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We are concerned here with large scale effective description of microscopic random phenomena.

White noise (CLT, Donsker’s Invariance principle, ...)

e 7: R — R a stationary random field under suitable assumptions (e.g. strong mixing,
integrability) with law /.

o Weak topology: 1(¢) = [dzp(x)n(x) for a sufficiently large class of ¢.

e Scaling transformation 7.(x) = e~ %/25(x / ): keeps variance unchanged for 7() but not
mean.

Let e the law of . —m, m.=e~¥2E(n(z)) — p, then

He,m. 7 Vp,c as € —~ 0,

where 7, . is the law of the white noise £ with intensity ¢ and mean p:

E(£()) = p / o(@)dz,  Var(€(p))=c / o(x)?da.
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The description of random non-gaussian scaling limits is less clear:

> Infinitely divisible distributions, Hierarchical models

> Ferromagnetic critical point in d =2, 3 short range spin systems

> Large scale behaviour of d=1,2, 3, ... interface models in equilibrium or not
> Interacting Euclidean quantum fields

> ...

There are a number of problems in science which have,
as a common characteristic, that complex microscopic
behavior underlies macroscopic effects.

In simple cases the microscopic fluctuations average
out when larger scales are considered, and the averaged
quantities satisfy classical continuum equations. Hydro-
dynamics is a standard example of this, where atomic
fluctuations average out and the classical hydrodynamic
equations emerge. Unfortunately, there is a much more
difficult class of problems where fluctuations persist out
to macroscopic wavelengths, and fluctuations on all inter-
mediate length scales are important too.

In this last category are the problems of fully developed
turbulent fluid flow, critical phenomena, and elementary-
particle physics. The problem of magnetic impurities in
nonmagnetic metals (the Kondo problem) turns out also
to be in this category.
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Wilson's Renormalisation Group

A theoretical framework for the description of these more general scaling limits is provided by
Wilson's RG

The renormalization group and critical phenomena*

Kenneth G. Wilson
Laboratory of Nuclear Studies, Cornell University, Ithaca, New York 14853

The possible tvpes of cooperative behavior, in the renormalization group picture, are deter-
mined by the possible fixed points H* of r. Suppose for example that there are three fixed points
H3, Hg, and HE. Then one would have three possible forms of cooperative behavior. If a particu-
lar system has an initial interaction #;, one has to construct the sequence H,, 4, etc. in order to
find out which of K}, H§, or HE gives the limit of the sequence. If }3 is the limit of the
sequence, then the cooperative behavior resulting from #g will be the cooperative behavior
determined by X £. In this example the set of all possible initial interactions ¥, would divide into
three subsets (called *“domains™), one for each fixed point. Universality would now hold separately
for each domain. See section 12 for further discussion.

This is how one derives a form of universality in the renormalization group picture. It is not so
bold as previous formulations [9]. Experience with soluble examples of the renormalization group
transformation for critical phenomena shows that it generally has a number of fixed points, so one
has to define domains of initial Hamiltonians associated with each fixed point, and only within a
given domain is the critical behavior independent of the initial interaction.
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RG fixpoints describe scaling limits 5/12
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Gaussian fixpoint and its universality class 6/12

CLT is a particular fixpoint with its
own basin of attraction.

Gaussian Universality Class Space of Theories

Unstable directions out of the Gaussian fix-
points (may) go to other (IR) fixpoints.

4 critieal surface This hints to the possibility of introducing
Gaugsia . class of models which describe these fix-
> points as (universal) perturbations of Gaus-

IR 5.4 sian models.

The trajectory describes perfect theories
where rescaling implies only a change of para-
meters.



1d interface growth 7/12
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(a) proliferating cancer cells (b) particle deposition in suspension droplet
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Dynamic Scaling of Growing Interfaces

Mehran Kardar
Physics Department, Harvard University, Cambridge, Massachusetts 02138

Giorgio Parisi
Physics Department, University of Rome, 1-00173 Rome, Italy

and

Yi-Cheng Zhang

Physics Department, Brookhaven National Laboratory, Upton, New York 11973
(Received 12 November 1985)

A model is proposed for the evolution of the profile of a growing interface. The deterministic
growth is solved exactly, and exhibits nontrivial relaxation patterns. The stochastic version is stud-
ied by dynamic renormalization-group techniques and by mappings to Burgers’s equation and to a
random directed-polymer problem. The exact dynamic scaling form obtained for a one-dimensional
interface is in excellent agreement with previous numerical simulations. Predictions are made for

more dimensions.

PACS numbers: 05.70.Ln, 64.60.Ht, 68.35.Fx, 81.15.Jj

Many challenging problems are associated with
growth patterns in clusters! and solidification fronts.>
Several models have been proposed recently to
describe the growth of smoke and colloid aggregates,
flame fronts, tumors, etc.! It is generally recognized
that the growth process occurs mainly at an ‘‘active’’
zone on the surface of the cluster, with interesting
scaling properties.” However, a systematic analytic
treatment of the static and dynamic fluctuations of the
growing interface has been lacking so far.

In this paper we propose a model for the time evolu-
tion of the profile of a growing interface, and examine

The interface profile, suitably coarse-grained, is
described by a height #(x,7r). As usual, it is con-
venient to ignore overhangs so that # is a single-valued
function of x. The simplest nonlinear Langevin equa-
tion for a local growth of the profile is given by'?

oh

O v+ 2 (TR g(x1). )
ar 2

The first term on the right-hand side describes relaxa-
tion of the interface by a surface tension v. The
second term is the lowest-order nonlinear term that

can appear in the interface growth equation, and is
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> A\ grows under scaling (relevant direction)

Othe = Ah.+ e 1/2(Vh,)?

> \— oo : KPZ fixpoint equivalent to

Oyhs = 6 Ahs+ M(Vhs)2 + V0 &s,

+¢

o — 0.

The KPZ equation defines a one-parameter
family of models

Oth = Ah + \[(Vh)? —oo] + &
> Diffusive rescaling
he(t,z)=c'/2h(t /e, x/e) —e 1/ m

> A =0 : Gaussian fixpoint
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Constructive KPZ theory 10/12

> The KPZ equation is the (unique?) critical trajectory exiting the Gaussian fp.

> Precise mathematical description of this trajectory has been a longstanding mathematical
problem moreover it is interesting to characterise models which can lead to KPZ) under scaling
(weak—universality).

> Bertini and Giacomin (1996) provided a construction of this critical trajectory via a particular
family of stochastic discrete models (WASEP,,),cr and a suitable rescaling transformation R..

> « is a asymmetry parameter (inducing large scale flux of particles) whose influence “grows”
under rescaling.

R.WASEP; — Gaussian model, R-WASEP _1/2, — KPZ,
> KPZ, is identified via Hopf-Cole transformation:
h=log Z, Ol =27¢&

where the Stochastic Heat equation is interpreted in Ito sense (martingale theory).

> This trick does seldom work. Without more flexible description of KPZ, is it difficult to prove
convergence.



A rigorous meaning for the KPZ equation

> Hairer (2013, 2014) provided the key tools to give an intrinsic meaning to the KPZ equation.
This allows a rigorous description of the (KPZ)), random fields solving

Oih = Ah+ A[(Vh)? — oo + €.

The random field 7 is described in terms of the Gaussian fixpoint 0, X = AX + £.

e Rough paths, regularity structures (Hairer)
hz) —h(y) =X (x) = X(y) + Y (z,y) + 1’ (2) Z(z, y) + O(|lz — y|*/**)
e Paracontrolled distributions (G, Imkeller, Perkowski)
Aih=AX 4+ AY 4+ (Agi 1h) A Z 4+ O(273/29)
e Energy solutions/martingale problem (Jara, Gongalves, G., Perkowski)

dh(t) — Ah(t) dt —dB(t) =dM(t), dB(t) =lim [(V py * h)? — C,]dt

e Other approaches: Renormalization group (Kupiainen), Otto & Weber approach...



The Hairer—Quastel invariance principle 12/12

Hairer and Quastel proved (2015) that scaling limits of random fields HQ(F', 17) solution to

Oth=Ah+ F(Vh)+n
converges to KPZ:

R.HQ(eY2F,n) = KPZy

where ) is a function of F', whenever F' is polynomial and 7 short range Gaussian field. (NB:
proper recentering of the scaling transformation is needed.)
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