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Controlled paths/distributions

Controlled paths are paths which “looks like” a given path which often is
random (but not necessarily).

A "good" quantification of this proximity allows a great deal of computations
to be carried on explicitly on the base path and then extends them to all
controlled paths.

A mix of functional analytic arguments and probabilistic ones.
Basic analogies

> It6 processes
dXt :ﬁth +gtdt

> Amplitude modulation

with |supp ¢l < w.
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Some applications (not covered by this talk)

> Rough paths. CP linearize of the space of rough paths. Separation of
definition of the rough integral from the solution of the rough differential
equation. (= lecture notes of Friz and Hairer)

> Regularization by noise in ODEs. CP describes of the local behavior of
paths which enjoy special regularization properties. (= Catellier and
Gubinelli, arXiv)

> Stochastic Burgers equation with derivative white noise. CP define a
space of stochastic distributions for which some non-linear term can be
defined and solutions to the equation found (but no uniqueness). (=
Gubinelli and Jara, SPDEs Analysis and Computation)

> Modulated dispersive PDEs. Dispersion in a non-linear PDE (Nonlinear
Schrodinger, Kortevew—de-Vries) is modulated by an irregular signal. The
space in which to solve the equation is a space of CP. (= Chouk and
Gubinelli, arXiv)

> Korteweg-de Vries equation with distributional initial condition
Standard KdV in negative Sobolev spaces. CP provide a theory alternative to
that of Bourgain spaces. (= Gubinelli, CPAA)
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Some problems in singular SPDEs /I

Define and solve (locally) the following SPDEs:
> Stochastic differential equations (1+0): u € [0,T] — R"

0u(t) Zf,

with & : R — R™ m-dimensional white noise in time.
» Burgers equations (1+1): u € [0,T] x T — R"

0uu(t, x) = Au(t, x) + f(u(t, x))Du(t,x) + &(t, x)

with & : R x T — R" space-time white noise.
» Generalized Parabolic Anderson model (1+2): u € [0, T] x T?> —+ R

atu(t/x) = Au(t/x) +f(u(t/x))£(x)
with & : T> — R space white noise.

Recall that
a c (5—11/2—
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Some problems in singular SPDEs /II

Define and solve (locally) the following SPDEs:
» Kardar-Parisi-Zhang equation (1+1)
Oih(t,x) = Ah(t,x) + "(Du(t,x))* — 00" + &(t, x)

with & : R x T — IR space-time white noise.

» Stochastic quantization equation (1+3)
duu(t,x) = Ault,x) + "ult, x)>" + &(t,x)

with & : R x T® — R space-time white noise.
> But (currently) not: Multiplicative SPDEs (1+1)

Ouu(t,x) = Ault,x) + f(u(t, x))&(t, x)

with & : R x T — R space-time white noise.

Joint work with P. Imkeller and N. Perkowski.
(Also K. Chouk and R. Catellier for (®)3).
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What can go wrong?

Consider the sequence of functions x" : R — RR?
1 20\ o p)
x(t) = E(cos(Zrm t),sin(27mn"t))
then x"(-) — 01in CY([0, T];R?) for any y < 1/2. But

I(X"’l,xn'z)(t) _ txn1(s)atx ( )ds — E

L

16", 2"2)(1) # 1(0,0)(£) = 0

The definite integral I(-, -)(¢) is not a continuous map C¥ x C¥ — IR for
vy <1/2.

(Cyclic microscopic processes can produce macroscopic results. Resonances.)
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Rough differential equation
Consider the simple controlled ODE (1 smooth, fixed initial condition)
ouu(t) = iﬁ(u(ﬂ)ﬂi(ﬂ
i=1
u:R — RY 1 : R — R?and smooth vectorfields f; : RY — R%.
Problem
The solution map

v
n—u

is generally not continuous forn € €Y~ withy < 1/2.

Reason: u € €Y andn € €Y~ ! cannot be multiplied when 2y — 1 < 0. The
rh.s. of the equation is not well defined.

Here ¢* = B, , is the Holder-Besov space (or a local version).
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Concept of solution

Goal: Show that ¥ factorizes as
1L m00m) Su
(here 9,0 =1 and 0 o1 = X?(n) will be described later)
> Analytic step: show that wheny > 1/3:
Q:X — €

is continous. X =ImJ C €Y~ x €2¥~ is the space of enhanced signals (or
rough paths, or models).
But in general | is not a continuous map ¥Y~! — ¥~ x ¥*v~1L

> Probabilistic step: prove that there exists a "reasonable definition" of J(&)
when & is a white noise. J(&) is an explicit polinomial in ¢ so direct
computations are possible.
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Littlewood-Paley blocks and Holder-Besov spaces

We will measure regularity in Holder-Besov spaces ¢ = BY, .

fe®,yeRiff 4
[Aflle < Iflv277Y, iz -1

Tf = p1 f(E)

where p; : R? — R, are smooth functions with support in annuli ~ 2'.e/
when i > 0 and form a partition of unity

Z pi(E) =1

iz—1

f=Y af

i>—1

for all ¢ # 0 so that

in8’.
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Paraproducts

Deconstruction of a product: f € €°, g € €

8= AfAg=f=<g+fog+f>rg

ij=>—1

f=g=8-f=) AfAg fog= > AfAg

i<j—1 li—jl<1

Paraproduct (Bony, Meyer et al.)

T (f,g) c gminly+e,y)
T(f,g) €Y ify+p>0
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Proof. Recallf € €°,g € €.

i < j=suppZ(AfAg) C 2o/
i~j = suppF(AfAg) C 2%
Soif p >0

AF<Q) =D > A[AfAg)= ) OR7*T) =002 ") =>f<ge%,

ji~q i<j—1 i<j—1
while if p < 0

Af<g) = Z o2 7v) = (27 90r+e)) =f<geEET.

iri<j—1

Finally for the resonant term we have

Afog) =Y A(AfAG) =) OQTP™) = foge@rte

i~j2q i2q

but only if the sum converges.
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Small detour : Young integral

Take f € ¥°,g € €Y withy,p € (0,1)

fDg=f < Dg+foDg+f~Dg
S N—
€v—1 €Y +p—1
then

g = [r<Dg+ [(ro g 47~ Do)

(S S —
€Y €Yo

=f=<g+EV"".

Compare with standard estimate for the Young integral in Holder spaces
(valid wheny + p > 1):

t
J fudgu = filg: — g5) + O(1t — s +).

Expansion in smalleness of increments vs. Expansion in regularity
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(Para)controlled structure

Idea
Use the paraproduct to define a controlled structure. We say y € 2f if x € €Y

y=y" <x+yf
with y* € CP~Y and y* € C°.
Paralinearization. Let ¢ : R — R be a sufficiently smooth function and

x € %Y,y >0. Then
o(x) =@'(x) < x4+ ¢

> A first commutator: f,g € €° Y, x € €Y

f=<@g=<h=(3) <h+%*

Stability. (p < 2y)
oy) = (o' Wy) <x+%€°

so we can take @(y)* = ¢’(y)y*.
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The main commutator

All the difficulty is concentrated in the resonating term
fog= ) AfAg
li—jl<1
which however "is" smoother than f < ¢ if f or g has positive regularity.
Paraproducts decouple the problem from the source of the problem.

Commutator
The trilinear operator C(f, g, 1) = (f < g) o h —f(g o h) satisfies

IC(f, &M+ < [IfllligllplIFelly
whenp +vy<0and e+ p +v > 0.

> The paracontrolled structure allows algebraic computations to simplify the
form of the resonating terms.
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The Good, the Ugly and the Bad

Concrete example. Let B be a d-dimensional Brownian motion (or a
regularisation B*) and ¢ a smooth function. Then B € CY fory < 1/2.

©(B)DB = ¢(B) < DB+ ¢(B) o DB+ ¢(B) = DB
————— ——— . ————
the Bad the Ugly the Good, €2Y —1

and recall the paralinearization

¢(B) = ¢'(B) < B+ ¢

Then / ,
B) o = o Y o
©(B)oDB = (¢'(B) <B)oDB+ % OI(DB
= ¢'(B)(BoDB) + €%
Finally

©(B)DB = @(B) < DB+ ¢'(B) (Bo DB)+¢(B) = DB+ ¢*¥!
———

"Besov area"
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The Besov area

The Besov area B o DB can be defined and studied efficiently using Gaussian
arguments:

B oDB® — Bo DB

almost surely in €2Y ' as ¢ — 0.

loc

Remark. If d =1 (or by symmetrization) we can perform an integration by
parts to get

BoDB = %[(BODBH(DBOB)) = %D(BOB)

which is well defined and belongs indeed to 62~

Tools: Besov embeddings L (Q; Cc% — U’(Q;Bg;,) ~ B,?’;, (LP(Q)), Gaussian

hypercontractivity L (Q) — L2(Q), explicit L? computations.
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RDEs - I - the r.h.s.

u:R— RY, & €€ /% is (an approx. to) 1d white noise. We want to solve

Ou=fwé=Ff(u) <E+flu)o & +f(u) =&

> Paracontrolled ansatz. Take 9,X = &, X € ¥/ and assume that u € @}{:
u=u* < X+u

with uf € €'~ and uX € €V/*.

> Paralinearization:

f)=f'(u) <u+€" =(f'wu™) < X+¢"

> Commutator lemma:
f(u) o= ((f(wu*) = X) 0§+ € ok
= (f"(w)uX)(X 0 &) + C(f'(w)uX, X, &) + €~ o &

c€0— c€l/2—

if we assume that (X o &) € €°~.
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RDEs - II - the Lh.s.

So if u is paracontrolled by X:

u=uX<X+ut

and if X o £ € €%~ we have a control on the rh.s. of the equation:

f)E=fu) < E+f (Wu*(Xo &) + 4%
What about the Lh.s.?
atu = aﬂ/lx < X+MX <&+ aﬂ/lﬁ
so letting u* = f(u) we have

du = —duf (u) < X +f'(u)f(u)(X o0 &) +€V*
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RDE:s - III - the paracontrolled fixed point.

The RDE
Ou = f(u)&
is equivalent to the system
0; X =¢
ot =(f'(u)f (u))(X 0 &) — Byf (u) < X +R(f,u, X, &) o,
—_—
€€~ e€l/2—

u=f(u) < X +u
> The system can be solved by fixed point (for small time) in the space 75 if

we assume that
X e €V, (Xo&) e €.
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Structure of the solution
> When & smooth, the solution to
O =f(u)g,  u(0) =uo
is given by u = ®(u, &, X o &) where
ORI x Y x €V 5 €Y

is continuous for any y > 1/3 and z = @ (uy, &, @) is given by the unique
solution in @)Z(Y to

z=f(z) < X +2*
3z =(f'(2)f(z))p — 3f(z) < X+R(f,z,X,E) o &
—_—— —
cg0— cel/2—
>If (8", X"0&") = (§,1)in®Y ! x €*¥!and
ou" =f(u")E", u(0) = up

then

n

u' = u=@(up, &m).
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Relaxed form of the RDE

> Note that in general we can have £ — &, £2" — & and

hm Xl,n o El,n + hm X2,n ) EZ,n
n n

> Take &", & smooth but &" — & in €Y. It can happen that

imX' o0& =Xo&+ @ e >}

In this case " — u and u = ®(&, X o & + @) solves the equation

Qi = f(u)E +f'(u)f (u) .

The limit procedure generates correction terms to the equation.

The original equation relaxes to another form in which additional terms are
generated.
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"Ttd" form of the RDE

In the smooth setting
=0(E, X0 &+ )

o = f(u)& +f'(u)f (u)e@.
If we choose ¢ = —X o & then
=0, X0+ @) =D(E,0)

solves
0w =f(v)E&—f'(v)f(v)X 0§

and has the particular property of being a continuous map of & € €Y' alone.
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Generalized Parabolic Anderson Model on T2

L=0;—D%u:RxT?— R, e ¢ ' (T?) space white noise.

Cu =f(u)
> Paracontrolled ansatz LX =Es0X € C([0,T],¢")
u=flu) < X+u

> Paralinearization: flu) = (f'(u)f(u)) < X+R(f,u,X)
flu)o &= (f'(u)f(u))(Xo &)+ C(f'(u)f(u), X, &) + R(f,u,X) 0 &

> A problem: if & is the white noise

Xo&:XoLX:%L(XoX)—i—%(DXoDX)

1 1
= EL(XoX) — (DX < DX) + E(DX)2 =c+ &

with ¢ = +o0.
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Renormalization

To cure the problem we add a suitable counterterm to the equation

Lu =f(u) o & =f(u)& —c(f'(u)f (u)
this defines a new product, denote by ©. Now
fu)o&—c(f'(u)f (u)) = (f'(ulf () (X o &—c)+ C(f'(u)f (u), X, &) + R(f,u, X) 0

> The renormalized gPAM is equivalent to the equation

Lut = —Lf(u) < X+ Df(u) < DX+ (f'(u)f (1)) (X 0 & —c)
+C(F/ (w)f (1), X, £) + R(f,u,X) o &

together with
u=f(u) <X+ ut

and where
X e ¢, (Xo&—c)e€', ue®™.
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The Kardar-Parisi-Zhang equation

noise
diffusion
&(t,x)

e T ROh(, )

Ah(t,z)

h(t,x)

Large scale dynamics of the height i : [0, T] x T — R of an interface
0:h ~ Ah+ F(Dh) + §,

The universal limit should coincide with the large scale fluctuations of the
KPZ equation
9;h = Ah + [(Dh)*> — ool + &

with & : R x T — R space-time white noise.
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Stochastic Burgers equation
Take u = Dh

Lu = DE + Du?
to obtain the stochastic Burgers equation (SBE) with additive noise.

> Invariant measure: Formally the SBE leaves invariant the space white
noise: if uy has a Gaussian distribution with covariance

Eluo(x)uo(y)] = 8(x —y) then for all t > 0 the random function u(t, -) has a
Gaussian law with the same covariance.

> First order approximation: Let X(¢, x) be the solution of the linear equation
9, X(t,x) = 02X(t,x) + 0.&(t, %), xeT,t>0
X is a stationary Gaussian process with covariance
EX(t, x)X(s, y)] = pie—s (x — y).

Almost surely X(t,:) € €Y forany y < —1/2and any t € R. Forany t € R
X(t,) has the law of the white noise over T.
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Expansion /I

> Letu = X + u; then

Luy = 0, (uy + X)? = 0, X% 420, (11 X) + 0,12
——
-2

> Let XY be the solution to
LXY =09.X2 = XV e ¥
and decompose further u; = XY + u,. Then

Lty = 20,(XYX) 420, (115 X) + 0 (XY XY) 420, (15 XY) + 0, (112)?
N— ~—
—3/2— —-1-

> Define £X¥ = 20,(XYX) and 1, = XY + u3 then X' € €V/2~

Ltz = 20, (u3X) 4+ 20, (XX) + 9, (XVXY) 420, (12 XY) + 94 (12)?
—_—— | —— N———

—3/2— —3/2— —fl—
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Expansion /II

> Recall our partial expansion for the solution

u=X+Xx"+2x¥+U

LU =20, (UX) 4 20,(X¥X) + 0,(XYXY) 4+ 20,((2XY + U)XY) + 3, (2X" + U)?

= 20,(UX) + £(2X¥ + X¥) + 20,((2X¥ + )XY) + 0, (2X" + U)?

and the regularities for the driving terms

X

XV

X‘(/

XY

X‘(}’

=

0—

1/2—

1/2—

We can assume U € €'/?~ so that the terms

20,((2XY + U)XY) + 0,(2X" + U)?

are well defined.

The remaining problem is to deal with 20, (UX).
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Paracontrolled ansatz for SBE

> Make the following ansatz U = U’ < Y + UF. Then
LU=LU <Y+U <LY—0d.U <0,Y+ LU
while
LU = 20,(UX) + £(2X% + X¥) + 23, ((2XY + U)XY) + 8,(2X" + U)?
Q(u)
= 20,(U < X) 420, (U o X) +20,(U = X) + Q(U)
= 2(U < 3,X) +2(3:U < X) +20,(U 0 X) + 20, (U = X) + Q(U)

so we can set U’ =2U and LY = 9,X and get the equation

LU = —LU' < Y+0,U’ < 0, Y+2(8,U < X)+20,(UoX)+20,(U = X)+Q(U)

> Observe that Y, U, U’ € ¥/?>~ and we can assume that U? € ¥'~.
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Commutator
> The difficulty is now concentrated in the resonant term U o X which is not
well defined.
> The paracontrolled ansatz and the commutation lemma give

UoX=0U=<Y)oX+UoX=2U(YoX)+CQRUY,X)+U* 0 X
—_—

1/2— 1/2—

> A stochastic estimate shows that Y o X € €°~

> The final fixed point equation reads

LU =40, (U(Y 0 X)) +40,C(U, Y, X) + 20, (Uf o X) —2LU < Y

+20,U < 9,Y +2(0,U < X) +20,(U > X) +Q(U)

> This equation has a (local in time) solution U = ®(J(&)) which is a
continuous function of the data (&) given by a collection of multilinear
functions of &:

J(E) = (X, XY, X%, X% XY, X oY)
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Stochastic Quantization

Stochastic quantization of (®*);: & € C*", u € CV/*", u = g + iy + iss.
Lu =&+ ANu® —3ciu — cou)

Luy + Lusy = &+ A1 — 3eyuy) + 3N (uz2 (13 — 1)) + 3A(1d,u1) + A, — Acou

>Luy = &= uy € CV2, Luy = Mud —3crun) = up € CV/2-

Luss = 3N usz (15 — 1)) + A (udu1) + 6A(uszuizur) + 3N(ud5u1) + Aud, — Acou
> Ansatz: us3 = 3\usy < X + uf, with £X = (12 — ¢;)
L1 = —3M\Litzy < X+3ADityy < DX+3A(t1520(1—c1)—Cott) +3A (115 > (12—c1))
+ 3A(1311) + 6N (usz(uaur)) + BA(u2,u1) + A,
2
1

Usp © (u% —¢1) —cu = (up o (U7 —c1) — couy) + (Ussz © (u% — 1) — Calisy)

(133 0 (1] = &1) = Catiz) = (BMu52 < X) 0 (] — 1) — Cattzo) + w0 (u — )
= 15BN (X 0 (1 — 1)) — €2) + 3AC(us2, X, (12 — 1)) +uf o (13 — ¢1)

> Basic objects: (1% —c1), (13 — 3ciu1), (BA (X o (U2 — 1)) — ¢2), (upun), (13u1)
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