The regularizing effects of Irregular functions

 $\bullet \bullet \bullet$

Massimiliano Gubinelli – Université Paris Dauphine.

CMAP, June 2014.

Regularization by noise in ODEs/PDEs:

Addition of noise has positive effects on the theory of the equation (in some pathwise sense)

 \rightarrow ODEs:

$$X_t = x + \int_0^t b(X_s) \mathrm{d}s + W_t$$

where (W_t) is a BM in \mathbb{R}^d and b a less-than-Lipshitz vectorfield. Many results: Veretennikov, Davie, Krylov-Röckner, Flandoli, Attanasio, Fedrizzi, Proske, ... Essentially: bounded b: (in L^{∞} or with some particular integrability: LPS condition).

 \rightarrow Transport equation:

$$d_t u(t, x) + b(x) \cdot \nabla u(t, x) dt = \nabla u(t, x) \cdot dW_t$$

good theory for L^{∞} solutions and preservation of regularity. Flandoli–G.–Priola, Flandoli–Attanasio, Flandoli–Maurelli, Flandoli–Beck–G.–Maurelli

 \rightarrow Some other PDE: Vlasov–Poisson, point vortices in 2d.

We want to provide a deterministic framework to discuss regularization.

- A notion of irregular functions.
- The averaging operator along irregular functions.
- Non-linear Young integral and ODEs.
- Regularization by irregular functions in the linear transport equation.
- Regularization by irregular functions in dispersive equations: NLS & KdV.

Given a function $w: [0,1] \rightarrow \mathbb{R}^d$ define the *averaging operator*

$$T_t^w f(x) = \int_0^t f(x+w_s) ds, \qquad T_{t,s}^w f = T_t^w f - T_s^w f$$

acting on functions (or distributions) $f: \mathbb{R}^d \to \mathbb{R}$.

 $\triangleright d=1$, $w_t=t$. Then if F'(x) = f(x) we have $T_t^w f(x) = \int_0^t F'(x+s) ds = F(x+t) - F(x)$ and $T^w: L^\infty \to \text{Lip}$:

$$|T_t^w f(x) - T_t^w f(y)| \le ||f||_{\infty} |x - y|, \qquad |T_{t,s}^w f(x)| \le ||f||_{\infty} |t - s|$$

▷ Tao–Wright: if w "wiggles enough" then T_t^w maps L^q into $L^{q'}$ with q' > q. ▷ Davie: if w is a sample of BM then a.s. (the exceptional set depends on f)

$$|T_{t,s}^w f(x) - T_{t,s}^w f(y)| \leq C_w ||f||_{\infty} |x - y|^{1-} |t - s|^{1/2-1}$$

Problem: study the mapping properties of T^w for w the sample path of a stochastic process.

Consider

$$Y_t^w(\xi) = \int_0^t e^{i\langle \xi, w_s \rangle} \mathrm{d}s$$

then $T_t^w f = \mathcal{F}^{-1}(Y_t^w \mathcal{F}(f)).$

Mapping properties of T^w in $(H^s)_{s \in \mathbb{R}}$ spaces can be discussed in terms of Y^w : $||T^w_{t,s}f||_{H^s} = ||(1+\xi^2)^{s/2}Y^w_{t,s}(\xi)\mathcal{F}f(\xi)||_{H^s_{\varepsilon}}$.

In our setting more convenient to look at the scale $(\mathcal{F}L^{\alpha})_{\alpha}$.

$$||f||_{\mathcal{F}L^{\alpha}} = \int |f(\xi)| (1+\xi^2)^{\alpha/2} \mathrm{d}\xi$$

since $C^{\alpha} \subseteq \mathcal{F}L^{\alpha}$.

Definition 1. We say that w is (ρ, γ) -irregular if there exists a constant K for which

 $|Y^w_{t,s}(\xi)| \leqslant K(1+|\xi|)^{-\rho} |t-s|^{\gamma}$

for $\xi \in \mathbb{R}^d$ and $0 \leq s \leq t \leq 1$.

 \triangleright The fBM of Hurst index H is ρ -irregular for any $\rho < 1/2H$. (Catellier-G.)

 \Rightarrow there exists functions of arbitrarily high irregularity and arbitrarily $L^\infty\text{-near}$ any given continuous function.

 \triangleright An irregular function cannot be too regular.

If $w \in C^{\theta}$ with $\alpha \theta + \gamma > 1$ and $\alpha \in [0, 1]$, using the Young integral, we find

$$|t-s| = |e^{ia}(t-s)| = \left| \int_{s}^{t} \underbrace{e^{ia-iaw_{r}}}_{C^{\alpha\theta}} \mathrm{d}_{r} \underbrace{Y_{r}^{w}(a)}_{C^{\gamma}} \right|$$

 $\leq C K_w (|t-s|^{\gamma} + |t-s|^{\alpha\theta+\gamma}|a|^{\alpha}) ||w||_{\theta} (1+|a|)^{-\rho} \to 0$

if t > s and $\alpha < \rho$. This implies that is not possible that $\theta > (1 - \gamma)/\rho$.

 \triangleright Not easy to say if a function is irregular.

 \triangleright In d = 1 smooth functions are (ρ, γ) irregular for $\rho + \gamma = 1$. In particular if we insist on $\gamma > 1/2$ we have $\rho < 1/2$.

 \vartriangleright For d>1 smooth functions are not irregular: if $|t-s| \ll 1$

$$\int_{s}^{t} e^{i\langle a, w_r \rangle} \mathrm{d}r \simeq \int_{s}^{t} e^{i\langle a, w_s' \rangle(t-s)} \mathrm{d}r \simeq (1 + |\langle a, w_s' \rangle|)^{-1} \not\gtrsim (1 + |a|)^{-\rho}$$

 \triangleright If w is ρ -irregular and φ is a C^1 perturbation then $w + \varphi$ is at least $\rho - (1 - \gamma)$ irregular since:

$$Y_{t,s}^{w+\varphi}(\xi) = \int_{s}^{t} e^{i\langle\xi,w_{r}+\varphi_{r}\rangle} \mathrm{d}r = \int_{s}^{t} e^{i\langle\xi,\varphi_{r}\rangle} \mathrm{d}_{r} Y_{s,r}^{w}(\xi)$$

and we can use Young integral estimates.

 \triangleright If W is a fBM and Φ an adapted smooth perturbation then $W + \Phi$ is as irregular as W (via Girsanov theorem).

If w is $\rho\text{-}\mathrm{irregular}$ then

 $T^w: H^s \to H^{s+\rho}$

 and

 $T^w: \mathcal{F}L^\alpha \to \mathcal{F}L^{\alpha+\rho}$

Indeed

$$\|T_{t,s}^{w}f\|_{\mathcal{F}L^{\alpha+\rho}} = \int d\xi \,(1+|\xi|)^{\alpha+\rho} |Y_{t,s}^{w}(\xi)(\mathcal{F}f)(\xi)|$$

$$\leqslant K_{w}|t-s|^{\gamma} \int d\xi \,(1+|\xi|)^{\alpha} |(\mathcal{F}f)(\xi)| = K_{w}|t-s|^{\gamma} \|f\|_{\mathcal{F}L^{\alpha}}.$$

In order to exploit the averaging properties of w in the study of the ODE

$$x_t = x_0 + \int_0^t b(x_s) \mathrm{d}s + w_t$$

we rewrite it in order to make the action of the averaging operator explicit: let $\theta_t = x_t - w_t$:

$$\theta_t = \theta_0 + \int_0^t b(w_s + \theta_s) \mathrm{d}s = \theta_0 + \int_0^t (\mathrm{d}_s G_s)(\theta_s)$$

where $G_s(x) = T_s^w b(x)$ so that $d_s G_s(x) = f(w_s + x)$.

If we assume that G is C^{γ} in time ($\gamma > 1/2$) with values in a space of regular enough functions we can study this equation as a Young type equation for $\theta \in C^{\gamma}$.

▷ Non-linear Young integral:

$$\int_0^t (\mathbf{d}_s G_s)(\theta_s) = \lim_{\Pi} \sum_i G_{t_{i+1},t_i}(\theta_{t_i})$$

This limit exists if $\theta \in C^{\gamma}$ and $G \in C_t^{\gamma} C_x^{\nu}$ with $\gamma(1+\nu) > 1$. The integral is in C_t^{γ} .

The integral equation

$$\theta_t = \theta_0 + \int_0^t (\mathbf{d}_s G_s)(\theta_s)$$

is well defined for $\theta \in C^{\gamma}$ and $G \in C_t^{\gamma} C_x^{\nu}$ with $(1 + \nu)\gamma > 1$.

- Existence of global solutions.
- Uniqueness if $G \in C_t^{\gamma} C_x^{\nu+1}$ and differentiable flow.
- Smooth flow if $G \in C_t^{\gamma} C_x^{\nu+k}$.

 \triangleright The equation

$$x_t = x_0 + \int_0^t b(x_s) \mathrm{d}s + w_t$$

has a unique solution for $w \ \rho$ -irregular and $b \in \mathcal{F}L^{\alpha}$ for $\alpha > 1 - \rho$. In this case we can take $\theta \in C^1$ above and the condition for uniqueness is $G \in C_t^{\gamma} C_x^{1+}$.

Say that x is controlled by w if $\theta = x - w \in C^{\gamma}$. In this case we have

$$I_x(b) = \int_0^t b(x_s) \mathrm{d}s = \int_0^t (\mathrm{d}_s T_s^w b)(\theta_s)$$

and the r.h.s. is well defined as soon as $T^w b \in C_t^{\gamma} C_x^{\nu}$.

If w is ρ irregular and $b \in \mathcal{F}L^{\alpha}$ then $T^{w}b \in C_{t}^{\gamma}\mathcal{F}L_{x}^{\alpha+\rho}$ so if $\alpha+\rho \ge \nu$ we have $T^{w}b \in C_{t}^{\gamma}C_{x}^{\nu}$. In this case $I_{x}(b)$ can be extended by continuity to all $b \in \mathcal{F}L^{\alpha}$ and in particular we have given a meaning to

$$\int_0^t b(x_s) \mathrm{d}s$$

when b is a distribution provided x is controlled by a ρ -irregular path.

For controlled paths the ODE

$$x_t = x_0 + \int_0^t b(x_s) \mathrm{d}s + w_t$$

make sense even for certain distributions b as a Young equation for θ .

(Work in progress with Catellier)

We want to give a meaning to the transport equation

 $(\partial_t + b(x) \cdot \nabla + \partial_t w_t \cdot \nabla) u(t, x) = 0$

for $u \in L^{\infty}$ and $w \in C^{\sigma}$ with $\sigma > 1/2$ (simplest case, possible to remove this condition). Weak formulation: $u_t(\varphi) = \int dx \varphi(x) u(t, x)$.

$$u_{t,s}(\varphi) = \int_s^t u_r(\nabla \cdot (b\varphi)) dr + \int_s^t u_r(\nabla \varphi) d_r w_r$$

We assume that $u_t(\nabla \varphi) \in C_t^{\sigma}$ so that the last integral is a Young integral.

Using the flow of the Young equation it is possible to show existence and uniqueness of solutions to this equation for b which are not necessarily Lipshitz (for example just in $\mathcal{F}L^{\alpha}$ for $\alpha \in (0, 1)$).

For the moment only in the case $\operatorname{div} b = 0$.

Two simple dispersive models with ρ -irregular modulation w:

• Non-linear Schödinger equation: $x \in \mathbb{T}, \mathbb{R}, t \ge 0$

$$\partial_t \varphi(t, x) = i \Delta \varphi(t, x) \partial_t w_t + i |\varphi(t, x)|^{p-2} \varphi(t, x).$$

• Korteweg–de Vries equation: $x \in \mathbb{T}, \mathbb{R}, t \ge 0$

$$\partial_t u(t,x) = \partial_x^3 u(t,x) \partial_t w_t + \partial_x (u(t,x))^2.$$

To be compared to the non-modulated setting where $\partial_t w_t = 1$ and studied in the scale of $(H^s)_s$ spaces.

The equations are understood in the mild formulation

$$u(t) = \mathcal{U}_t^w u(0) + \int_0^t \mathcal{U}_t^w (\mathcal{U}_s^w)^{-1} \partial_x (u(s))^2 \mathrm{d}s.$$

with $\mathcal{U}_t^w = e^{iw_t \partial_x^3}$. (similarly for NLS). Here w can be an arbitrary continuous function.

Rewrite the mild formulation as

$$v(t) = (\mathcal{U}_t^w)^{-1} u(t) = u(0) + \int_0^t (\mathbf{d}_s X_s)(v(s))$$

where X is the bi-linear operator

$$X_t(\varphi) = X_t(\varphi, \varphi) = \int_0^t (\mathcal{U}_s^w)^{-1} \partial_x (\mathcal{U}_s^w \varphi)^2 \mathrm{d}s.$$

If w is ρ irregular then $X \in C^{\gamma} \operatorname{Lip}_{\operatorname{loc}}(H^{\alpha})$ for $\alpha > -\rho$ and $\rho > 3/4$.

The above equation has local solutions for initial conditions in H^{α} with locally Lipshitz flow. Uniqueness in $C^{\gamma}H^{\alpha}$ (for v).

 \Rightarrow Regularization by modulation. In the non-modulated case it is known that there cannot be continous flow for $\alpha \leq -1/2$ on \mathbb{T} and $\alpha \leq -3/4$ on \mathbb{R} .

 \triangleright Global solutions thanks to the L^2 conservation and smoothing for $\alpha > 0$ or an adaptation of the I-method for $-3/2 \leq \alpha < 0$ and $\alpha > -\rho/(3-2\gamma)$.

 \triangleright NLS: global solutions for $\alpha \ge 0$ and $\rho > 1/2$.

Strichartz estimates

A different line of attack to the modulated Schrödinger equation comes from the application of the following Strichartz type estimate which can be proved under the same ρ -irregularity assumption.

Theorem 2. Let T > 0, $p \in (2, 5]$, $\rho > \min(\frac{3}{2} - \frac{2}{p}, 1)$ then there exists a finite constant $C_{w,T} > 0$ and $\gamma^*(p) > 0$ such that the following inequality holds:

$$\left\| \left\| \int_0^{\cdot} U_{\cdot}(U_s)^{-1} \psi_s \, ds \right\|_{L^p([0,T], L^{2p}(\mathbb{R}))} \le C_w \, T^{\gamma^{\star}(p)} \| \psi \|_{L^1([0,T], L^2(\mathbb{R}))} \right\|_{L^p([0,T], L^2(\mathbb{R}))}$$

for all $\psi \in L^1([0,T], L^2(\mathbb{R}))$.

As an application we obtain global well-posedness for the modulated NLS equation with generic power nonlinearity $i e: \mathcal{N}(\phi) = |\phi|^{\mu} \phi$: (Debussche–de Bouard, Debussche–Tsutsumi)

Theorem 3. Let $\mu \in (1,4]$, $p = \mu + 1$, $\rho > \min(1, 3/2 - \frac{2}{p})$ and $u^0 \in L^2(\mathbb{R})$ then there exists $T^* > 0$ and a unique $u \in L^p([0,T], L^{2p}(\mathbb{R}))$ such that the following equality holds:

$$u_t = U_t u^0 + i \int_0^t U_t (U_s)^{-1} \left(|u_s|^{\mu} u_s \right) ds$$

for all $t \in [0, T^*]$. Moreover we have that $||u_t||_{L^2(\mathbb{R})} = ||u_0||_{L^2(\mathbb{R})}$ and then we have a global unique solution $u \in L^p_{loc}([0, +\infty), L^{2p}(\mathbb{R}))$ and $u \in C([0, +\infty), L^2(\mathbb{R}))$. If $u^0 \in H^1(\mathbb{R})$ then $u \in C([0, \infty), H^1(\mathbb{R}))$.

Thanks.