The regularizing effects of Irregular functions

•••

•••

Massimiliano Gubinelli – Université Paris Dauphine.

CMAP, June 2014.

Regularization by noise in ODEs/PDEs:

Addition of noise has positive effects on the theory of the equation (in some pathwise sense)

ODE_{s:}

$$
X_t = x + \int_0^t b(X_s)ds + W_t
$$

where (W_t) is a BM in \mathbb{R}^d and b a less-than-Lipshitz vectorfield. Many results: Veretennikov, Davie, Krylov-Röckner, Flandoli, Attanasio, Fedrizzi, Proske, ... Essentially: bounded b: (in L^{∞} or with some particular integrability: LPS condition).

 \rightarrow Transport equation:

$$
d_t u(t, x) + b(x) \cdot \nabla u(t, x) dt = \nabla u(t, x) \cdot dW_t
$$

good theory for L^{∞} solutions and preservation of regularity. Flandoli–G.–Priola, Flandoli– Attanasio, Flandoli–Maurelli, Flandoli–Beck–G.–Maurelli

 \rightarrow Some other PDE: Vlasov–Poisson, point vortices in 2d.

We want to provide a deterministic framework to discuss regularization.

- A notion of irregular functions.
- The averaging operator along irregular functions.
- Non-linear Young integral and ODEs.
- Regularization by irregular functions in the linear transport equation.
- Regularization by irregular functions in dispersive equations: NLS & KdV.

Given a function $w: [0, 1] \to \mathbb{R}^d$ define the *averaging operator*

$$
T_t^w f(x) = \int_0^t f(x + w_s) ds, \qquad T_{t,s}^w f = T_t^w f - T_s^w f
$$

acting on functions (or distributions) $f: \mathbb{R}^d \to \mathbb{R}$.

 \triangleright d=1, $w_t = t$. Then if $F'(x) = f(x)$ we have $T_t^w f(x) = \int_0^t F'(x+s) ds = F(x+t) - F(x)$ and $T^w: L^\infty \to \text{Lip}$:

$$
|T_t^w f(x) - T_t^w f(y)| \le ||f||_{\infty} |x - y|, \qquad |T_{t,s}^w f(x)| \le ||f||_{\infty} |t - s|
$$

 \rhd Tao–Wright: if w "wiggles enough" then T^w_t maps L^q into $L^{q'}$ with $q'>q.$ \triangleright Davie: if w is a sample of BM then a.s. (the exceptional set depends on f)

$$
|T_{t,s}^w f(x) - T_{t,s}^w f(y)| \leq C_w ||f||_{\infty} |x - y|^{1 -} |t - s|^{1/2 -}
$$

Problem: study the mapping properties of T^w for w the sample path of a stochastic process.

Consider

$$
Y_t^w(\xi) = \int_0^t e^{i\langle \xi, w_s \rangle} ds
$$

then $T_t^w f = \mathcal{F}^{-1}(Y_t^w \mathcal{F}(f)).$

Mapping properties of T^w in $(H^s)_{s \in \mathbb{R}}$ spaces can be discussed in terms of Y^w : $||T^w_{t,s}f||_{H^s} = ||(1 + \xi^2)^{s/2}Y^w_{s}(\xi) \mathcal{F}f(\xi)||_{\text{max}}$ $\left\| (1+\xi^2)^{s/2} Y^w_{t,s}(\xi) \mathcal F\!f(\xi) \right\|$ $\|_{H^{s}_{\xi}}.$

In our setting more convenient to look at the scale $(\mathcal{F}L^{\alpha})_{\alpha}$.

$$
||f||_{\mathcal{F}L^{\alpha}} = \int |f(\xi)| (1+\xi^2)^{\alpha/2} d\xi
$$

since $C^{\alpha} \subseteq \mathcal{F}L^{\alpha}$.

Definition 1. *We say that* w *is* (ρ, γ)*–irregular if there exists a constant* K *for which*

 $|Y_{t,s}^w(\xi)| \leqslant K(1+|\xi|)^{-\rho}|t-s|^{\gamma}$

for $\xi \in \mathbb{R}^d$ *and* $0 \le s \le t \le 1$ *.*

 \triangleright The fBM of Hurst index H is ρ –irregular for any $\rho < 1/2H$. (Catellier-G.)

 \Rightarrow there exists functions of arbitrarily high irregularity and arbitrarily L^{∞} -near any given continuous function.

 \triangleright An irregular function cannot be too regular.

If $w \in C^{\theta}$ with $\alpha\theta + \gamma > 1$ and $\alpha \in [0,1]$, using the Young integral, we find

$$
|t - s| = |e^{ia}(t - s)| = \left| \int_s^t \underbrace{e^{ia - iaw} \cdot \mathrm{d}_r Y_r^w(a)}_{C^{\alpha\theta}} \right|
$$

$$
\langle CK_w(|t-s|^\gamma + |t-s|^{\alpha\theta+\gamma}|a|^\alpha)||w||_\theta(1+|a|)^{-\rho}\to 0
$$

if $t>s$ and $\alpha < \rho$. This implies that is not possible that $\theta > (1 - \gamma)/\rho$.

 \triangleright Not easy to say if a function is irregular.

 \rhd In $d = 1$ smooth functions are (ρ, γ) irregular for $\rho + \gamma = 1$. In particular if we insist on $\gamma > 1/2$ we have $\rho < 1/2$.

 \triangleright For $d > 1$ smooth functions are not irregular: if $|t - s| \ll 1$

$$
\int_s^t e^{i\langle a, w_r \rangle} dr \simeq \int_s^t e^{i\langle a, w'_s \rangle (t-s)} dr \simeq (1 + |\langle a, w'_s \rangle|)^{-1} \nless(1 + |a|)^{-\rho}.
$$

 \triangleright If w is ρ –irregular and φ is a C^1 perturbation then $w + \varphi$ is at least $\rho - (1 - \gamma)$ irregular since:

$$
Y_{t,s}^{w+\varphi}(\xi) = \int_s^t e^{i\langle \xi, w_r + \varphi_r \rangle} dr = \int_s^t e^{i\langle \xi, \varphi_r \rangle} d_r Y_{s,r}^w(\xi)
$$

and we can use Young integral estimates.

 \triangleright If W is a fBM and Φ an adapted smooth perturbation then $W + \Phi$ is as irregular as W (via Girsanov theorem).

If w is ρ -irregular then

 T^w : $H^s \to H^{s+\rho}$

and

 $T^w\hbox{:}\ {\mathcal F\!L}^\alpha\!\to\! {\mathcal F\!L}^{\alpha+\rho}$

Indeed

$$
||T_{t,s}^w f||_{\mathcal{F}L^{\alpha+\rho}} = \int d\xi (1+|\xi|)^{\alpha+\rho} |Y_{t,s}^w(\xi)(\mathcal{F}f)(\xi)|
$$

$$
\leq K_w|t-s|^\gamma \int d\xi (1+|\xi|)^\alpha |(\mathcal{F}f)(\xi)| = K_w|t-s|^\gamma ||f||_{\mathcal{F}L^{\alpha}}.
$$

In order to exploit the averaging properties of w in the study of the ODE

$$
x_t = x_0 + \int_0^t b(x_s)ds + w_t
$$

we rewrite it in order to make the action of the averaging operator explicit: let $\theta_t = x_t - w_t$:

$$
\theta_t = \theta_0 + \int_0^t b(w_s + \theta_s) ds = \theta_0 + \int_0^t (d_s G_s)(\theta_s)
$$

where $G_s(x) = T_s^w b(x)$ so that $d_s G_s(x) = f(w_s + x)$.

If we assume that G is C^{γ} in time $(\gamma > 1/2)$ with values in a space of regular enough functions we can study this equation as a Young type equation for $\theta \in C^{\gamma}$.

 \triangleright Non-linear Young integral:

$$
\int_0^t (\mathrm{d}_s G_s)(\theta_s) = \lim_{\Pi} \sum_i G_{t_{i+1}, t_i}(\theta_{t_i})
$$

This limit exists if $\theta \in C^{\gamma}$ and $G \in C^{\gamma}_t C^{\nu}_x$ with $\gamma(1+\nu) > 1$. The integral is in C^{γ}_t .

The integral equation

$$
\theta_t = \theta_0 + \int_0^t \left(\mathrm{d}_s G_s \right) (\theta_s)
$$

is well defined for $\theta \in C^{\gamma}$ and $G \in C^{\gamma}_t C^{\nu}_x$ with $(1 + \nu)\gamma > 1$.

- Existence of global solutions.
- Uniqueness if $G \in C^{\gamma}_t C^{\nu+1}_x$ and differentiable flow.
- Smooth flow if $G \in C^{\gamma}_t C^{\nu+k}_x$.
- \triangleright The equation

$$
x_t = x_0 + \int_0^t b(x_s)ds + w_t
$$

has a unique solution for w ρ –irregular and $b \in \mathcal{F}L^\alpha$ for $\alpha > 1 - \rho$. In this case we can take $\theta \in C^1$ above and the condition for uniqueness is $G \in C^{\gamma}_t C^{1+}_x.$

Say that x is controlled by w if $\theta = x - w \in C^{\gamma}$. In this case we have

$$
I_x(b) = \int_0^t b(x_s)ds = \int_0^t (d_s T_s^w b)(\theta_s)
$$

and the r.h.s. is well defined as soon as $T^w b \in C^{\gamma}_t C^{\nu}_x$.

If w is ρ irregular and $b \in FL^{\alpha}$ then $T^wb \in C_t^{\gamma}FL_x^{\alpha+\rho}$ so if $\alpha + \rho \geqslant \nu$ we have $T^wb \in C_t^{\gamma}C_x^{\nu}$. In this case $I_x(b)$ can be extended by continuity to all $b\in{\mathcal F}L^\alpha$ and in particular we have given a meaning to

$$
\int_0^t b(x_s) \mathrm{d} s
$$

when b is a distribution *provided* x is controlled by a ρ -irregular path.

For controlled paths the ODE

$$
x_t = x_0 + \int_0^t b(x_s)ds + w_t
$$

make sense even for certain distributions b as a Young equation for θ .

(Work in progress with Catellier)

We want to give a meaning to the transport equation

 $(\partial_t + b(x) \cdot \nabla + \partial_t w_t \cdot \nabla) u(t, x) = 0$

for $u \in L^{\infty}$ and $w \in C^{\sigma}$ with $\sigma > 1/2$ (simplest case, possible to remove this condition). Weak formulation: $u_t(\varphi) = \int dx \varphi(x) u(t,x)$.

$$
u_{t,s}(\varphi) = \int_s^t u_r (\nabla \cdot (b\varphi)) dr + \int_s^t u_r (\nabla \varphi) d_r w_r
$$

We assume that $u_t(\nabla \varphi) \,{\in}\, C_t^{\sigma}$ so that the last integral is a Young integral.

Using the flow of the Young equation it is possible to show existence and uniqueness of solutions to this equation for b which are not necessarily Lipshitz (for example just in $\mathcal{F}L^{\alpha}$ for $\alpha \in (0,1)$).

For the moment only in the case $div b = 0$.

Two simple dispersive models with ρ -irregular modulation w :

Non-linear Schödinger equation: $x \in \mathbb{T}, \mathbb{R}, t \geqslant 0$

$$
\partial_t \varphi(t,x) = i\Delta \varphi(t,x)\partial_t w_t + i|\varphi(t,x)|^{p-2}\varphi(t,x).
$$

Korteweg–de Vries equation: $x \in \mathbb{T}, \mathbb{R}, t \geqslant 0$

$$
\partial_t u(t, x) = \partial_x^3 u(t, x) \partial_t w_t + \partial_x (u(t, x))^2.
$$

To be compared to the non-modulated setting where $\partial_t w_t = 1$ and studied in the scale of $(H^s)_{s}$ spaces.

The equations are understood in the mild formulation

$$
u(t) = \mathcal{U}_t^w u(0) + \int_0^t \mathcal{U}_t^w (\mathcal{U}_s^w)^{-1} \partial_x (u(s))^2 ds.
$$

with $\mathcal{U}^w_t\!=\!e^{i w_t\partial_x^3}.$ (similarly for NLS). Here w can be an arbitrary continuous function.

Rewrite the mild formulation as

$$
v(t) = (\mathcal{U}_t^w)^{-1} u(t) = u(0) + \int_0^t (\mathrm{d}_s X_s)(v(s))
$$

where X is the bi-linear operator

$$
X_t(\varphi) = X_t(\varphi, \varphi) = \int_0^t (\mathcal{U}_s^w)^{-1} \partial_x (\mathcal{U}_s^w \varphi)^2 ds.
$$

If w is ρ irregular then $X \in C^{\gamma}$ Li $p_{\text{loc}}(H^{\alpha})$ for $\alpha > -\rho$ and $\rho > 3/4$.

The above equation has local solutions for initial conditions in H^{α} with locally Lipshitz flow. Uniqueness in $C^{\gamma}H^{\alpha}$ (for v).

 \Rightarrow Regularization by modulation. In the non-modulated case it is known that there cannot be continous flow for $\alpha \leqslant -1/2$ on $\mathbb T$ and $\alpha \leqslant -3/4$ on $\mathbb R$.

 \triangleright Global solutions thanks to the L^2 conservation and smoothing for $\alpha > 0$ or an adaptation of the I-method for $-3/2 \le \alpha < 0$ and $\alpha > -\rho/(3-2\gamma)$.

 \triangleright NLS: global solutions for $\alpha \geqslant 0$ and $\rho > 1/2$.

Strichartz estimates

A different line of attack to the modulated Schrödinger equation comes from the application of the following Strichartz type estimate which can be proved under the same ρ -irregularity assumption.

Theorem 2. Let $T>0$, $p\in(2,\,5]$, $\rho>\min\big(\frac{3}{2}-\frac{2}{p},\,1\big)$ then there exists a finite constant $C_{w,T} > 0$ and $\gamma^*(p) > 0$ such that the following inequality holds:

$$
\left| \left| \int_0^{\cdot} U_{\cdot}(U_s)^{-1} \psi_s \, ds \right| \right|_{L^p([0,T],L^2(p(\mathbb{R}))} \leq C_w \, T^{\gamma^*(p)} || \psi ||_{L^1([0,T],L^2(\mathbb{R}))}
$$

for all $\psi \in L^1([0, T], L^2(\mathbb{R}))$.

As an application we obtain global well-posedness for the modulated NLS equation with generic power nonlinearity $i\,e{:}\,\mathcal{N}(\phi)\!=\!|\phi|^\mu\,\phi$: (Debussche–de Bouard, Debussche–Tsutsumi)

Theorem 3. Let $\mu \in (1,4]$, $p=\mu+1$, $\rho > \min{(1,3/2-\frac{2}{p})}$ and $u^0 \in L^2(\mathbb{R})$ then there exists $T^* > 0$ and a unique $u \in L^p([0,T], L^{2p}(\mathbb{R}))$ such that the following equality holds:

$$
u_t = U_t u^0 + i \int_0^t U_t (U_s)^{-1} (|u_s|^\mu u_s) ds
$$

for all $t \in [0, T^{\star}]$ *. Moreover we have that* $||u_t||_{L^2(\mathbb{R})} = ||u_0||_{L^2(\mathbb{R})}$ *and then we have a global unique solution* $u \in L_{loc}^{p}([0, +\infty), L^{2p}(\mathbb{R}))$ and $u \in C([0, +\infty), L^{2}(\mathbb{R}))$. If $u^{0} \in H^{1}(\mathbb{R})$ then $u \in C([0,\infty), H^1(\mathbb{R})).$

Thanks.