Paracontrolled distributions with applications to singular SPDEs

Massimiliano Gubinelli

CEREMADE Université Paris Dauphine

ENSTA, Paris - November 3rd 2014

Some other problems in singular SPDEs /I

Define and solve (locally) the following SPDEs:

▶ Stochastic differential equations (1+0): $u \in [0, T] \to \mathbb{R}^n$

$$\partial_t u(t) = \sum_i f_i(u(t)) \xi^i(t)$$

with $\xi : \mathbb{R} \to \mathbb{R}^m$ *m*-dimensional white noise in time.

▶ Burgers equations (1+1): $u \in [0, T] \times \mathbb{T} \to \mathbb{R}^n$

$$\partial_t u(t,x) = \Delta u(t,x) + f(u(t,x))Du(t,x) + \xi(t,x)$$

with $\xi : \mathbb{R} \times \mathbb{T} \to \mathbb{R}^n$ space-time white noise.

▶ Generalized Parabolic Anderson model (1+2): $u \in [0, T] \times \mathbb{T}^2 \to \mathbb{R}$

$$\partial_t u(t,x) = \Delta u(t,x) + f(u(t,x))\xi(x)$$

with $\xi: \mathbb{T}^2 \to \mathbb{R}$ space white noise.

Recall that

$$\xi \in \mathscr{C}^{-d/2-}$$

Some other problems in singular SPDEs /II

Kardar-Parisi-Zhang equation (1+1)

$$\partial_t h(t,x) = \Delta h(t,x) + "(Dh(t,x))^2 - \infty" + \xi(t,x)$$

with $\xi : \mathbb{R} \times \mathbb{T} \to \mathbb{R}$ space-time white noise.

Stochastic quantization equation (1+3)

$$\partial_t u(t,x) = \Delta u(t,x) + "u(t,x)^3" + \xi(t,x)$$

with $\xi: \mathbb{R} \times \mathbb{T}^3 \to \mathbb{R}$ space-time white noise.

▶ But (currently) not: Multiplicative SPDEs (1+1)

$$\partial_t u(t,x) = \Delta u(t,x) + f(u(t,x))\xi(t,x)$$

with $\xi : \mathbb{R} \times \mathbb{T} \to \mathbb{R}$ space-time white noise.

Joint work with P. Imkeller and N. Perkowski. (Also K. Chouk and R. Catellier for $(\Phi)_3^4$).

Littlewood-Paley blocks and Hölder-Besov spaces

We will measure regularity in Hölder-Besov spaces $\mathscr{C}^{\gamma} = B^{\gamma}_{\infty,\infty}(\mathbb{T}^d)$. If time is involved we abuse the notation by setting $\mathscr{C}^{\gamma} = C([0,T],B^{\gamma}_{\infty,\infty}(\mathbb{T}^d))$.

$$f \in \mathcal{C}^{\gamma}$$
, $\gamma \in \mathbb{R}$ iff

$$\|\Delta_i f\|_{L^\infty} \leqslant \|f\|_{\gamma} 2^{-i\gamma}, \qquad i \geqslant -1.$$

$$\mathcal{F}(\Delta_i f)(\xi) = \rho_i(\xi) \hat{f}(\xi)$$

where $\rho_i : \mathbb{R}^d \to \mathbb{R}_+$ are smooth functions with support $\simeq 2^i \mathscr{A}$ when $i \geqslant 0$ and form a partition of unity $\sum_{i \geqslant -1} \rho_i(\xi) = 1$ for all $\xi \neq 0$ so that

$$f = \sum_{i \ge -1} \Delta_i f$$

in S'.

Paraproducts

Deconstruction of a product: $f \in \mathscr{C}^{\rho}$, $g \in \mathscr{C}^{\gamma}$

$$fg = \sum_{i,j \geqslant -1} \Delta_i f \Delta_j g = f \prec g + f \circ g + f \succ g$$

$$f \prec g = g \succ f = \sum_{i < j-1} \Delta_i f \Delta_j g$$
 $f \circ g = \sum_{|i-j| \leq 1} \Delta_i f \Delta_j g$

Paraproduct (Bony, Meyer et al.)

$$f \prec g \in \mathscr{C}^{\min(\gamma+\rho,\gamma)}$$

$$f \circ g \in \mathscr{C}^{\gamma+\rho} \qquad \text{only if } \gamma+\rho>0$$

Proof. Recall $f \in \mathscr{C}^{\rho}$, $g \in \mathscr{C}^{\gamma}$.

$$i\ll j\Rightarrow \mathrm{supp}\mathscr{F}(\Delta_i f\Delta_j g)\subseteq 2^j\mathscr{A} \qquad i\sim j\Rightarrow \mathrm{supp}\mathscr{F}(\Delta_i f\Delta_j g)\subseteq 2^j\mathscr{B}$$
 So if $\rho>0$

$$\Delta_q(f \prec g) = \sum_{j: j \sim q} \sum_{i: i < j-1} \underbrace{\Delta_q(\Delta_i f \Delta_j g)}_{O(2^{-ip-j\gamma})} = O(2^{-q\gamma}) \Rightarrow f \prec g \in \mathscr{C}^{\gamma},$$

while if $\rho < 0$

$$\Delta_q(f \prec g) = \sum_{j: j \sim q} \sum_{i: i < j-1} \underbrace{\Delta_q(\Delta_i f \Delta_j g)}_{O(2^{-i}\rho - j\gamma)} = O(2^{-q(\gamma + \rho)}) \Rightarrow f \prec g \in \mathscr{C}^{\gamma + \rho}.$$

Finally for the resonant term we have

$$\Delta_q(f\circ g)=\sum_{i\sim j\geq q}\Delta_q(\Delta_if\Delta_jg)=\sum_{i\geq q}O(2^{-j(\,\rho+\gamma\,)})\Rightarrow f\circ g\in\mathscr{C}^{\gamma+\,\rho}$$

but only if the sum converges.

Small detour: Young integral

Take $f \in \mathcal{C}^{\rho}$, $g \in \mathcal{C}^{\gamma}$ with $\gamma, \rho \in (0,1)$

$$fDg = \underbrace{f \prec Dg}_{\mathscr{C}\gamma - 1} + \underbrace{f \circ Dg + f \succ Dg}_{\mathscr{C}\gamma + \rho - 1}$$

then

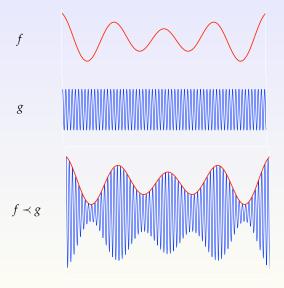
$$\int fDg = \underbrace{\int f \prec Dg}_{\mathscr{C}^{\gamma}} + \underbrace{\int (f \circ Dg + f \succ Dg)}_{\mathscr{C}^{\gamma+\rho}}$$
$$= f \prec g + \mathscr{C}^{\gamma+\rho}.$$

Compare with standard estimate for the Young integral in Hölder spaces (valid when $\gamma + \rho > 1$):

$$\int_{s}^{t} f_{u} dg_{u} = f_{s}(g_{t} - g_{s}) + O(|t - s|^{\gamma + \rho}).$$

Expansion in smalleness of increments vs. Expansion in regularity

Paraproduct as frequency modulation



The prototype of a singular PDE

Consider the simple controlled PDE (η smooth, fixed initial condition)

$$\partial_t u(t,x) = \Delta u(t,x) + F(u(t,x))\eta(x)$$

 $u: \mathbb{R}_+ \times \mathbb{T}^d \to \mathbb{R}$, $\eta: \mathbb{T}^d \to \mathbb{R}$ and smooth function $F: \mathbb{R} \to \mathbb{R}$.

Problem

The solution map

$$\eta \stackrel{\Psi}{\longrightarrow} u$$

is generally **not** continuous for $\eta \in \mathcal{C}^{\gamma-2}$ with $\gamma < 1$.

Reason: $u \in \mathscr{C}^{\gamma}$ and $\eta \in \mathscr{C}^{\gamma-2}$ cannot be multiplied when $2\gamma - 2 \leq 0$. The r.h.s. of the equation is not well defined.

What can go wrong?

Consider the sequence of functions $x^n : \mathbb{R} \to \mathbb{R}^2$

$$x(t) = \frac{1}{n}(\cos(2\pi n^2 t), \sin(2\pi n^2 t))$$

then $x^n(\cdot) \to 0$ in $\mathscr{C}^{\gamma}([0,T];\mathbb{R}^2)$ for any $\gamma < 1/2$. But

$$I(x^{n,1},x^{n,2})(t) = \int_0^t x^{n,1}(s) \partial_t x^{n,2}(s) ds \to \frac{t}{2} \neq I(0,0)(t) = 0$$

The definite integral $I(\cdot,\cdot)(t)$ is **not** a continuous map $\mathscr{C}^{\gamma} \times \mathscr{C}^{\gamma} \to \mathbb{R}$ for $\gamma < 1/2$.

(Cyclic microscopic processes can produce macroscopic results. Resonances.)

Homogeneisation of a random potential

 \triangleright Consider the linear heat equation with a small random time-independent (Gaussian) potential V

$$\partial_t U(t,x) = \Delta U(t,x) + \varepsilon^{2-\alpha} V(x) U(t,x)$$

on $(\mathbb{T}/\epsilon)^d$ and where ϵ is a small parameter and $\alpha < 2$.

 \triangleright Introduce macroscopic variables $u_{\varepsilon}(t,x)=U(t/\varepsilon^2,x/\varepsilon)$ with parabolic rescaling, then

$$\partial_t u_\varepsilon(t,x) = \Delta u_\varepsilon(t,x) + V_\varepsilon(x) u_\varepsilon(t,x)$$

on \mathbb{T} and where $V_{\varepsilon}(x) = \varepsilon^{-\alpha}V(x/\varepsilon)$.

Homogeneisation of a random potential (II)

The covariance of the macroscopic noise is

$$\mathbb{E}[V_{\varepsilon}(x)V_{\varepsilon}(y)] = \varepsilon^{-2\alpha}C((x-y)/\varepsilon)$$

Theorem

If $d>2\alpha$ then $V_{\varepsilon}\to 0$ in $\mathscr{C}^{-\alpha-}$. While if $d=2\alpha$ then V_{ε} converges to the space white noise on \mathbb{T} .

So we are let to the study of the stability properites of the equation

$$\mathcal{L}u = \eta u$$

with $\eta \in \mathscr{C}^{-\alpha}$. This stability is easy to establish when $2-2\alpha>0$ by standard estimates in Besov spaces. We are concerned then with the case $\alpha=1$.

Transformation of PAM

 \triangleright In order to understand the difficulties, let us perfom a change of variable by letting $u=e^Xv$ with $\mathcal{L}X=\eta$. We get

$$\mathcal{L}u = v\mathcal{L}e^{X} + e^{X}\mathcal{L}v - \partial_{x}e^{X}\partial_{x}v$$
$$= ve^{X}\mathcal{L}X - ve^{X}(\partial_{x}X)^{2} + e^{X}\mathcal{L}v - e^{X}\partial_{x}X\partial_{x}v$$

so v solves

$$\mathcal{L}v = (\partial_x X)^2 v + \partial_x X \partial_x v.$$

Let $\gamma = 2 - \alpha$ — the regularity of X.

 \triangleright If we *assume* that $(\partial_x X)^2 \in \mathscr{C}^{2\gamma-2}$ then we see that this equation can be solved for $v \in \mathscr{C}^{2\gamma}$ since in this case $\partial_x X \partial_x v \in \mathscr{C}^{\gamma-1}$ and we have a continous map

$$(X,(\partial_x X)^2) \in \mathscr{C}^{\gamma} \times \mathscr{C}^{2\gamma-2} \mapsto v \in \mathscr{C}^{\gamma}$$

Homogeneisation

When $\eta = V_{\varepsilon}$:

Theorem

Assume d>2 and $\alpha=1$ and let $\mathcal{L}X_{\varepsilon}=V_{\varepsilon}$ (+ technical conditions on the covariance C), then $(\mathfrak{d}_xX_{\varepsilon})^2\to\sigma^2$ in \mathscr{C}^{0-} .

ightharpoonup If d>2 writing $u_{\varepsilon}=e^{X_{\varepsilon}}v_{\varepsilon}$ we obtain that v_{ε} converges to the solution of the PDE

$$\mathcal{L}v = \sigma^2 v$$

and so does u since $X \to 0$ in \mathscr{C}^{γ} .

⊳ Now

$$\mathcal{L}u_{\varepsilon} = V_{\varepsilon}u_{\varepsilon} \not\to \mathcal{L}u = 0 * u$$

but $\mathcal{L}u = \sigma^2 u$ with $\sigma^2 \neq 0$. Lack of continuity of the problem wrt the data V_{ε} in the $\mathscr{C}^{\gamma-2}$ topology if $\gamma - 2 < -1$.

Renormalization

When d = 2, $\alpha = 1$:

Theorem

Let $\gamma=1-$, then $V_{\varepsilon}\to \xi$ (white noise on \mathbb{T}^2) in $\mathscr{C}^{\gamma-2}$ and $\mathscr{L}X_{\varepsilon}=V_{\varepsilon}$ (+ technical conditions on the covariance C), then there exists a sequence $c_{\varepsilon}\to +\infty$ such that $(\mathfrak{d}_x X_{\varepsilon})^2-c_{\varepsilon}\to (\mathfrak{d}_x X)^{\diamond 2}$ in $\mathscr{C}^{2\gamma-2}$.

Here, formally, $\sigma^2 = +\infty$, so there is not a well defined limit for u_{ε} .

Consider $\tilde{u}_{\varepsilon}(t,x) = e^{-c_{\varepsilon}t}u(t,x)$ which solves

$$\mathcal{L}\tilde{u}_{\varepsilon} = V_{\varepsilon}\tilde{u}_{\varepsilon} - c_{\varepsilon}\tilde{u}_{\varepsilon}$$

then for $\tilde{v}_{\varepsilon} = e^{-X_{\varepsilon}} \tilde{u}_{\varepsilon}$ we have the equation

$$\mathcal{L}\tilde{v}_{\varepsilon} = [(\partial_{x}X_{\varepsilon})^{2} - c_{\varepsilon}]\tilde{v}_{\varepsilon} + \partial_{x}X_{\varepsilon}\partial_{x}\tilde{v}_{\varepsilon}$$

which behaves well in the limit $\varepsilon \to 0$.

Structure of the explicit solution

▷ **Question:** What is the equation satisfied by $\tilde{u} = \lim_{\varepsilon \to 0} \tilde{u}_{\varepsilon}$?

It should be someting like $\mathcal{L}\tilde{u} = "\tilde{u}\xi - \infty \tilde{u}" = \tilde{u} \diamond \xi$ (in which sense?)

Note that (by paralinearization)

$$\tilde{u} = e^X \tilde{v} = e^X \prec \tilde{v} + e^X \succeq \tilde{v} = (e^X \prec X) \prec \tilde{v} + \mathcal{C}^{2\gamma} = \tilde{u} \prec X + \mathcal{C}^{2\gamma}$$

An analogous relation holds between \tilde{u}_{ε} and X_{ε} . Then

$$\begin{split} \tilde{u}_{\varepsilon}V_{\varepsilon} - c_{\varepsilon}\tilde{u}_{\varepsilon} &= \tilde{u}_{\varepsilon} \prec V_{\varepsilon} + \tilde{u}_{\varepsilon} \circ V_{\varepsilon} + \tilde{u}_{\varepsilon} \succ V_{\varepsilon} - c_{\varepsilon}\tilde{u}_{\varepsilon} \\ &= \tilde{u}_{\varepsilon} \prec V_{\varepsilon} + (\tilde{u}_{\varepsilon} \prec X_{\varepsilon}) \circ V_{\varepsilon} + \tilde{u}_{\varepsilon}^{\sharp} \circ V_{\varepsilon} + \tilde{u}_{\varepsilon} \succ V_{\varepsilon} - c_{\varepsilon}\tilde{u}_{\varepsilon} \\ &= \tilde{u}_{\varepsilon} \prec V_{\varepsilon} + \tilde{u}_{\varepsilon}(X_{\varepsilon} \circ V_{\varepsilon} - c_{\varepsilon}) + C(\tilde{u}_{\varepsilon}, X_{\varepsilon}, V_{\varepsilon}) + \tilde{u}_{\varepsilon}^{\sharp} \circ V_{\varepsilon} + \tilde{u}_{\varepsilon} \succ V_{\varepsilon} \end{split}$$

where we have used a commutator lemma which states roughly that

$$(\tilde{u}_\varepsilon \prec X_\varepsilon) \circ V_\varepsilon \simeq \tilde{u}_\varepsilon(X_\varepsilon \circ V_\varepsilon)$$

The main commutator estimate

All the difficulty is concentrated in the resonating term

$$f\circ g=\sum_{|i-j|\leqslant 1}\Delta_i f\Delta_j g$$

which however "is" smoother than $f \prec g$ if f or g has positive regularity. Paraproducts decouple the problem from the source of the problem.

Commutator lemma

The trilinear operator $C(f,g,h) = (f \prec g) \circ h - f(g \circ h)$ satisfies

$$\|C(f,g,h)\|_{\beta+\gamma}\lesssim \|f\|_\alpha\|g\|_\beta\|h\|_\gamma$$

when $\beta + \gamma < 0$ and $\alpha + \beta + \gamma > 0$, $\alpha < 1$.

Structure of solution and paracontrolled distributions

 \triangleright So in the limit $\varepsilon \to 0$ we have

$$\begin{split} \tilde{u}_{\varepsilon}V_{\varepsilon} - c_{\varepsilon}\tilde{u}_{\varepsilon} &= \tilde{u}_{\varepsilon} \prec V_{\varepsilon} + \tilde{u}_{\varepsilon}(\underline{X_{\varepsilon}} \circ \underline{V_{\varepsilon}} - c_{\varepsilon}) + C(\tilde{u}_{\varepsilon}, X_{\varepsilon}, V_{\varepsilon}) + \tilde{u}_{\varepsilon}^{\sharp} \circ V_{\varepsilon} + \tilde{u}_{\varepsilon} \succ V_{\varepsilon} \\ &\to \tilde{u} \prec \xi + \tilde{u}(X \diamond \xi) + C(\tilde{u}, X, \xi) + \tilde{u}^{\sharp} \circ \xi + \tilde{u} \succ \xi \\ &=: \tilde{u} \diamond \xi = \Phi(\tilde{u}, \tilde{u}^{\sharp}, X, X \diamond \xi) \end{split}$$

where $X \diamond \xi := \lim_{\varepsilon \to 0} (X_{\varepsilon} \circ V_{\varepsilon} - c_{\varepsilon}).$

▶ **Question:** What is the equation satisfied by $\tilde{u} = \lim_{\varepsilon \to 0} \tilde{u}_{\varepsilon}$?

Indeed

$$\mathcal{L}\tilde{u} = "\tilde{u}\xi - \infty \tilde{u}" = \tilde{u} \diamond \xi = \Phi(\tilde{u}, \tilde{u}^{\sharp}, X, X \diamond \xi).$$

Where the r.h.s. is well defined since \tilde{u} is **paracontrolled** by X.

Paracontrolled distributions

Use the paraproduct to *define* a controlled structure. We say $y \in \mathcal{D}_x^{\rho}$ if $x \in \mathcal{C}^{\gamma}$

$$y = y^x \prec x + y^{\sharp}$$

with $y^x \in C^{\rho-\gamma}$ and $y^{\sharp} \in C^{\rho}$.

ho **Paralinearization.** Let $\varphi : \mathbb{R} \to \mathbb{R}$ be a sufficiently smooth function and $x \in \mathscr{C}^{\gamma}$, $\gamma > 0$. Then

$$\phi(x) = \phi'(x) \prec x + \mathscr{C}^{2\gamma}$$

▷ Another commutator: $f, g \in \mathcal{C}^{\rho-\gamma}, x \in \mathcal{C}^{\gamma}$

$$f \prec (g \prec h) = (fg) \prec h + \mathscr{C}^{\rho}$$

 \triangleright Stability. $(\rho \leqslant 2\gamma)$

$$\varphi(y) = (\varphi'(y)y^x) \prec x + \mathscr{C}^{\rho}$$

so we can take $\varphi(y)^x = \varphi'(y)y^x$.

Solution theory for general signals

Goal: Show that $\Psi : \eta \mapsto u$ factorizes as

$$\eta \xrightarrow{J} J(\eta) \xrightarrow{\Phi} u$$

⊳ Analytic step: show that when $\gamma \in (2/3, 1)$:

$$\Phi: \mathfrak{X} \to \mathscr{C}^\gamma$$

is continuous. $\mathfrak{X} = \overline{\text{Im}J} \subseteq \mathscr{C}^{\gamma-2} \times \mathscr{C}^{2\gamma-2}$ is the space of *enhanced signals* (or rough paths, or models).

But in general *J* is **not** a continuous map $\mathscr{C}^{\gamma-1} \to \mathscr{C}^{\gamma-2} \times \mathscr{C}^{2\gamma-2}$.

 \triangleright *Probabilistic step*: prove that there exists a "reasonable definition" of $J(\xi)$ when ξ is a white noise. $J(\xi)$ is an explicit polinomial in ξ so direct computations are possible.

Tools: Besov embeddings $L^p(\Omega; C^{\theta}) \to L^p(\Omega; \mathcal{B}_{p,p}^{\theta'}) \simeq \mathcal{B}_{p,p}^{\theta'}(L^p(\Omega))$, Gaussian hypercontractivity $L^p(\Omega) \to L^2(\Omega)$, explicit L^2 computations.

Paracontrolled gPAM (I) - the r.h.s.

 $u: \mathbb{R}_+ \times \mathbb{T}^2 \to \mathbb{R}$, $\xi \in \mathscr{C}^{\gamma-2}$, $\gamma = 1-$. We want to solve (have uniform bounds for)

$$\mathcal{L}u = F(u)\xi = F(u) \prec \xi + F(u) \circ \xi + F(u) \succ \xi.$$

 \triangleright Paracontrolled ansatz. Take $\mathcal{L}X = \xi$, $X \in \mathscr{C}^{\gamma}$ and assume that $u \in \mathscr{D}_{X}^{2\gamma}$:

$$u = u^X \prec X + u^{\sharp}$$

with $u^{\sharp} \in \mathscr{C}^{2\gamma}$ and $u^{X} \in \mathscr{C}^{\gamma}$.

▷ Paralinearization:

$$F(u) = F'(u) \prec u + \mathcal{C}^{2\gamma} = (F'(u)u^X) \prec X + \mathcal{C}^{2\gamma}$$

Commutator lemma:

$$F(u) \circ \xi = ((F'(u)u^{X}) \prec X) \circ \xi + \mathcal{C}^{2\gamma} \circ \xi$$

$$= \underbrace{(F'(u)u^{X})(X \circ \xi)}_{\in \mathcal{C}^{2\gamma - 2}} + \underbrace{C(F'(u)u^{X}, X, \xi) + \mathcal{C}^{2\gamma} \circ \xi}_{\in \mathcal{C}^{3\gamma - 2}}$$

if we assume that $(X \circ \xi) \in \mathscr{C}^{2\gamma-2}$.

Paracontrolled gPAM (II) - the l.h.s.

So if *u* is paracontrolled by *X*:

$$u = u^X \prec X + u^{\sharp}$$

and if $X \circ \xi \in \mathscr{C}^{2\gamma-2}$ we have a control on the r.h.s. of the equation:

$$F(u)\xi = \underline{F(u)} \prec \xi + F'(u)u^X(X \circ \xi) + \mathscr{C}^{3\gamma - 2}$$

What about the l.h.s.?

$$\mathcal{L}u = \mathcal{L}u^{X} \prec X + u^{X} \prec \xi + \mathcal{L}u^{\sharp} - \partial_{x}u^{X} \prec \partial_{x}X$$

so letting $u^X = F(u)$ we have

$$\mathcal{L}u^{\sharp} = -\mathcal{L}F(u) \prec X + F'(u)F(u)(X \circ \xi) + \mathbb{C}^{2\gamma - 2}$$

Paracontrolled gPAM (III) - the paracontrolled fixed point.

The PDE

$$\mathcal{L}u = F(u)\xi$$

is equivalent to the system

$$\begin{split} & \partial_t X = \xi \\ & \partial_t u^{\sharp} = & (F'(u)F(u))(X \circ \xi) - \underbrace{\mathcal{L}f(u) \prec X}_{\text{"\in"$\mathscr{C}^{2\gamma-2}$}} + \underbrace{R(f,u,X,\xi)}_{\in\mathscr{C}^{3\gamma-2}} \circ \xi \\ & u = & F(u) \prec X + u^{\sharp} \end{split}$$

 \triangleright The system can be solved by fixed point (for small time) in the space $\mathscr{D}_X^{2\gamma}$ if we assume that

$$X \in \mathscr{C}^{\gamma}$$
, $(X \circ \xi) \in \mathscr{C}^{2\gamma - 2}$.

Structure of the paracontrolled solution

 \triangleright When ξ smooth, the solution to

$$\partial_t u = F(u)\xi, \qquad u(0) = u_0$$

is given by $u = \Phi(u_0, \xi, X \circ \xi)$ where

$$\Phi: \mathbb{R}^d \times \mathscr{C}^{\gamma-2} \times \mathscr{C}^{2\gamma-2} \to \mathscr{C}^{\gamma}$$

is continuous for any $\gamma > 2/3$ and $z = \Phi(u_0, \xi, \varphi)$ is given by

$$\begin{cases} z = F(z) \prec X + z^{\sharp} \\ \partial_t z^{\sharp} = (F'(z)F(z))\varphi - \underbrace{\mathcal{L}F(z) \prec X}_{\text{"e-"}\mathscr{C}^{2\gamma-2}} + \underbrace{R(F,z,X,\xi) \circ \xi}_{\in \mathscr{C}^{3\gamma-2}} \end{cases}$$

 \triangleright If $(\xi^n, X^n \circ \xi^n) \rightarrow (\xi, \eta)$ in $\mathscr{C}^{\gamma-2} \times \mathscr{C}^{2\gamma-2}$ and

$$\partial_t u^n = f(u^n)\xi^n, \qquad u(0) = u_0$$

then $u^n \to u = \Phi(u_0, \xi, \eta)$.

Relaxed form of the PDE

 \triangleright Note that in general we can have $\xi^{1,n} \to \xi$, $\xi^{2,n} \to \xi$ and

$$\lim_n X^{1,n} \circ \xi^{1,n} \neq \lim_n X^{2,n} \circ \xi^{2,n}$$

▷ Take ξ^n , ξ smooth but $\xi^n \to \xi$ in $\mathscr{C}^{\gamma-2}$. It can happen that

$$\lim_{n} X^{n} \circ \xi^{n} = X \circ \xi + \varphi \in \mathscr{C}^{2\gamma - 1}$$

In this case $u^n \to u$ and $u = \Phi(\xi, X \circ \xi + \varphi)$ solves the equation

$$\mathcal{L}u = F(u)\xi + F'(u)F(u)\varphi.$$

The limit procedure generates correction terms to the equation.

The original equation **relaxes** to another form in which additional terms are generated.

"Ito" form of the PDE

In the smooth setting $u = \Phi(\xi, X \circ \xi + \varphi)$ solves

$$\mathcal{L}u = F(u)\xi + F'(u)F(u)\varphi.$$

If we choose $\varphi = -X \circ \xi$ then

$$v = \Phi(\xi, X \circ \xi + \varphi) = \Phi(\xi, 0)$$

solves

$$\mathcal{L}v = F(v)\xi - F'(v)F(v)X \circ \xi$$

and has the particular property of being a continuous map of $\xi \in \mathscr{C}^{\gamma-2}$ alone.

The renormalization problem

If ξ is the space white noise we have

$$\xi \in \mathscr{C}^{-1-}, \qquad X \in C([0,T];\mathscr{C}^{1-})$$

and

$$X \circ \xi = X \circ \mathcal{L}X = \frac{1}{2}\mathcal{L}(X \circ X) + \frac{1}{2}(DX \circ DX)$$
$$= \frac{1}{2}\mathcal{L}(X \circ X) - (DX \prec DX) + \frac{1}{2}(DX)^{2}$$

But now

$$\frac{1}{2}(DX)^2 = c + C\mathcal{C}^{0-}$$

with $c = +\infty!$.

No obvious definition of $X \circ \xi$ can be given. But there exists c_{ε} such that

$$X_{\varepsilon} \circ \xi_{\varepsilon} - c_{\varepsilon} \to "X \diamond \xi" \quad \text{in } C\mathscr{C}^{0-}.$$

The renormalized gPAM

To cure the problem we add a suitable counterterm to the equation

$$\mathcal{L}u = f(u) \diamond \xi = f(u)\xi - c(f'(u)f(u))$$

this defines a new product, denoted by \diamond . Now

$$f(u) \circ \xi - c(f'(u)f(u)) = (f'(u)f(u))(X \circ \xi - c) + C(f'(u)f(u), X, \xi) + R(f, u, X) \circ \xi$$

▷ The renormalized gPAM is equivalent to the equation

$$\begin{split} \mathcal{L}u^{\sharp} &= -\mathcal{L}f(u) \prec X + \mathrm{D}f(u) \prec \mathrm{D}X + (f'(u)f(u))(X \circ \xi - c) \\ &\quad + C(f'(u)f(u), X, \xi) + R(f, u, X) \circ \xi \end{split}$$

together with $u = f(u) \prec X + u^{\sharp}$ and where

$$X \in \mathcal{C}^{1-}$$
, $X \diamond \xi = (X \circ \xi - c) \in \mathcal{C}^{0-}$, $u^{\sharp} \in \mathcal{C}^{2-}$.

Finally a theorem

Theorem

Let d=2, $\alpha=1$, $\gamma=1-$ and small T>0. There exist constants c_{ϵ} such that letting u_{ϵ} the solution to

$$\mathcal{L}u_{\varepsilon} = V_{\varepsilon}F(u_{\varepsilon}) - c_{\varepsilon}F'(u_{\varepsilon})$$

then $u_{\epsilon} \to u$ in \mathbb{C}^{γ} as $\epsilon \to 0$ and $u \in \mathscr{D}_{X}^{2\gamma}$ is the unique weak solution in $\mathscr{D}_{X}^{2\gamma}$ to the equation

$$\mathcal{L}u = \xi \diamond F(u) = F(u) \prec \xi + F'(u)(X \diamond \xi) + G(u^X, u^{\sharp}, X)$$

where

$$\xi = \lim_{\varepsilon \to 0} V_{\varepsilon}, \qquad X \diamond \xi = \lim_{\varepsilon \to 0} X_{\varepsilon} \circ V_{\varepsilon} - c_{\varepsilon}$$

in $\mathbb{C}^{\gamma-2}$ and $\mathbb{C}^{2\gamma-2}$ resp. and ξ has the law of the white noise on \mathbb{T}^2 .

Other applications

► Gubinelli, Imkeller, P. (2012): Multidimensional extension of Hairer's (2011) generalized Burgers equation ($\sigma - d/2 > 1/3$):

$$\partial_t u(t,x) = -(-\Delta)^{\sigma} u(t,x) + G(u(t,x)) D_x u(t,x) + \xi(t,x);$$

► Catellier, Chouk (2013): Stochastic quantization equation ϕ_3^4 (d = 3):

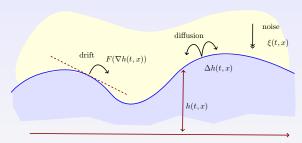
$$\mathcal{L}u(t,x) = -u(t,x)^{\diamond 3} + \xi(t,x);$$

► Furlan (2014): Stochastic Navier Stokes equation (d = 3):

$$\mathcal{L}u(t,x) = -P((u(t,x)\cdot\nabla)u(t,x)) + \xi(t,x).$$

Thanks

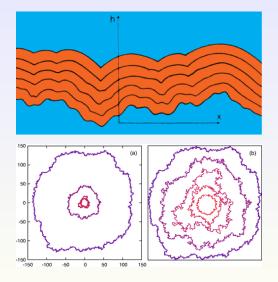
Fluctuations of a growing interface



A model for random interface growth (think e.g. expansion of colony of bacteria): $h: \mathbb{R}_+ \times \mathbb{R} \to \mathbb{R}$,

$$\eth_t h(t,x) = \underbrace{\kappa \Delta h(t,x)}_{\text{relaxation}} + \underbrace{F(\eth_x h(t,x))}_{\text{slope-dependent growth}} + \underbrace{\eta(t,x)}_{\text{noise with microscopic correlations}}$$

Fluctuations of a growing interface



The Kardar–Parisi–Zhang equation

► Kardar–Parisi–Zhang '84: slope-dependent growth given by $F(\partial_x h)$, in a certain scaling regime of small gradients:

$$F(\partial_x h) = F(0) + F'(0)\partial_x h + F''(0)(\partial_x h)^2 + \dots$$

► KPZ equation is the universal model for random interface growth

$$\eth_t h(t,x) = \underbrace{\kappa \Delta h(t,x)}_{\text{relaxation}} + \underbrace{\lambda [(\eth_x h(t,x))^2 - \infty]}_{\text{renormalized growth}} + \underbrace{\xi(t,x)}_{\text{space-time white noise}}$$

- This derivation is highly problematic since $\partial_x h$ is a distribution. But: Hairer, Quastel (2014, unpublished) justify it rigorously via scaling of smooth models and small gradients.
- KPZ equation is suspected to be universal scaling limit for random interface growth models, random polymers, and many particle systems;
- ▶ contrary to Brownian setting: KPZ has fluctuations of order $t^{1/3}$; large time limit distribution of $t^{-1/3}h(t,t^{2/3}x)$ is expected to be universal in a sense comparable only to the Gaussian distribution.

KPZ and its siblings:

KPZ equation:

$$\mathcal{L}h(t,x) = "(\partial_x h(t,x))^2 - \infty" + \xi(t,x);$$

 $h: \mathbb{R}_+ \times \mathbb{R} \to \mathbb{R}$, $\mathcal{L} = \partial_t - \Delta$ heat operator, ξ space-time white noise;

Burgers equation:

$$\mathcal{L}u(t,x) = "\partial_x(u(t,x)^2)" + \partial_x\xi(t,x);$$

solution is (formally) given by derivative of the KPZ equation: $u = \partial_x h$;

▶ solution to KPZ (formally) given by Cole-Hopf transform of the stochastic heat equation: h = log w, where w solves

$$\mathcal{L}w(t,x) = "w(t,x) \diamond \xi(t,x)".$$

All three are universal objects, that are expected to be scaling limits of a wide range of particle systems.

Stochastic Burgers equation

Take u = Dh

$$\mathcal{L}u = D\xi + Du^2$$

to obtain the stochastic Burgers equation (SBE) with additive noise.

 \triangleright **Invariant measure:** Formally the SBE leaves invariant the space white noise: if u_0 has a Gaussian distribution with covariance $\mathbb{E}[u_0(x)u_0(y)] = \delta(x-y)$ then for all $t \ge 0$ the random function $u(t,\cdot)$ has a Gaussian law with the same covariance.

 \triangleright **First order approximation:** Let X(t,x) be the solution of the linear equation

$$\partial_t X(t,x) = \partial_x^2 X(t,x) + \partial_x \xi(t,x), \qquad x \in \mathbb{T}, t \geqslant 0$$

X is a stationary Gaussian process with covariance

$$\mathbb{E}[X(t,x)X(s,y)] = p_{|t-s|}(x-y).$$

Almost surely $X(t,\cdot) \in \mathscr{C}^{\gamma}$ for any $\gamma < -1/2$ and any $t \in \mathbb{R}$. For any $t \in \mathbb{R}$ $X(t,\cdot)$ has the law of the white noise over \mathbb{T} .

Expansion for the SBE

Recall the SBE:

$$\mathcal{L}u = Du^2 + \xi$$

 \triangleright Let $u = X + u_1$ then

$$\mathcal{L}u_1 = \mathfrak{d}_x(u_1 + X)^2 = \underbrace{\mathfrak{d}_x X^2}_{-2-} + 2\mathfrak{d}_x(u_1 X) + \mathfrak{d}_x u_1^2$$

 \triangleright Let X^{V} be the solution to

$$\mathcal{L}X^{\mathbf{V}} = \partial_x X^2 \qquad \Rightarrow \qquad X^{\mathbf{V}} \in \mathscr{C}^{0-}$$

and decompose further $u_1 = X^{\mathbf{V}} + u_2$. Then

$$\mathcal{L}u_2 = \underbrace{2\vartheta_x(X^{\mathbf{V}}X)}_{-3/2-} + 2\vartheta_x(u_2X) + \underbrace{\vartheta_x(X^{\mathbf{V}}X^{\mathbf{V}})}_{-1-} + 2\vartheta_x(u_2X^{\mathbf{V}}) + \vartheta_x(u_2)^2$$

$$\triangleright$$
 Define $\mathcal{L}X^{\mathbf{V}} = 2\partial_x(X^{\mathbf{V}}X)$ and $u_2 = X^{\mathbf{V}} + u_3$ then $X^{\mathbf{V}} \in \mathcal{C}^{1/2-}$

$$\mathcal{L}u_3 = \underbrace{2\vartheta_x(u_3X)}_{-3/2-} + \underbrace{2\vartheta_x(X^{\mathbf{V}}X)}_{-3/2-} + \underbrace{\vartheta_x(X^{\mathbf{V}}X^{\mathbf{V}})}_{-1-} + 2\vartheta_x(u_2X^{\mathbf{V}}) + \vartheta_x(u_2)^2$$

Expansion /II

▶ The partial expansion for the solution reads

$$u = X + X^{\mathbf{v}} + 2X^{\mathbf{v}} + U$$

$$\mathcal{L}U = 2\partial_x(UX) + 2\partial_x(X^{\mathbf{v}}X) + \partial_x(X^{\mathbf{v}}X^{\mathbf{v}}) + 2\partial_x((2X^{\mathbf{v}} + U)X^{\mathbf{v}}) + \partial_x(2X^{\mathbf{v}} + U)^2$$

$$= 2\partial_x(UX) + \mathcal{L}(2X^{\mathbf{v}} + X^{\mathbf{v}}) + 2\partial_x((2X^{\mathbf{v}} + U)X^{\mathbf{v}}) + \partial_x(2X^{\mathbf{v}} + U)^2$$

and the regularities for the driving terms

X	ΧV	X V	$X^{V_{\bullet}}$	XW
-1/2-	0-	1/2-	1/2-	1-

We can assume $U \in \mathcal{C}^{1/2-}$ so that the terms

$$2\partial_x((2X^{\mathbf{V}}+U)X^{\mathbf{V}}) + \partial_x(2X^{\mathbf{V}}+U)^2$$

are well defined.

The remaining problem is to deal with $2\partial_x(UX)$.

Paracontrolled ansatz for SBE

▶ Make the following ansatz $U = U' \prec Q + U^{\sharp}$. Then

$$\mathcal{L}U = \mathcal{L}U' \prec Q + U' \prec \mathcal{L}Q - \partial_x U' \prec \partial_x Q + LU^{\sharp}$$

while

$$\mathcal{L}U = 2\partial_x(UX) + \underbrace{\mathcal{L}(2X^{\mathbf{V}} + X^{\mathbf{V}}) + 2\partial_x((2X^{\mathbf{V}} + U)X^{\mathbf{V}}) + \partial_x(2X^{\mathbf{V}} + U)^2}_{R(U)}$$

$$= 2\partial_x(U \prec X) + 2\partial_x(U \circ X) + 2\partial_x(U \succ X) + R(U)$$

$$= 2(U \prec \partial_x X) + 2(\partial_x U \prec X) + 2\partial_x(U \circ X) + 2\partial_x(U \succ X) + R(U)$$

so we can set U' = 2U and $\mathcal{L}Q = \partial_x X$ and get the equation

$$\mathcal{L}U^{\sharp} = -\mathcal{L}U' \prec Q + \partial_{x}U' \prec \partial_{x}Q + 2(\partial_{x}U \prec X) + 2\partial_{x}(U \circ X) + 2\partial_{x}(U \succ X) + R(U)$$

 \triangleright Observe that $Q, U, U' \in \mathscr{C}^{1/2-}$ and we can assume that $U^{\sharp} \in \mathscr{C}^{1-}$.

Commutator

- ightharpoonup The difficulty is now concentrated in the resonant term $U \circ X$ which is not well defined.
- > The paracontrolled ansatz and the commutation lemma give

$$U\circ X=(2U\prec Q)\circ X+U^{\sharp}\circ X=2U(Q\circ X)+\underbrace{C(2U,Q,X)}_{1/2-}+\underbrace{U^{\sharp}\circ X}_{1/2-}$$

ightharpoonup A stochastic estimate shows that $Q \circ X \in \mathscr{C}^{0-}$

Paracontrolled solution to SBE

➤ The final system reads

$$u = X + X^{\mathbf{V}} + 2X^{\mathbf{V}} + U$$

$$U = U' \prec Q + U^{\sharp}, \qquad U' = 2X^{\mathbf{V}} + 2U$$

$$\mathcal{L}U^{\sharp} = 4\partial_x (U(Q \circ X)) + 4\partial_x C(U, Q, X) + 2\partial_x (U^{\sharp} \circ X) - 2\mathcal{L}U \prec Q$$

$$+2\partial_x U \prec \partial_x Q + 2(\partial_x U \prec X) + 2\partial_x (U \succ X) + R(U)$$

 \triangleright This equation has a (local in time) solution $U = \Phi(J(\xi))$ which is a continuous function of the data $J(\xi)$ given by a collection of multilinear functions of ξ :

$$J(\xi) = (X, X^{\mathbf{v}}, X^{\mathbf{v}}, X^{\mathbf{v}}, X^{\mathbf{v}}, X \circ Q)$$

Burgers equation and paracontrolled distributions

$$\mathcal{L}u(t,x) = \partial_x u^2(t,x) + \partial_x \xi(t,x), \qquad u(0) = u_0.$$

Paracontrolled Ansatz

$$u \in \mathcal{P}_{\text{rbe}}$$
 if $u = X + X^{\mathbf{V}} + 2X^{\mathbf{V}} + u^{Q}$ with

$$u^Q = u' \prec Q + u^{\sharp}.$$

- ▶ Paracontrolled structure: Can define u^2 continuously as long as $(Q \circ X) \in C([0,T], \mathcal{C}^{0-})$ is given (together with tree data $X, X^{V}, X^{V}, X^{V}, X^{V}$).
- ▶ Obtain local existence and uniqueness of paracontrolled solutions. Solution depends pathwise continuously on extended data $J(\xi) = (\xi, X, X^{V}, X^{V}, X^{V}, X^{V}, Q \circ X)$.

KPZ equation

KPZ equation:

$$\mathcal{L}h(t,x) = (\partial_x h(t,x))^2 + \xi(t,x), \qquad h(0) = h_0.$$

Expect $h(t) \in \mathcal{C}^{1/2-}$, so $\partial_x h(t) \in \mathcal{C}^{-1/2-}$ and $(\partial_x h(t))^2$ not defined. But: expand

$$u = Y + Y^{\mathsf{V}} + 2Y^{\mathsf{V}} + h^{\mathsf{P}},$$

where $\mathcal{L}Y = \xi$, $\mathcal{L}Y^{V} = \partial_{x}Y\partial_{x}Y$, ... In general: $\partial_{x}Y^{\tau} = X^{\tau}$. Make paracontrolled ansatz for h^{P} :

$$h^P = \pi_{<}(h', P) + h^{\sharp}$$

with $h' \in C([0,T], \mathscr{C}^{1/2-})$, $h^{\sharp} \in C([0,T], \mathscr{C}^{2-})$, $\mathcal{L}P = X$. Write $h \in \mathscr{P}_{kpz}$.

Can define $(\partial_x h(t))^2$ for $h \in \mathscr{P}_{kpz}$ and obtain local existence and uniqueness of solutions.

KPZ and Burgers equation

$$h \in \mathcal{P}_{\mathsf{kpz}}$$
 if
$$h = Y + Y^{\mathsf{V}} + 2Y^{\mathsf{V}} + h^P, \qquad h^P = h' \prec P + h^\sharp.$$
 $u \in \mathcal{P}_{\mathsf{rbe}}$ if
$$u = X + X^{\mathsf{V}} + 2X^{\mathsf{V}} + u^Q, \qquad u^Q = u' \prec Q + u^\sharp.$$

- ▶ If $h \in \mathscr{P}_{kpz}$, then $\partial_x h \in \mathscr{P}_{rbe}$.
- ▶ If *h* solves KPZ equation, then $u = \partial_x h$ solves Burgers equation with initial condition $u(0) = \partial_x h_0$.
- ▶ If $u \in \mathscr{P}_{\text{rbe}}$, then any solution h of $\mathcal{L}h = u^2 + \xi$ is in \mathscr{P}_{kpz} .
- ▶ If u solves Burgers equation with initial condition $u(0) = \partial_x h_0$, and h solves $\mathcal{L}h = u^2 + \xi$ with initial condition $h(0) = h_0$, then h solves KPZ equation.

KPZ and heat equation

Heat equation:

$$\mathcal{L}w(t,x) = w(t,x) \diamond \xi(t,x) = w(t,x)\xi(t,x) - w(t,x) \cdot \infty, \quad w(0) = w_0.$$

Paracontrolled ansatz: $w \in \mathcal{P}_{\text{rhe}}$ if

$$w = e^{Y+Y^{\mathsf{V}}+2Y^{\mathsf{V}}}w^{P}, \qquad w^{P} = \pi_{<}(w',P) + w^{\sharp}$$

(comes from Cole-Hopf transform).

▶ Slightly cheat to make sense of product $w \diamond \xi$ for $w \in \mathscr{P}_{\text{rhe}}$:

$$\begin{split} w \diamond \xi &= \mathcal{L}w - e^{Y + Y^{\mathbf{V}} + 2Y^{\mathbf{V}}} \left[\mathcal{L}w^p - [\mathcal{L}(Y^{\mathbf{V}} + Y^{\mathbf{V}}) + (\partial_x (Y + Y^{\mathbf{V}} + 2Y^{\mathbf{V}}))^2] w^p \right] \\ &+ 2e^{Y + Y^{\mathbf{V}} + 2Y^{\mathbf{V}}} \partial_x (Y + Y^{\mathbf{V}} + 2Y^{\mathbf{V}}) \partial_x w^p; \end{split}$$

(agrees with renormalized pointwise product $w \diamond \xi$ in smooth case and with Itô integral in white noise case, continuous in extended data).

- Obtain global existence and uniqueness of solutions.
- One-to-one correspondence between P_{kpz} and strictly positive elements of P_{rhe}.
- Any solution of KPZ gives solution of heat equation. Any strictly positive solution of heat equation gives solution of KPZ equation.

Para-modelled distributions

Let $\gamma > 0$ and (T, Π, Γ) regularity structure. Say f is para-modelled, $f \in \mathscr{P}^{\gamma}$, if there exists $f^{\pi} \in \mathscr{D}^{\gamma}$, with

$$f - \pi_{<}(f^{\pi}, \Pi) \in C^{\gamma}$$
.

Example: $\mathscr{R}f^{\pi} \in \mathscr{P}^{\gamma}$.

Consider rough path model, say

 $T = \operatorname{span}(\Xi, \mathscr{I}(\Xi)\Xi, \mathscr{I}(\mathscr{I}(\Xi)\Xi)\Xi, \mathbf{1}, \mathscr{I}(\Xi), \mathscr{I}(\mathscr{I}(\Xi)\Xi))$. Try to solve $\partial_t u = F(u)\xi$.

(Simplified) para-modelled ansatz: $u = \Re u^{\pi} = \pi_{<}(u^{\pi},\Pi) + u^{\sharp}$ with $u^{\pi} \in \mathscr{D}^{3\alpha}$. Equation for u^{\sharp} :

$$\partial_t u^{\sharp} = -\partial_t \pi_<(u^{\pi},\Pi) + F(u)\xi = \pi_<(u^{\pi},\mathsf{D}\Pi) - \pi_<(F(u^{\pi}) \star \xi^{\pi},\Pi) + \mathsf{smooth}.$$

To have $u^{\sharp} \in C^{3\alpha}$: choose expansion u^{π} so that all coefficients for terms of homogeneity $< 3\alpha - 1$ cancel. Obtain a priori bounds on $\|u^{\sharp}\|_{3\alpha}$ and then on $\|u^{\pi}\|_{\mathscr{D}^{3\alpha}}$. Thus at least local existence of solutions.

Stochastic Quantization

Stochastic quantization of $(\Phi^4)_3$: $\xi \in C^{-5/2-}$, $u \in C^{-1/2-}$, $u = u_1 + u_2 + u_{\geq 3}$. $\mathcal{L}u = \xi + \lambda(u^3 - 3c_1u - c_2u)$ $\mathcal{L}u_1 + \mathcal{L}u_{\geq 2} = \xi + \lambda(u_1^3 - 3c_1u_1) + 3\lambda(u_{\geq 2}(u_1^2 - c_1)) + 3\lambda(u_{\geq 2}^2u_1) + \lambda u_{\geq 2}^3 - \lambda c_2u_1$ $\triangleright \mathcal{L}u_1 = \xi \Rightarrow u_1 \in C^{-1/2-}, \mathcal{L}u_2 = \lambda(u_1^3 - 3c_1u_1) \Rightarrow u_2 \in C^{1/2-}$ $\mathcal{L}u_{\geqslant 3} = 3\lambda(u_{\geqslant 2}(u_1^2 - c_1)) + 3\lambda(u_2^2u_1) + 6\lambda(u_{\geqslant 3}u_2u_1) + 3\lambda(u_{\geqslant 3}^2u_1) + \lambda u_{\geqslant 2}^3 - \lambda c_2u$ \triangleright Ansatz: $u_{\ge 3} = 3\lambda u_{\ge 2} \prec X + u^{\sharp}$, with $\mathcal{L}X = (u_1^2 - c_1)$ $\mathcal{L}u^{\sharp} = -3\lambda \mathcal{L}u_{\geq 2} \prec X + 3\lambda Du_{\geq 2} \prec DX + 3\lambda (u_{\geq 2} \circ (u_1^2 - c_1) - c_2 u) + 3\lambda (u_{\geq 2} \succ (u_1^2 - c_1))$ $+3\lambda(u_2^2u_1)+6\lambda(u_{\geq 3}(u_2u_1))+3\lambda(u_{\geq 3}^2u_1)+\lambda u_{\geq 2}^3$ $u_{\geq 2} \circ (u_1^2 - c_1) - c_2 u = (u_2 \circ (u_1^2 - c_1) - c_2 u_1) + (u_{\geq 3} \circ (u_1^2 - c_1) - c_2 u_{\geq 2})$ $(u_{\geq 3} \circ (u_1^2 - c_1) - c_2 u_{\geq 2}) = (3\lambda(u_{\geq 2} \prec X) \circ (u_1^2 - c_1) - c_2 u_{\geq 2}) + u^{\sharp} \circ (u_1^2 - c_1)$ $=u_{\geq 0}(3\lambda(X\circ(u_1^2-c_1))-c_2)+3\lambda C(u_{\geq 2},X,(u_1^2-c_1))+u^{\sharp}\circ(u_1^2-c_1)$ ▷ Basic objects: $(u_1^2 - c_1)$, $(u_1^3 - 3c_1u_1)$, $(3\lambda(X \circ (u_1^2 - c_1)) - c_2)$, (u_2u_1) , $(u_2^2u_1)$

The Good, the Ugly and the Bad

Concrete example. Let *B* be a *d*-dimensional Brownian motion (or a regularisation B^{ε}) and φ a smooth function. Then $B \in \mathscr{C}^{\gamma}$ for $\gamma < 1/2$.

$$\varphi(B)DB = \underbrace{\varphi(B) \prec DB}_{\text{the Bad}} + \underbrace{\varphi(B) \circ DB}_{\text{the Ugly}} + \underbrace{\varphi(B) \succ DB}_{\text{the Good, } \mathscr{C}^{2\gamma - 1}}$$

and recall the paralinearization

$$\varphi(B) = \varphi'(B) \prec B + \mathscr{C}^{2\gamma}$$

Then

$$\varphi(B) \circ DB = (\varphi'(B) \prec B) \circ DB + \underbrace{\mathscr{C}^{2\gamma} \circ DB}_{OK}$$
$$= \varphi'(B)(B \circ DB) + \mathscr{C}^{3\gamma - 1}$$

Finally

$$\varphi(B)DB = \varphi(B) \prec DB + \varphi'(B) \underbrace{(B \circ DB)}_{\text{"Besov area"}} + \varphi(B) \succ DB + \mathscr{C}^{3\gamma - 1}$$

The Besov area

If d = 1 (or by symmetrization) we can perform an integration by parts to get

$$B \circ DB = \frac{1}{2}((B \circ DB) + (DB \circ B)) = \frac{1}{2}D(B \circ B)$$

which is well defined and belongs indeed to $\mathcal{C}^{2\gamma-1}$.

In general the Besov area $B \circ DB$ can be defined and studied efficiently using Gaussian arguments:

$$B^{\varepsilon} \circ DB^{\varepsilon} \to B \circ DB$$

almost surely in $\mathscr{C}_{loc}^{2\gamma-1}$ as $\varepsilon \to 0$.

Tools: Besov embeddings $L^p(\Omega; C^{\theta}) \to L^p(\Omega; \mathcal{B}_{p,p}^{\theta'}) \simeq \mathcal{B}_{p,p}^{\theta'}(L^p(\Omega))$, Gaussian hypercontractivity $L^p(\Omega) \to L^2(\Omega)$, explicit L^2 computations.