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Some other problems in singular SPDEs /I
Define and solve (locally) the following SPDEs:

> Stochastic differential equations (1+0): u € [0,T] — R"
atu Zfl

with & : R — R™ m-dimensional white noise in time.
» Burgers equations (1+1): u € [0,T] x T — R”

0uu(t, x) = Au(t,x) + f(u(t, x))Du(t,x) + &(t, x)

with & : R x T — R" space-time white noise.
» Generalized Parabolic Anderson model (1+2): u € [0,T] x T?> - R

atu(t/x) = Au(tlx) —O—f(u(t,x))E(JC)
with & : T> — R space white noise.

Recall that
Eee
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Some other problems in singular SPDEs /II

» Kardar-Parisi-Zhang equation (1+1)
dih(t, x) = Ah(t,x) + "(Dh(t,x))* — 00" + &(t, x)

with & : R x T — IR space-time white noise.

> Stochastic quantization equation (1+3)
duu(t,x) = Ault,x) + "ult, x)>" + &(t,x)

with&: Rx T - R space-time white noise.
> But (currently) not: Multiplicative SPDEs (1+1)

Ouu(t,x) = Aul(t,x) + f(u(t, x))&(t, x)

with & : R x T — R space-time white noise.

Joint work with P. Imkeller and N. Perkowski.
(Also K. Chouk and R. Catellier for (®)3).
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Littlewood-Paley blocks and Holder-Besov spaces

We will measure regularity in Holder-Besov spaces ¢ = BY, . (T).
If time is involved we abuse the notation by setting €Y = C([0, T1, Bgmmrd) ).

fe®,y € Riff .
1Sl < W27, iz -1

F(AS)(E) = pi(E)F(E)

where p; : R — R are smooth functions with support ~ 227 when i > 0
and form a partition of unity Zi271 pi(&) =1 forall & # 0 so that

f=Y af

iz—1

in8’.
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Paraproducts

Deconstruction of a product: f € €°, g € €

fo=) AfAg=f<g+fog+f-g

ij>—1

f=g=8-f=) AfAg fog= > AfAg

i<j—1 li—jl<1

Paraproduct (Bony, Meyer et al.)

f <g€ gmin(y+p,v)

foge€r® onlyify+p>0
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Proof. Recallf € €°, g € €.

i <j=suppZ(AfAg) C2a/  i~j= suppF(AfAg) C2 B
Soifp >0
A(f<g)= ZZAAf 02 ™M =f=<gec%,
joq i<l T
o@2—ie—iv)
whileif p < 0
Af<8)=D) D AJ(AfAR) =027V P)) = f <ge @V,
jijg iti<j—1 T
O(Z*‘P*}Y)
Finally for the resonant term we have
Ay(fog)= Z A (AfAG) = Z O(27ite+)) =fogegrte
i~j2q ixq

but only if the sum converges.
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Small detour : Young integral

Take f € ¥°,g € €Y withy,p € (0,1)

fDg=f < Dg+foDg+f~Dg
S N—
€v—1 €Y +p—1
then

g = [r<Dg+ [(ro g 47~ Do)

(S S —
€Y €Yo

=f=<g+EV"".

Compare with standard estimate for the Young integral in Holder spaces
(valid wheny + p > 1):

t
J fudgu = filg: — g5) + O(1t — s +).

Expansion in smalleness of increments vs. Expansion in regularity
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Paraproduct as frequency modulation
f \W\/
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The prototype of a singular PDE

Consider the simple controlled PDE (1 smooth, fixed initial condition)
Owu(t,x) = Au(t, x) + F(u(t, x))n(x)
u:R,y xT¢ 5 R,n: T? = R and smooth function F: R — R.
Problem
The solution map
n—u

is generally not continuous forn € €Y% withy < 1.

Reason: u € €Y andn € €Y 2 cannot be multiplied when 2y —2 < 0. The
rh.s. of the equation is not well defined.
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What can go wrong?

Consider the sequence of functions x" : R — R?
1 2 g 2
x(t) = ;(cos(Zrm t),sin(27tn"t))

then x"(-) — 0in € ([0, T]; R?) for any vy < 1/2. But

I(x™, x™2)(t) = L x"1(s)9,x™(s)ds — % #1(0,0)(t) =0

The definite integral I(-, -)(¢) is not a continuous map ¢ x ¥ — R for
Yy <1/2.

(Cyclic microscopic processes can produce macroscopic results. Resonances.)
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Homogeneisation of a random potential

> Consider the linear heat equation with a small random time-independent
(Gaussian) potential V

o U(t, x) = AU(t, x) + e *V(x)U(t, x)
on (T/e)? and where ¢ is a small parameter and « < 2.

> Introduce macroscopic variables u, (t,x) = U(t/e?,x/¢) with parabolic
rescaling, then
Oute (t,x) = Auc(t,x) + Ve (X)ue(t, x)

on T and where V¢ (x) = ¢~ *V(x/¢).
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Homogeneisation of a random potential (II)

The covariance of the macroscopic noise is

E[V.(x)Ve(y)] = e >*C((x —y)/e)

Theorem

Ifd > 2octhen Ve — 0in €~ % . While if d = 20t then V. converges to the space
white noise on T.

So we are let to the study of the stability properites of the equation
Lu=nu

withn € ¢~ . This stability is easy to estabilish when 2 — 2o« > 0 by standard
estimates in Besov spaces. We are concerned then with the case x = 1.
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Transformation of PAM

> In order to understand the difficulties, let us perfom a change of variable by
letting u = eXv with £LX = 1. We get

Lu =vLeX + XLy — 0,500
= 0eXLX — veX(0,X)* + X Lv — X0, X0,
so v solves
Lo = (8,X)?v + 9,X0,0.
Lety = 2 — a— the regularity of X.
> If we assume that (9,X)? € €Y 2 then we see that this equation can be
solved for v € €>Y since in this case 3,X0,v € €Y~! and we have a continous

map
(X, (0:X)?) € €Y x € 2 0¥
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Homogeneisation

Whenn =V, :

Theorem

Assumed > 2 and o« = 1 and let LX,. = V. (+ technical conditions on the
covariance C), then (9,X.)*> — o2 in €.

>If d > 2 writing u. = eX¢v, we obtain that v, converges to the solution of the
PDE
Ly =%

and so does u since X — 0in €.

> Now
Lu.=Vu, ALu=0xu

but Lu = ou with 6® # 0. Lack of continuity of the problem wrt the data V.
in the ¥Y~2 topology if y —2 < —1.
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Renormalization

Whend =2, a=1:

Theorem

Lety = 1—, then V, — & (white noise on T?) in €Y =2 and LX, = V. (+ technical
conditions on the covariance C), then there exists a sequence ¢, — +oo such that
(0:X:)? —ce — (0:X)%% in €22,

Here, formally, 6> = +o0, so there is not a well defined limit for ..
Consider i1, (t,x) = e “<'u(t, x) which solves
Lit, = V. il, — il
then for 0, = e~ *<ii, we have the equation
L0 = [(3:Xe)?* — cele + 0:X: 0,0

which behaves well in the limit ¢ — 0.
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Structure of the explicit solution

> Question: What is the equation satisfied by & = lim,_, i1, ?
It should be someting like £t = "it&§ — coil" = il ¢ & (in which sense?)
> Note that (by paralinearization)
== <0+eX=0=("<X) <0+ =i < X+C»
An analogous relation holds between ii, and X,. Then
Ve —ceilg =it < Ve +iig oV it = Ve — el
=, < Ve+ (fle < X)o V. + @it oV, +il. = V. —c.il.
=il < Ve +ile(Xc o Ve —c) + Clite, Xe, V) + it o Ve + 1. = Ve

where we have used a commutator lemma which states roughly that

(ite < Xc)o Ve il (X 0 Ve)
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The main commutator estimate

All the difficulty is concentrated in the resonating term

fog= > AfAg

li—jl<1
which however "is" smoother than f < g if f or g has positive regularity.
Paraproducts decouple the problem from the source of the problem.
Commutator lemma
The trilinear operator C(f, g, h) = (f < g) o h —f(g o h) satisfies
IC(F, & Wllp+y S [Ifllcllgll 17l

whenf +y<O0anda+B+v >0 a<1l
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Structure of solution and paracontrolled distributions

> So in the limit ¢ — 0 we have
.V, —ceile =i, < Ve + il (X, 0V, —c.) +Clite, X, Vo) + i oV, +ii. = V.
=< E+U(X0E)+Cli,X, &)+ i o E+11 -
=di0&=Di", X, Xo&)
where X ¢ & ;= lim._,o(X o V. —c,).
> Question: What is the equation satisfied by & = lim,_, i1, ?

Indeed
Lii = "1 —ooil" =10 & =D, 0", X, X0 &).

Where the r.h.s. is well defined since i is paracontrolled by X.
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Paracontrolled distributions

Use the paraproduct to define a controlled structure. We say y € Zf if x € €

y=y<x+y
with y* € C°~Y and y* € CP.
> Paralinearization. Let ¢ : R — R be a sufficiently smooth function and

x € €Y,y >0. Then
o(x)=@'(x) <x+ €

> Another commutator: f,g € €°Y,x € €Y

f=<@Eg=<h=() <h+%"

> Stability. (p < 2y)
o) = (o' Wy) <x+¢€°

so we can take ¢ (y)* = ¢’ (y)y".
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Solution theory for general signals

Goal: Show that ¥ : n — u factorizes as

n—-L1m

> Analytic step: show that wheny € (2/3,1):
O: X - EY

is continuous. X = ImJ C ¥Y~2 x €?¥~2 is the space of enhanced signals (or
rough paths, or models).

But in general ] is not a continuous map €Y~ — €Y 2 x €22,

> Probabilistic step: prove that there exists a "reasonable definition" of J(&)
when & is a white noise. J(&) is an explicit polinomial in ¢ so direct
computations are possible.

Tools: Besov embeddings L (Q;C%) — L7 (Q Be/) ~ B®’ (LP(Q)), Gaussian
& r PP

7 1

hypercontractivity LF (Q) — L2(Q), explicit L?> computations.
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Paracontrolled gPAM (I) - the r.h.s.

u:R; xT?> - R, § € 6V 2,y =1—. We want to solve (have uniform bounds
for)
Lu=Fu)&=F(u) <&+ F(u)o&+F(u) = &.
> Paracontrolled ansatz. Take £LX = &, X € ¥ and assume that u € _@)29’:
u=u*<X+u
with u* € €2 and uX € ¢.

> Paralinearization:

> Commutator lemma:
Fu)o &= ((F'(w)u*) < X) o £+ € o &
= (F'(u)uX) (X 0 &) + C(F' (u)uX, X, &) + €% o &

ce?v—2 ceBy—2
if we assume that (X o0 &) € €272,
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Paracontrolled gPAM (II) - the Lh.s.

So if u is paracontrolled by X:

u=u*<X+u

and if X o & € 62Y~2 we have a control on the rh.s. of the equation:

F(u)& =F(u) < £+ F'(w)u*(X o &) +€> 2
What about the L.h.s.?
Lu=LuX < X +uf <&+ Luf —0.uX <0, X
so letting u*X = F(u) we have

Lut = —LF(u) < X + F'(u)F(u)(X 0 &) + C2¥2
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Paracontrolled gPAM (III) - the paracontrolled fixed point.

The PDE
Lu=F(u)§
is equivalent to the system
atX :E,
duuit =(F'(u)F(1))(X 0 &) — £f(u) < X+R(f, u, X, &) o,
———— N ——
e E2Y 2 St

u=F(u) < X+ ut
> The system can be solved by fixed point (for small time) in the space 73" if

we assume that
Xe%, (Xo&) e 2
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Structure of the paracontrolled solution

> When & smooth, the solution to
ou=Fu)é,  u(0)=uo
is given by u = ®(u, &, X o &) where
O:RIXx GV EXx G2 G
is continuous for any y > 2/3 and z = ®(uy, &, @) is given by
z=F(z) < X +2
9,2" =(F'(2)F(z)) — LF(z) < X+R(F,z,X,&) 0 §
——— ————
"€ E2Y —2 c€3y 2
If(E", X" 0 &") = (§,1)in €Y 2 x €Y 2 and
ou" =f(u")g",  u(0) =up

then u" — u = ®(ug, &,m).
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Relaxed form of the PDE

> Note that in general we can have £ — &, £2" — & and

hy{n XU o £ln % liyrln X21 o £2m
> Take &", & smooth but &" — & in €Y 2. It can happen that
limX" o &' =Xo&+ ¢ € ¢l
In this case " — uand u = ®(&, X o & + @) solves the equation
Lu =Fu)& + F'(u)F(u)e.

The limit procedure generates correction terms to the equation.

The original equation relaxes to another form in which additional terms are
generated.
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"Tto" form of the PDE

In the smooth setting u = @ (&, X o & + @) solves
Lu =F(u)& + F'(u)F(u) .

If we choose @ = —X o § then
v=0(§Xo&+ @) =D(E,0)

solves
Lo =F(v)& —F'(v)F(v)X o &

and has the particular property of being a continuous map of & € %’Y~2 alone.
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The renormalization problem

If & is the space white noise we have

Ee?'",  XeC(oT;%")

and ] ]
Xo&=XoLX= EL(XOX)—l—E(DXoDX)
1 1 2
= E13(XoX) — (DX < DX) + E(DX)
But now

(DX)? = ¢ + C&*~

N —

with ¢ = 4-o0!.
No obvious definition of X o & can be given. But there exists c, such that

XE © Evf, —Ce — "XO E,” ]_n C%Oi.
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The renormalized gPAM

To cure the problem we add a suitable counterterm to the equation

Lu=f(u)o&=fu)E—c(f (ulf(u))
this defines a new product, denoted by . Now
fu)o&—c(f'(u)f (u)) = (f' (ulf () (X o &—c)+C(f'(u)f (u), X, &) +R(f,u, X) o &
> The renormalized gPAM is equivalent to the equation
Lut = —Lf(u) <= X+ Df(u) < DX + (f'(u)f (1)) (X 0 & —c)

FC(F (W) (1), X, E) + R(f, 4, X) 0 £
together with u = f(u) < X + u* and where

X e ¥, Xo&=(Xo&—c)e?", utew*.
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Finally a theorem

Theorem

Letd =2, x =1,y =1—and small T > 0. There exist constants c. such that
letting u. the solution to

Lue = VEF(uS) _CEF/(ME)

then u, — uin C¥ as e — 0and u € 23" is the unique weak solution in 73 to the
equation

Lu=&oF(u) =F(u) < &+F'(u)(Xo&) +GuX,uf, X)

where
E=1limV,, Xo&=IlimX, oV, —c,
e—0 £e—0

in CY=2 and C*~2 resp. and & has the law of the white noise on T>.
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Other applications

» Gubinelli, Imkeller, P. (2012): Multidimensional extension of Hairer’s
(2011) generalized Burgers equation (o —d/2 > 1/3):

Ouu(t,x) = —(—=A)%ult, x) + G(u(t, x))Deu(t, x) + &(t, x);
» Catellier, Chouk (2013): Stochastic quantization equation ¢} (d = 3):
Lu(t,x) = —u(t,x)® + E(t,x);
» Furlan (2014): Stochastic Navier Stokes equation (d = 3):

Lu(t,x) = —P((u(t,x) - Vu(t,x)) + &(t, x).
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Fluctuations of a growing interface

noise
diffusion
&t @)

SR L e

h(t,x)

A model for random interface growth (think e.g. expansion of colony of
bacteria): h: R, x R — R,

Oh(t,x) = KAR(t,x) +  F(O:h(t,x)) + n(t, x)
~—— N— S~——
relaxation slope-dependent growth  noise with microscopic correlations
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Fluctuations of a growing interface

-150 -
4150 -100
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The Kardar-Parisi-Zhang equation

» Kardar-Parisi-Zhang '84: slope-dependent growth given by F(d.k), in a
certain scaling regime of small gradients:

F(d:h) = F(0) + E'(0)0:h + F”(0)(d:h)* + ...
» KPZ equation is the universal model for random interface growth

0:h(t, x) = kAh(t, x) + A[(d:h(t, x))? — co] + &t x)
—_— — ——

relaxation renormalized growth space-time white noise

» This derivation is highly problematic since 9,/ is a distribution. But:
Hairer, Quastel (2014, unpublished) justify it rigorously via scaling of
smooth models and small gradients.

» KPZ equation is suspected to be universal scaling limit for random
interface growth models, random polymers, and many particle systems;

» contrary to Brownian setting: KPZ has fluctuations of order #'/3; large
time limit distribution of +1/3h(t, t*/3x) is expected to be universal in a
sense comparable only to the Gaussian distribution.
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KPZ and its siblings:

» KPZ equation:
Lh(t,x) = "(0:h(t, x))* — 00" + E(t, x);

h: Ry xR — R, £ = 0; — A heat operator, £ space-time white noise;

> Burgers equation:
Lu(t,x) = "0 (u(t,x)*)" + 0:&(t, x);

solution is (formally) given by derivative of the KPZ equation: u = 0.k;

> solution to KPZ (formally) given by Cole-Hopf transform of the
stochastic heat equation: h = log w, where w solves

Lw(t,x) ="w(t,x) o &t x)".

> All three are universal objects, that are expected to be scaling limits of a
wide range of particle systems.
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Stochastic Burgers equation
Take u = Dh

Lu = DE + Du?
to obtain the stochastic Burgers equation (SBE) with additive noise.

> Invariant measure: Formally the SBE leaves invariant the space white
noise: if uy has a Gaussian distribution with covariance

Eluo(x)uo(y)] = 8(x —y) then for all t > 0 the random function u(t, -) has a
Gaussian law with the same covariance.

> First order approximation: Let X(¢, x) be the solution of the linear equation
9, X(t,x) = 02X(t,x) + 0.&(t, %), xeT,t>0
X is a stationary Gaussian process with covariance
EX(t, x)X(s, y)] = pie—s (x — y).

Almost surely X(t,:) € €Y forany y < —1/2and any t € R. Forany t € R
X(t,) has the law of the white noise over T.
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Expansion for the SBE

Recall the SBE:
Lu=Du?+§

> Letu = X + u; then

Luy = 0, (g + X)? = 0, X% 420, (11 X) + 0,12

> Let XY be the solution to
LXY =09.X? = XV e ¥
and decompose further u; = XY + u,. Then

Lty =20, (XYX) 420, (115 X) + 0:(XYXY) 420, (15 XY) + 0y (112)?
N— S~—
—3/2— —-1—

> Define £X¥ = 20,(XYX) and 1, = X¥ + u3 then X' € €V/2~

Ltz = 20, (u3X) + 20, (XX) + 02 (XYXY) +20, (1XY) + 0, (12)?
T e T
—3/2— —3/2— —Tl—
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Expansion /II

> The partial expansion for the solution reads

u=X+Xx"+2x¥+U

LU =20, (UX) 4 20,(X¥X) + 0,(XYXY) 4+ 20,((2XY + U)XY) + 3, (2X" + U)?

= 20,(UX) + £(2X¥ + X¥) + 20,((2X¥ + )XY) + 0, (2X" + U)?

and the regularities for the driving terms

X

XV

X‘(/

XY

X‘(}’

=

0—

1/2—

1/2—

We can assume U € €'/?~ so that the terms

20,((2XY + U)XY) + 0,(2X" + U)?

are well defined.

The remaining problem is to deal with 20, (UX).
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Paracontrolled ansatz for SBE

> Make the following ansatz U = U’ < Q + U*. Then
LU=LU <Q+U < £Q—0,U <0,Q+LU
while

LU =20, (UX) + £(2X¥ + X¥) +20,((2X" + )XY) + 8,(2X¥ + U)?

R(U)

=20, (U < X) 420, (U 0 X) +23,(U = X) + R(U)
=2(U < 0,X) +2(0,U < X) +20,(Uo X)+20,(U = X)+R(U)
so we can set U’ = 2U and £Q = 9,X and get the equation
LUt =—cu’ < Q+o,U" < 0,Q+2(0,U < X)+20,(UoX)+20,(U = X)+R(U)

> Observe that Q, U, U’ € €'/~ and we can assume that U* € €.
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Commutator

> The difficulty is now concentrated in the resonant term U o X which is not
well defined.

> The paracontrolled ansatz and the commutation lemma give

UoX=02U <Q)oX+ U o X=2U(QoX)+C2U,Q,X)+U* 0 X

1/2— 1/2—

> A stochastic estimate shows that Q o X € €~
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Paracontrolled solution to SBE

> The final system reads
u=X+X"+2x¥+U
U=u <Q+ut, u =2x"+2u
LU = 40, (U(Q 0 X)) +40,C(U, Q, X) + 20, (U 0 X) —2LU < Q
+20,U < 9,Q + 2(0,U < X) 420, (U > X) +R(U)
> This equation has a (local in time) solution U = ®(J(&)) which is a
continuous function of the data (&) given by a collection of multilinear

functions of &:
J(E) = (X, XY, X%, X% XY, X0 Q)
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Burgers equation and paracontrolled distributions

Lu(t,x) = 01> (t,x) + 0.&(t, x), u(0) = uy.

Paracontrolled Ansatz
UE P if =X+ XY +2XY + u? with
R =u' < Q+ul.
» Paracontrolled structure: Can define #? continuously as long as

(QoX) € C([0,T), ¢°) is given (together with tree data
X, XY, x¥, X9, X9).

» Obtain local existence and uniqueness of paracontrolled solutions.

Solution depends pathwise continuously on extended data
J(8) = (& X, XY, X%, X% XV, Q0 X).
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KPZ equation

KPZ equation:
Lh(t,x) = (0:h(t,x))* + E(t,x),  h(0) = ho.

Expect h(t) € €'/*~, 50 0,h(t) € />~ and (9,h(t))? not defined. But:
expand
u=Y+Y"+2Y" + 1P,

where LY = &, LYY = 0,Y0,Y, ... In general: 9,Y" = X". Make
paracontrolled ansatz for h”:

W =n_(h,P)+ ht
with i’ € C([0, T],%”l/z*), ht e C([0,T),6%), LP = X. Write h € ﬁzkpz.

Can define (9.h(t))? forh € P2 and obtain local existence and uniqueness
of solutions.
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KPZ and Burgers equation

he L@kpz if

h=Y+YY+2YY+hwP, W =1 <P+h.

U E Prpe if

v

v

v

v

u=X+X"+2x"+u?, ul =u' < Q+ut.

Ifh € Pp,, then 0.h € Prpe.

If i solves KPZ equation, then u = 0,/ solves Burgers equation with
initial condition u(0) = 9,ho.

If u € Pre, then any solution 1 of Lh = u? + & is in P,

If u solves Burgers equation with initial condition #(0) = 9,hg, and
solves £h = u? + & with initial condition h(0) = h, then h solves KPZ
equation.
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KPZ and heat equation

Heat equation:
Lw(t,x) =w(t,x)o&(t,x) =w(t,x)&(t,x) —w(t,x) - 00, w(0) =wp.
Paracontrolled ansatz: w € Py, if

v X
w = 8Y+Y +2Y wP,

w? =n_(w’,P) +wh
(comes from Cole-Hopf transform).
> Slightly cheat to make sense of product w ¢ & for w € Ppe:
wo &= Lw— Y [Lul — (LY +Y¥) + (@Y + YV + 219 ]
+ 20V (v 1YY 1 2YY) 0,0

(agrees with renormalized pointwise product w ¢ & in smooth case and
with It6 integral in white noise case, continuous in extended data).
> Obtain global existence and uniqueness of solutions.

» One-to-one correspondence between #,, and strictly positive elements
of yrhe.

> Any solution of KPZ gives solution of heat equation. Any strictly
positive solution of heat equation gives solution of KPZ equation.
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Para-modelled distributions

Lety > 0and (T,T1,T) regularity structure. Say f is para-modelled, f € &7, if
there exists f™ € 27, with

f—m_(f~, M) e C.

Example: Zf™ € &77.

Consider rough path model, say

T =span(Z, S (2)Z, S (H(2)2)2,1, F(2), #(F(2)2)). Try to solve

0;u = F(u)é.

(Simplified) para-modelled ansatz: u = Zu™ = 7t (1", 1) + u* with u™ € 2°*.
Equation for uf:

Ouut = —0,m_ (u™, TT) + F(u)& = 7t (u”™, DIT) — i (F(u™) * &7, TT) + smooth.

To have uf € C** : choose expansion u™ so that all coefficients for terms of
homogeneity < 3o — 1 cancel. Obtain a priori bounds on ||u¥||3, and then on
||| p3e . Thus at least local existence of solutions.
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Stochastic Quantization

Stochastic quantization of (®*);: & € C*", u € CV/*", u = g + iy + iss.
Lu =&+ ANu® —3ciu — cou)

Luy + Lusy = &+ A1 — 3eyuy) + 3N (uz2 (13 — 1)) + 3A(1d,u1) + A, — Acou

>Luy = &= uy € CV2, Luy = Mud —3crun) = up € CV/2-

Luss = 3N usz (15 — 1)) + A (udu1) + 6A(uszuizur) + 3N(ud5u1) + Aud, — Acou
> Ansatz: us3 = 3\usy < X + uf, with £X = (12 — ¢;)
L1 = —3M\Litzy < X+3ADityy < DX+3A(t1520(1—c1)—Cott) +3A (115 > (12—c1))
+ 3A(1311) + 6N (usz(uaur)) + BA(u2,u1) + A,
2
1

Usp © (u% —¢1) —cu = (up o (U7 —c1) — couy) + (Ussz © (u% — 1) — Calisy)

(133 0 (1] = &1) = Catiz) = (BMu52 < X) 0 (] — 1) — Cattzo) + w0 (u — )
= 15BN (X 0 (1 — 1)) — €2) + 3AC(us2, X, (12 — 1)) +uf o (13 — ¢1)

> Basic objects: (1% —c1), (13 — 3ciu1), (BA (X o (U2 — 1)) — ¢2), (upun), (13u1)
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The Good, the Ugly and the Bad

Concrete example. Let B be a d-dimensional Brownian motion (or a
regularisation B*) and ¢ a smooth function. Then B € ¢ fory < 1/2.

©(B)DB = ¢(B) < DB+ ¢(B) o DB+ ¢(B) = DB
————— ——— . ———
the Bad the Ugly the Good, €2Y —1

and recall the paralinearization

¢(B) = ¢'(B) < B+ ¢

Then / ,
B) o = o Y o
©(B)oDB = (¢'(B) <B)oDB+ % OI(DB
= ¢'(B)(BoDB) + €%
Finally

©(B)DB = @(B) < DB+ ¢'(B) (Bo DB)+¢(B) = DB+ ¢*¥!
———

"Besov area"
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The Besov area

If d =1 (or by symmetrization) we can perform an integration by parts to get

BoDB = %[(BODB)Jr(DBoB)) = %D(BOB)

which is well defined and belongs indeed to ¢!

In general the Besov area B o DB can be defined and studied efficiently using
Gaussian arguments:

B® o DB* - Bo DB

almost surely in %2} " as ¢ — 0.

Tools: Besov embeddings L7 (Q; Cco%) — LP(Q;B%) ~ Bg;, (LP(Q)), Gaussian

hypercontractivity L (Q) — L?(Q), explicit L? computations.
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