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Growth of one dimensional interfaces

o “Finite growth” 1e/:ég. icé. and water at 10°C; non—reversi!ale; 2‘; Mm&wm \A(:
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ations O(t'"); rescales to Gaussian limit. Well understood. e A

KIPNIS-OLLA-VARADHAN, ZHU, CHANG-YAU and many others.

« “Slow growth” e.g. ice and water at 0.1°C; “nearly” reversible,
fluctuations O(t'*), non-Gaussian; rescales to KPZ equa-
tion.




A simple asymmetric growth model

athé‘(t’ x) : aJZChé‘(t’ x) & gl/zF(ath( ts x)) 23 ’7( ta X), = 0’ xe ]Ra

noise

diffusion J,

N2

>n smooth Gaussian field with O(1) stationary correlations. F even polynomial.



Rescaling

> Scaling transformation he(t, x) = 2h(t] €2, x/ €).
dih,.=2h,+ e 'F(¢29.h,) + £,

> Noise &(t, x) = e7?n(t/ €%, x/ €) converges to space-time white noise &

E [(ff&(t x)o(t, x)dtdx)z] — ff((p(t, x))’dtdx  as e—0.

E[&(t, x)&(t,x)] = 6(2 - £)6(x - x)

> Nonlinearity (heuristics):

e F(eY29,h,) = £ 1F(0) + £ V2F (0)9,h, + F(0)(3,h.)? + O(e'?)



Hairer—Quastel weak universality

> Better heuristics: 9;X, = 32X, + £, and izgz X.vu, with u.eé
e F(eV23,h,) = e 1F (Y29, X,) + £ V2F (€129, X,)0,u. + F (€29, X,)(3,u.)? + O(e'/?)

Theorem. (HAIRER-QUASTEL 15) [Polynomial F, Gaussian n] 3(A, c, v, p) = A(F, n) such that the
random field

HJ(t,x) = h(t, x - pt) - (v/e+O)t,
converges in law in C([0, T], T) to H(t, x) solving
B )= llos ZlEx)y T 07 =071 x) A2\ o)Elt o)

(Hopf—Cole solution, the product Z¢ is understood according to Ito calculus).



Other interface growth models

> WASEP (Weakly asymmetric simple exclusion) Particles on Z moves independently, only
one particle per size; jump left with rate p, right with rate 1 - p.

For p=1/2 reversible dynamics, large scale gaussian fluctuations. For p=1/2 + ¢ rescales to
Hopf-Cole solution of KPZ (BERTINI-GIACOMIN, CMP 97)
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> Ginzburg-Landau V¢ interface model. Interacting Brownian motions on Z
dx'=(pV'(r'*)-(1-p)V'(r'))dt+dB, i€Z, r'=x'-x"1

For p=1/2 reversible dynamics. large scale gaussian fluctuations.

For p=1/2+ ¢, rescales to the Hopf-Cole solution of the KPZ equation (DiEHL-G.-PERKOWSKI CMP16)



KPZ equation

Formally, H solves the Kardar-Parisi—Zhang equation:

A:H(t,x)=d2H(t,x) - A[(H(t, x))2 - 00] + £(t,x), t=0,x€T.

Problem: Not well posed. H € C([0, T]; CY*"%(T)). (co coming from Ito correction)

> HAIRER (Ann.Math. 13). Solution theory for the KPZ based on rough paths (LYONS)

> GONCALVES-JARA (10, ARMA 13). Solution theory for KPZ based on martingale problem.
Refined martingale problem (G.-JARA, SPDE/AC 13). Uniqueness (G.—PERKOWSKI, JAMS 18)

> HAIRER (Inv.Math. 14), G.-PERKOWSKI (CMP 17) solutions theories based on regularity struc-
tures and paracontrolled distributions.



Renormalization group picture
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Non-gaussian fluctuations in three dimensions

> Scalar fields in d =3 dimensions can be used to describe (mesoscopic) magnetization in ferro-
magnetic system or (Euclidean) scalar quantum fields in 2 + 1 dimensions.

> We look for “universal” non-Gaussian models for scalar fluctuations in three-dimensions by
perturbing a Gaussian model (as we did for the KPZ equation)

> A natural family I'(1) of centered Gaussian models has covariance
EX()X(y)]=@-8)"(xy), xyeR’

> Under rescaling R, which fixes I'(0) the parameter i grows: R.I'(1) =T'(¢ 1), leading to the high
temperature fixpoint ;1 — oo, where correlations are absent in the macroscopic scale.



Dynamical model

> Promote X(x) to a time dependent random field satisfying the Langevin equation
9:X(t, x)=—-(u-A)X(t,x) + &(t, x).

New key ingredient: the space-time white noise &, a universal source of randomness. The orig-
inal field X(x) is the invariant measure of the dynamics.

> Nonlinear perturbation: introduce the family of dynamic Ginzburg-Landau models DGL(F, n)
of the form

9up(t, x) = Ag(t, x) = F(o(t, x)) + (£, x)

where 7 is a smooth Gaussian noise with finite range correlations. A model for noisy reaction-
diffusion system.



> Scaling transformation R, (we want to keep diffusion and noise nontrivial):
odti=c olticixle), - ni = n s )
> Equation for R,DGL(F, ) = DGL(¢ 2F(¢'2-), n,)
310e= Ao~ e 52F (20 + 11,
> If F(¢)=a ¢+ asp’+- then
5—5/2F(€1/2%) o g—zaqu g‘1a3g03 i 50a5(p5 o £1a7cp7+

> Two relevant directions: associated to ¢ and ¢°:
« ¢ points towards the high temperature (Gaussian) limit

. ¢ points in a new (non-Gaussian) direction



Weak-universality for reaction-diffusion equations

Consider

30t x) = A@(t,x)=-F (e o t,x) + nt,x), t€[0,T],xeT’.

Theorem 1. (FURLAN, G. PTRF 2018) There exists a map A:(F,n) — A= (g, A1, A2, A3) ER* such

that if (F.):< Coxp, and A(F,, ) — A€R* then 9. — ¢ in C([0, T]; 5'(T°)) in probability. Here ¢
is the solution of the ®3 dynamical model:

Aup(t, ) = At x) = = A3(¢” = 00) = Ay = 00) = L1 = Ag + £(2, ).

In particular, the law of ¢ depends only on A and not on other details of 1 or F and is not Gaussian.
(If F; odd, then A,=1¢=0).

[Other results by HAIRER, XU (2018/2019), XU, SHEN (2017)]



Euclidean Quantum Field theories

Link between probability measures on distributions and relativistic quantum mechanical systems

x€RY, Ox= O ) R% = {xE]Rd: x420}. G Euclidean group of R¢ together with reflec-
tion 0. f8(x)= f(g ' x) for g€G.

> 11 probability measure on 5'(R% and S(f) = f ir d)ei")(f),u(dq)) satisfying
1. Euclidean invariance: S(f&)=S(f) for all g€ G.
2. Reflection positivity: Y(f, € 5(R%)),, the matrix (S(f, - fﬁe))a, p is positive definite.

3. Exponential bounds: for some k and some norm |-[: [S(f)| < el for all FESRYQ).

Osterwalder-Schrader reconstruction: Then 3 a relativistic quantum theory on an Hilbert
space H equipped with a unitary representation of the Poincaré group. Hamiltonian is posi-
tive and has a Poincaré invariant vacuuum vector. [see GLIMM, JAFFE “Quantum Physics”]



Euclidean ®5 model

Measures that satisfy all these properties are rare.

When d =3 we know only the Gaussian free field ;, namely the Gaussian measure with covari-
ance

[ DD =L 1= )T, F.gE SR
and the ®5 measure, formally given by

exp(-A| . (¢*/4-o0p?/2)dx
-2 el 2

(BRYDGES, FEDERBUSH, FROLICH, GLIMM, GUERRA, JAFFE, GALLAVOTTI, MITTER, NELSON, RIVASSEAU, ROSEN, SIMON,
SPENCER, and many others, '70-'80)



> Rigorously this measure can be constructed on a bounded domain A <R’ and with an ultra-
violet cutoff ¢ and a mass counterterm a,

exp(-A| (pi/4- apz/2)dx)
v(dp) = Js 7 p(de)

where ¢.=p.* ¢ and p(x) = e >p(x/¢) with smooth regularizer p.

Main problem: control the limit as ¢ — 0 of v.. We expect v p.

> Under y we have € C"V?"* almost surely.



Stochastic analysis

Ito and Dceeblin wanted to study diffusion processes via their sample paths

Measures Samples
(1) TI(S) X:0-5C(R,,S)
1dy) = f P, (%, dy)u(d) dX 200} )d; - dn.

lower dimensional problem

more tools (e.g. fixpoint theorems)

more intuition

canonical reference object (B,),
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Stochastic quantisation

Relation between a stochastic differential
equation and a probability measure
(broadly speaking)

> Nelson and Parisi-Wu ('84) advocated the constructive use of stochastic partial differential
equations (SPDEs) to realize a given Gibbs measure for the use of Euclidean quantum field

theory (in particular gauge theories)

> Theoretical version of MCMC methods



(Parabolic) stochastic quantisation

A =finite set, T¢ R

equation 0:(t) = 5V(€fb( ) +V2E(t), R, x A—R
e V(@)
measure d(t)~ v(de) = = dp€Prob(A—R)

> The measure v is described via white noise

> Markov process, invariant measures, ergodicity



Dynamic &

A
V(p)= fgIprl2 T

d:p=NAp-AN@>-c0p)-m?p+y2&E R’xR,

(d=2) Jona-Lasinio, P.K.Mitter ('85) Borkar, Chari, S.K.Mitter ('88) Albeverio, Rockner ('91) Da Prato, Debussche ('03)
Mourrat, Weber ('17) Tsatsoulis, Weber ('16) Rockner, R.Zhu, X.Zhu ('17)

> d =3 is more singular: regularity structures (Hairer), paracontrolled distributions (G. Imkeller,
Perkowski)

(HAIRER Inv.Math 14) Local solution theory based on regularity structures. (CATELLIER-CHOUK 15, AOP18) Local solu-
tion theory based on paracontrolled distributions (G.-IMKELLER-PERKOWSKI F.Math.IT 15). Renormalization group

approach (Kupiainen, ATHP15)



Recent developments

> Global space-time solutions in R* (MOURRAT-WEBER CMP17)
> Ergodicity for dynamical ®; (ROCKNER-ZHU-ZHU CMP17)

> Convergence of lattice discretizations (T°) (HAIRER—-MATETSKI). Complete proof of invariance
of ®3 wrt. the dynamics.

> Global solution in time on T° (MOURRAT-WEBER CMP17). Coming down from infinity.
> Tightness for the ®; measure via dynamics (ALBEVERIO—KUSUOKA 18)

> Global space-time solutions in R’ for parabolic equations and global solutions to elliptic
equations in R* R® related to the ®3, ;5 measures via (conjectured) dimensional reduction.
(G.-HOFMANOVA 18).



A PDE construction of ®3
Reflection positivity + Euclidean invariance = singularities, infinite volume limit

G., HOFMANOVA ('18) — construction of ®3 on R’ via stochastic quantisation and verification of

(most of) the axioms.

’
\
N\

apriori estimates

SPDE .
|l = F(lgl)

p=2(&)

A

measure v=Law(¢)

> Much like Ito's approach to diffusions / Markovianity does not play any role

> Mix of: analysis of (low regularity) PDEs in weighted spaces, paradifferential calculus, sto-
chastic analysis of multilinear Gaussian functionals, convergence of finite element methods.



Varieties of stochastic quantisation: canonical stochastic quantisation

' _SH((). )
at¢(t) = 5¢ |
equation 1 a(t) = —%{;’qﬁ(t» —yd(1)+VZE(L), ¢, ¢:RxA—R
NG linear Langevin
N, dymami
H(p, ¢):=V(g) +L¢?
(@, 0):=V(p)+5¢
3 e_H((p’(p)
L hels (¢(2), (1)) ~ v(dpd §) = ———dpd p € Prob(A — R7)

> Introduced by Ryang, Saito and Shigemoto ('85).



Singular stochastic wave equations
For @3, i =l 3
0 A
Vig)= f Vol*+ ¢’ + 70"
O p=Ad+(m*-o0)p+ ¢’ - ydup+ V2§,

Problem: no Schauder estimates, scaling arguments less clear.

Conjecture: same renormalization constants of the static measure!

> d =1. Tolomeo ('18) unique ergodicity.

> d =2. G, Koch, Oh ('18) local well-posedness (any polynomial), G, Koch, Oh, Tolomeo (in preparation) global well-
posedness.

> d =3. G, Koch, Oh ('18) only quadratic nonlinearity.



Elliptic stochastic quantisation

equation IOz — 5V(q;(z)) Ez), " RECA—R
e—47rV((p)
measure d(z)~ v(do) = > dp€Prob(A—R)

Discovered perturbatively by Imry, Ma ('75), Young ('77). Non—perturbative “proof” by Parisi
and Sourlas ('79-'82) using supersymmetry

ERRL A S ISUSYEOE > (measure),

“Girsanov” dimensional reduction




Gaussian case

V(g)=gm*p’ Aplz)=-mPpl(z)+E(z).  zER?

eik-z U(dk)
(p(z)—fJRd|k|2+m2 27

Sine dk 1
A B e <p+1>2 e

0(0)~ e T dg~ e VD



Rigorous results
> Rigorous proof of dimensional reduction by KLEIN, LANDAU AND PEREZ ('84)

> Recently complete proof by ALBEVERIO, G. AND DE VECCHI (AOP '18). First for A finite dimen-
sional + technical conditions. Then extended to (some) renormalized EQFT.

Stochastic quantisation of Liouville action up to the critical value of o*<8r in A =T*

i 1 2 op—o’co
V(o)= [ 5IValt+ae
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