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Overview 2/20

e The analysis of scaling limits of stochastic non—linear diffusion problems gener-
ates irregular random fields which should be described by universal non—linear
SPDEs (i.e. independent of specific details of the microscopic model).

e The combination of irregularity and non—linearity is problematic and can gen-
erate unexpected phenomena which escape a purely analytical control: the statis-
tical structure of the noise has to be carefully taken into account.

e Hairer’s regularity structures provide a general tool do to so: they allows to
describe the local features of the random fields in term of simpler objects. The
effect of non—linear operations is then more easily understood given the improved
description.

e In a parallel work, G.—Imkeller—Perkowski exploited tools from harmonic
analysis to perform similar kind of analysis (Fourier—space counterpart of the
regularity structure businness)

e Paracontrolled distributions are not as general as regularity structures but
they provide an alternative approach in many relevant cases: KPZ, @‘21,3, Par-
abolic/Hamiltonian Anderson model in 2d.

Talk based on joint work with: R. Catellier, K. Chouk, P. Imkeller, N. Perkowski, M.
Furlan.



Singular SPDEs 3/20

e 1d generalised Stochastic Burgers equation (gSBE)

it~ NI +£ .0, 130,

where (G is a smooth function, =9, - A.

e 1d Kardar—Parisi—Zhang equation (KPZ).

2h(t,x) = (OBINEC) + £(2,x),  ¢20,x4T

« Dynamic ®; model or stochastic quantisation equation (d =2,3) (SQE)

it~ QR + 0. 13057

e Generalised 2d parabolic Anderson model (gPAM)

Fu(t,x)= , t>0,xeT?,
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Scaling limit of reaction—diffusion equations

> Scalar diffusion equation with slow reaction term
2Pt x)=e"F (P, x)+n(t,x),  (tx)<R, xT¢

with ', =T/ ¢, F odd (typically F =-dU for some potential U) and .“=09; - A.

> Parabolic rescaling 1,(¢,x) = e *(t/e%,x/€) and &,(t,x) =& V?> In(t/ €2, x/ €)
he(t,x)= €7 2F (e¥1he(t,x)) + €927 %L (¢, x), (t,x)¢IR, x ¢

Note that &, - £ the space—time white noise.

> Let a=(d—2)/2 to keep a noisy evolution:
j¢g= 67_d/2_1F(£(d_2)/2 ¢5)+ ‘S-E

In the following we will concentrate on the d =3 case.



> Linear approximation: assume 1, = X, with X, =&,
gg/—d/Z—lF(g(d—Z)/Q ¢6) ~ 67—d/2—1F(6(d—2)/2X6)

> Explicit Gaussian computations shows that
g @22 (E(d_2)/2X6) > uX (as space—time distributions)

where u=IE[GF(G)] and G~ /'(0,c) and X =£.

> Then ,if ;1 +0 we need to take ¥ =2:

87_d/2_1F(6(d_2)/2 ¢e) ~ 67_2/1,X ~ 67_2‘11 ¢
The limiting equation is
PP=pp+ £

Result: we expect Gaussian fluctuations.



A first expansion 7/20

Rigorous analysis. Let 1. =X, + 0, then (recall d=3, y=2)

fgg — E—I/ZF(£1/2X6 + 51/296)

> Taylor expansion gives the approximate equation
20, = uX, + 1,0, + e’ R (6,)
pX,:=eV2F(eV2X,), f,:=F'(e2X,), RA0):=02[ F ("X, + e'20,)(1- 1)dr
> Since ||[€2X |~ < €% we estabilish easily that
2R .(6,) ?o 0
> Direct Gaussian computations show (7 “=C([0,T'] ;BS‘O,OO(']I‘d)))

i, — u<IR X, X, —X 2R .(6,) — 0



fgﬁ = ®6(X67 laea 86) = ,UAXe + /1696 + 81/2R6( Qg)ﬁ g 1/2-

> Parabolic estimates give 0, ¢ 73/2"

> Continuity of the product in 7 x #” - 7%*# when a + 3> 0 results in continuity
for

fi,x0,c7 0 x 732 > 0,
Hence, the family of maps 0O,
(Xea ,aga 96)": %_1/2_ X %_O_ x %3/2_ = ®6(X67 [Lga ge)‘i %_1/2_

is continuous (and even locally Lipshitz). From this easy to deduce that

6. —— 0 20 =uX +ub
%32—
=X, +0,—— =X +0 Ap=pp+ &

@ 1/2-



The critical point 9/20

Suppose now that we choose F' such that 1£1=0. In this case by symmetry

[E[H, A DF ()] =0
but if

A=TE[H, s(DF(G)] #0
we have

g~3d-22p (e(d'QWX ) —— AX *3 (as space—time distributions)
%—3/2—

where X*?=lim, 0 H,, 3(X,).

Now we guess that

67_d/2_1F(£(d_2)/2 ¢£) ~ Ed_4+ YAX 3

so something non—trivial can be obtained if y=4-d=1.



The ®;5 model 10/20

jgﬂg — 5_3/2F(51/2(p5) + gg

> Taylor expansion with ¢, =X, + 0,
20, = 32F(V2X,) + e 1F (eV2X,) 0, + e V2F (12X )02+ F "' (€Y2X,) 02 + €2R,

6_3/2F(£1/2X5) s Mo3, G_IF,(EI/ZXg) 3 AX°2, 6_1/2F”(£1/2X5) s A X
g—S/Z— g—l— %-1/2—

Problem: the previous strategy will not work since
j@eﬁ %—3/2— = 95‘* %1/2—
and the products

8_1F,(€1/2X5)96, 6_1/2F”(61/2X5)96

are then not under control.

> Need better understanding of the structure of the solution...



Expansion 11/20

Consider the case F(x)=A(x®-c.x) :

= /1((P§ - E_lcsfps) + '56

and let @, =X, + AY, + Ap2, (c.=3c1 . +94cs,)
Ao+ LPR=X3+3AX 2V + @) + 312X (Yo + 922+ A3V + 922 - 9o .0,
X 3=X32-3c¢y X 732" X 2=X2-ci 71"
Choosing Y. =X % we get rid of the first term.

> Zple g 1" gl #1- and LY, « ¢ 32 Y, g12",

> Problem: slightly better situation but still not ok:

2(Y + %) X, (Y, +<pQ)2



Dissection of a product: paraproducts

Decomposition of a product into paraproducts and resonant term

fg=f<g+fog+f>g

Theorem
(f,2)e#%x P> f<g=g>fegPranr a, B<IR\IN
(f,8)¢ G %x B foge gHP, a+£>0
Paralinearization:
fe?o>R(AH=G()-G(f)<f<5?*,  a>0

A single new key ingredient:

Lemma

(f,8,h)e 7% P x €7 > C(f,g,h)=(f <g)oh - f(goh)e #¥P*7 a+f+y>0



A first paradifferential analysis 13/20

> Paralinearization:

Yo+ 92=2(Y,+ D)< (Y, + D)+ R(Y, + ¢?)
2}{.

> Decomposition

SRR - < 7.+ o+ (RN + X > (V. + 9
RO - - ERIRPORORRGA X -R(Y. + o)

> Commutator lemma

oY+ ¢ ST + 2C(Y, + .Y, X) 4 X.oR(Y, + 49)

R C

=2(Y, + o) EROXD + 2(Y, + D)X, 0 ) +2C(Y + 99, Y, X)) + X, oR(Y, + 92)

> Assume that we can control - in 707,



- _ «2 Q «2 Q
31BN D) -9/cs . = 30X 2> (Y, + gD+ BAX 1< (Y, + ¢9)

> Need of a further renormalization: the quantity X 26Y.=X . 20Y, - 3¢y, X, 1s under
control in 127,

> Paracontrolled ansatz:
P2= ;< Q.+ ¢!

with @, ¢ %', « 7V?" and ¢}« 732",

D ..o G ..+ 57
=3/1¢§- ~9A%o (Yo + @) +3AC L @f, Qe XD+ 34X %0

How to choose <p; and @.?



Note that
Lo=31X 2> (Y. + @) +---
but also

Z99= APt < Qe+ 9= 9. < 2Q.+ Ll + ...

so a natural choice is ¢} =3A(Y, + ¢%) and Q. =X 2. In this case

and it can be shown that X 26 Q. =X . 20Q, - c2.¢ is under control in -,



Conclusion: starting from the equation
ZoL=3AX Yo+ 92) + 34K (Ve + 922 + 23(Y e+ 92> - 9o e
and performing the change of variables
¢l=i<Qerol,  gi=3AY.+¢))
we get an equation for ¢! which reads
Lyt =DUX,, 92, 9}
where the r.h.s. depends continuosly on ¢2, ¢! and on the datum of 3X,:
o= X, X% X% X oY, X %0 Y X0 Q)

The limit as € = 0 can be now estabilished via standard PDE estimates (for short
times) once it is known that X, - X in a suitable topology.

Remark: Fundamental ideas coming from Lyons’ Rough Paths theory.



Renormalization 17/20

Another way to state the previous analysis is to say that to each decomposition
p=X+Y + ' <@+ "
of a function 1) we can associate a corresponding decomposition of the power ¢°
P2 =GX, P*, ) =X3+3(Y + p* < Q+ ) <X?+...
W=(X,X2%X3YoX,YoX? QoX?)
in such a way that, for any a,b<IR
P°-3ayp-3bX -3by* =GR, X, ¥*, P

with R, ;X =(X,X%-0a,X%-30a,YoX,Yo(X?-a)-bX,Qo(X*-a)-b)



Renormalized nonlinear operation on distributions

Now if 1 is a distribution for which
P=X+Y + < Q+ "

we can set
Ve=pex h=pesX +pesY + 9" < pei @+ per P + [ <, pe+1Q
sothat X, =p, X
P2 = 8acthe = 36X, = 309" = G(Ra b Xe, ", pe ' +[9" <, pe #1Q)
Ko=(X;, X2, X7, Y 0X,, Y X2, Qc0X?)
withZ,=p,«Z for Z=X,Y,Q. And if R,_; X, - X, as € >0 then

2 - 3a . — 3bX, - 3by* > Y3, = GXKyen, ¥*, V)



Singular SPDE 19/20

At this point we are capable of defining solutions of the singular SPDE which we
expect in the limit of the reaction diffusion equation.

1) Given the noise & we construct its associated “model”

Ry, X o X=X, XX Yo X,V X%, Qe X*9)

C1,6,C2.¢

by passing to the limit in the canonical model R, , ., X, for & with suitable renor-
malization constants c; ., co .

2) For fixed 2X we say that a distribution ¢ is a solution to
Lp=rp + &
if =X +AY + ALp* < Q + A¢p" and
Zo=AGXK, Ap*, Ap") + £

This implies in particular that ¢* can be chosen to be equal to 3A(Y + A¢* < @ + A¢")



Thanks!
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