger equation comes from the application

of the following Strichartz type estimate which can be proved under the same p-irregularity
assumption.

Theorem 2. Let T > 0, p € (2, 5],p > min (% - %, 1) then there exists a finite constant

Cw.7>0 and v*(p) > 0 such that the following inequality holds:

for all v € L'([0,T], L*(R)).

<Co TP Y| L1 (0,17, L2R)
L?([0,T],L??(R))

/' U.(U) " s ds

0




Application of Strichartz estimates

As an application we obtain global well-posedness for the modulated NLS equation with
generic power nonlinearity i e: N'(¢) = |¢|* ¢: (Debussche—de Bouard, Debussche—Tsutsumi)

Theorem 3. Let uc(1,4], p=p+1, p>min(1,3/2— %) and v’ € L*(R) then there exists
T*>0 and a unique v € LP([0,T], L??(R)) such that the following equality holds:

t
ut:Utu0+i/ Uu(U) = (Jus | us) d s
0

for all t € [0,T*]. Moreover we have that || u;||r2r)= || uo||r2r) and then we have a global

unique solution v € LY. ([0, +00), L?*?(R)) and v € C ([0, +00), L*(R)). If u’ € HY(R) then
ue C([0,00), HY(R)).



Thanks.



