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FEuclidean QFT in R* 2/35

There exists a family (V7)o of probability measures on S'(R®) which are non-
Gaussian, Euclidean tnvariant and reflection positive.

> Reflection (or Osterwalder—Schrader) positivity : (6f)(zo, z1,Z2) = f(—20, 1, Z2)
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> Buclidean invariance and reflection positivity are key properties for the Euclidean
approach to constructive quantum field theory, i.e. prove the existence of certain math-
emaical objects describing the quantum physics of relativistic particles (here in 2 + 1
dimensions).

> Schwinger functions:

Sfie-o k)= [ elh)-e( )



Osterwalder—Schrader axioms (1975)

0s0. (Distribution property) Norm ||-||s on S’(R3) and 8 >0

S =8 e @ B e im0 e SR
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OS1. (Euclidean invariance) (a, R). fo(z) = fn(a+ Rz), (a, R) € R® x O(3)
Sl R o b e

0s2. (Reflection positivity) (f, € Sc(IR2"))nen, (With finitely many nonzero elements)

Z Sn—i—m(gﬁ@f‘m))()a

n,m¢eENg

0S3. (Symmetry) Vr permutation of n elements

Sn(f1® - ® fn) = Sn (fr(1) ® -+ ® fr(n))-



The &3 measure 4/35

> The ®% measure v3 on A C R? with )\ >0 is given by the formal prescription

—AV(9)

A8 =S5 —u(dd), V(9= [ #e)de

where 4 is the Gaussian measure on S'(A) with covariance (u? — A)~1

> The measure u is only supported on distributions of regularity —1/2 — k, therefore
the potential V' is not well defined = need for renormalization.

> Regularization ¢+ = pr* ¢ with pr— 6 as T— oo and introduction of counterterms

3 eV TPr) 4 2
Arldd)=——u(ds),  Vr(9)= /A (6*— ard® —br)dz > —Cr> —co.

Problem: Control the limit 77 — oo and A — R? of the family (Vj){,T) AT, describe

the limiting object, prove the properties needed for applications to QFT (e.g. Oster-
walder—Schrader axioms).



A long history

> Constructive QFT. ("70-’80) Glimm, Jaffe. Nelson. Segal. Guerra, Rosen, Simon...
> (®35)s Glimm (’69). Glimm, Jaffe. Feldman (’74), Y.M.Park (’75)
> (®5)R: Feldman, Osterwalder (’76). Magnen, Senéor ('76). Seiler, Simon (’76)

> Other constructions. Benfatto, Cassandro, Gallavotti, Nicolo, Olivieri, Presutti, Scac-
ciatelli ('80) Brydges, Frohlich, Sokal (’83) Battle, Federbush (’83) Williamson (’87)
Balaban (’83) Gawedzki, Kupiainen (’85) Watson (’89) Brydges, Dimock, Hurd ('95)

> Stochastic quantisation (d=2). Jona-Lasinio, P.K.Mitter (’85) Borkar, Chari,
S.K.Mitter (’88) Albeverio, Rockner (’91) Da Prato, Debussche (’03) Mourrat, Weber
(’'17) Rockner, R.Zhu, X.Zhu (’17)

> Stochastic quantisation (d=3). Hairer ('14) Kupiainen (’16) Catellier, Chouk (’17)
Mourrat, Weber (’17) Hairer, Mattingly (’18) R.Zhu, X.Zhu (’18) G, Hofmanova (’18)



“Not only should one give a transparent proof of the dimension d = 3
construction, but as explained to me by Gelfand, one should make it suffi-

ciently attractive that probabilists will take cognizance of the existence of
a wonderful mathematical object.”

(A. Jaffe, 2008)



One



Stochastic quantisation 8/35

Aim: construct the measure v, take the A — R® limit and prove OS axioms via dynamzics
Lattice approximation: A, =€Z%, Ay . =€eZ*N[-M /2, M /2)<.

> Langevin dynamics: ¢, = @(t,z), t >0, 2 € Aps e,

QbM,s s (m2 = A)QDM,E Sis AQO%J,E =k (_3>\G'M,e = 3>\2bM,s)()0M,s == fM,sa

(€m,e(t,T))t>0,2en,, . collection of (time) white noises.
> Invariant measure (reflection positive, invariant under lattice translation)

A
—e 7 p gy (IVepPHraeloP+510%)

e
Vir,e(dp) = 7 [] de(z).
= mGAM,e

TM,e= m? — 3)\(1,]\/_[’5 =F 3)\21)]\/1’5

> Prove results about I/f\‘/f,e when M — o0, — 0 from uniform estimates on the PDE.

(Albeverio, Kusuoka (’18) in finite volume)



Energy method 9/35

> From the PDE (ignoring renormalization)

dlle(®)|Z2+ (m?|l@()]|Z2 + IV (B)lZ2 + Alle(t)l|ze)dt = ((2), £(dt)) + Cdt.

> Stationarity gives estimates for the invariant measure:

E(m?||(t)]Z2 + Ve ®)lZ2 + Alle()]|z4) = C-

> Too naive: C is not uniform in €, M. ¢ ¢ L? under v”.



Paradifferential calculus 10/35

> Littlewood—Paley decomposition

A o

el T

with supp(FA;f) C2°A4, i >0.

> Paraproducts (Bony, Meyer)

fo——r=—l fAgEE e A g Ny

=00 F o

> “Better than products™ f < g is always well defined.

> Resonant product fo g well defined only if positive sum of regularities.



Paradifferential analysis of the problem 11/35

> @ be a stationary solution to

(8 — A +m?)p+ (—3a+3b)p+ p>=¢ on Ry xXAup,

> Ansatz o = X + 1 where (6;— A.+m?) X = (stationary) gives
S~~~ ~—
—1/2—k _p/2_
(8s— Ac+m?)n+3bp + [X%] +3n[X?] +37° +7°=0
S~~~ S~~~ _1/5_
—3/2—k —1-k [2=K

e Instead of removing X Y where (8 — A +m?)X A [X7]
e Let Y solve (6; — A, +m?)Y = —[X®] - 3(A~.[X?]) = Y (via fixed point)
o Definep=X+Y + ¢ to have

(8 — A +m?)p+ ¢* = —3[X?] = ¢ — 3[X?] o ¢ + better (after renormalization)



Energy method 12/35

SOB12ac+ [ Bl30c+ (8, (2 —A) ¢ ).
—~—

1—k

—(¢p, —3[X?] =~ ¢)e + (¢, —3[X?] 0 ¢). + (b, better (after renormalization)),
—_—— —~—

—1—k —1—k

> approrimate duality
<¢7 _3HX2H e ¢>6 = <_3[[X2H = ¢7 ¢>E ::D(¢7 _3[[X2ﬂ7 ¢)

bounded if the sum of the regularities of ¢, —3[X?], ¢ positive!

> combine with the Laplace term
(¢,(m®— Ac)p+2:3[X7] - ¢).
> complete the square using elliptic paracontrolled Ansatz (1 is more regular than ¢)

(m?— AP :=(m?— Ao+ 3[X?%] - ¢



Weighted energy estimates

e include a polynomial weight p(z)=(1+ |z|?)~%/2 € L* (= test by p*¢ instead of ¢)

e denote Xy .= (X e, [[X?\/_,,e]], XE,E, .

e uniformly in M, e:

2
L2,e

L2+ [1P?Vehs el

1
50 0°ba ellz2e + 11 pbas el e + | 0% bt el Frr-2ee + [ 0*P0s e

S([logt|+1)Qp(X,e).

e the resonant product [X?2] o ¢ not controlled; [X?2] o also not

e analogy with PDE weak solutions (equation interpreted in a suitable duality sense)



Tightness

> Recall
® VM e=Xme+Ym e+ b e 1s stationary with law vy, .
e X . stationary, Yy, . not stationary = ¢ . not stationary

> Alternative stationary decomposition

QDM,e:XM,s_"XE,e‘F CM,e

e The family of joint laws of (Y, X ) evaluated at some t >0 s tight.

o Any limit measure i satisfies for all p € [1,00)
,U«H()OHH 1/2— 2K(p2)+EMHCHL2(p2)+E#H<H?—I1_2"(p2)+EMHCH%2’M(p)<OO‘

o Law,(¢:) s Non-Gaussian, OS positive, translation invariant (missing rota-
tions).



Integration by parts formula 15/35

1 m2—3aM,s—|‘3bM,g 1
va,e(dp) ccexpq —2¢% ) [§|V590|2+ 5 oP+4lel* o [] delz)
mE-AM,e

AM,e

e F a cylinder functional on S'(Anc): F(¢)=®(w(f1),..., ¢(frn))

e (finite dimensional) integration by parts gives

[ PF(@)ae.(d0)=2 [ F(@)6* + (~3a1s,c + 3020, + (m2 = A pluns (o)

To pass to the limit:

e use the stationary decomposition o =X + X\V + ¢
e (° is problematic
o [X?]o¢ - not well-defined based on the energy estimates so far
o If pis the Gaussian free field then [p°] exists only as an Hida distribution

o [X?] is a space-time distribution



¢> as an “Hida” distribution

e Let 'R — R smooth with supph CRy and [ hdt=1

o Let [¢®]:= ¢+ (—3anr e+ 3bu )y we get

/F((p)[[(ps]]VM,s(d(p):E[F((pM,s(t))[[(P?\/I,e(t)m _E[/]Rh(t)F((PM,s(t))[[(P?\/I,e(t)]] dt]

| DF@)(de) =2 [ F(o)l(m? - 2)glu(de) + 2J(F),
1(F)i=E| [ hOF@@ILI0 | =" [ Feo)leIar)
[03] = [X%] +3[X%] = (=X | +¢) +3[X2] < (=X | +¢)+ -

> operator product expansion, Schwinger—-Dyson equations



'T'wo



Wilson’s continuous renormalization group

> Regularization ¢7 = pr* ¢ with pr— 6§ as T'— oo:

= e—)\VT(¢T) 7 5
Ar(@9) =S —ude),  Va(#)= [ (4~ oz ~br)de>~Cr> .

> As T'— oo fluctuations at different scales adds up independently into (¢7)7.

> Wilson (’83) Polchinski ('84) Brydges, Kennedy (’87) Brydges, Dimock, Hurd (’95)
Brydges, Slade, P.K.Mitter (’14)

> Aim. Present a new proof of existence of the limit v+— v at fixed A and a description
of the limit measure v as a variational problem via a stochastic approach



Boué-Dupuis formula

IP, 2 Wiener measure, X canonical process.

(Boué-Dupuis) We have the variational representation

—log E[e F(X)] = inf E[F(X—l—/ usds)—i—l/ |us|2ds].
ucH, 0 2 0

> Control problem (non—Markovian in general). Useful to get estimates and large devi-
ations.

> The controlled process X + | (')usds features explicitly the “free” part X and more
regular drift part, similar to solutions to SDEs.

> Boué-Dupuis (’98), X. Zhang (’09), Lehec ('13), Ustiinel (’14).



An example 20/35

Let F(X) >0 be Lipshitz, i.e.

i}
F(X + I(w)) = F(X)| < D)l o, < L / b

Then

o0

logE[eAF(X)]:SupEP[AF(X+I(u))_%/ |u3|2d3]
U 0

1 o0
<EP[AF(X)+)\L ||I(’U,)HL00—§/ |us|2d3]
0

1
<EsAF(X) + [ (2ALJul - fus[?)ds] S Be[AF(X)] - gXL2
0

N 7

g
<—2a2L2

We conclude that F' has Gaussian tails. The only additional information needed is
Ep[|F(X)|] < +00. L can be random, i.e. L= L(X).



Enters “time” 21/35

> Fix A ="T?". Let X be a cylindrical Brownian motion on L?(A) and

= /O t"Z](DI;)dXS, /0 D )

with D=|—A|Y/2 (D)= (14 D?)'/2, py(D)=p(D/t) and p: R, — R, smooth, compactly
supported and with p(0)=1. Then

TAS <a£§) 7, "gg>g>ds = <f, : T?S§E)29>’

Ep[Ya(f)Ys(g)] = /

0

e Y, is a Gaussian free field (massive)

o Yo~ prxYor~ pr¥ @

e (Y}); is a martingale



Variational problem for the pressure 22/35

Boué—Dupuis formula:

(0. 0]

—log Zr = —log IE[e_)‘VT(YT(X))] — inf IEP[)\VT(YT + Z7) + %/
0

Husl\%zds]
u€eH,

with

YT—/OTUS(D)dXS, Zy=Ii(u) :—/Otaz]g;)usds.

> Regularity estimate

sup [|Z(v)[F: S | llwsllZ=ds.
ST 0



Two dimensions

> When d =2 we can choose the renomalization constants such that

1 (0. 0]
Or(u) = AVi(Yr+ Zr) + 5 /0 2l 2ds = Tn(ts) + B(w)

Tr(u):= A /A [Y7]* 44X A [Y7] Zr + 6X A [YZ]Z% + 4 /A [Y7] Z3

4 = 2
@T(’U,) = )\/AZT—|-§/O H’U,SHde.S

good terms

where [V] are Wick polynomials of the (smooth) Gaussian field (Y7)r. In particular
T — [Y#] is a martingale.

> Standard estimates show that [Y£] € C([0,00],C*(A)) almost surely with L?(IP) norms

for all p > 1 and K < 0. Here C*(A) = B, (/) are Holder-Besov spaces of regularity
a € R.



Apriori estimates 24/35

Now the game is to control the terms without sign with the good terms. Let W= Yr.

e
\M / (Wl Zz| < AWl - ]| 2| 22 < C8, DN [WE s + 6 / T
0
) 2 Cz)‘3 2 4 2 4
o [ W13 | < s [WRly-e+ 8 (|22l + Xl 22l
‘4>\/AWTZ§’~ <CE(A)\|WT||VKV_1/2_e,p+5(||ZT|\§V1,2+A|\ZT||§4)
Therefore

—Kr+(1-0)%7(u) <E[Yr(u)+ Ir(vw)] < Kr+ (14 6)Pr(u),

which implies

sup |log Zr| =sup| inf Ep[¥r(u)+ dr(u)]| SO(N?).
T T lu€cH,



Three dimensions 25/35

> In three dimensions W, is more irregular and as a consequence we get uniform esti-
mates for the Wick powers only in the following spaces

HWT]] = C—1/2—K,, HW'IZ’]] & C—l—K,’

and [IW7] does not even converge as a distribution.

> As a consequence we cannot hope to control the term [, [W£]Zr,and [ = [W3]Z% as
we did in two dimensions. We only have control of Z in H! and L*.

> By perturbative considerations one expects further divergences (beyond Wick ordering)
therefore the functional to minimize is now

E[,\/W%ZT+5/W%Z%+4A/ WTZ%]
A 2/ A

1 5
—E[27T WTZT+7T/Z%]+1E[,\/Z%+—/ |usy\%2ds].
A A A 2 0

where we introduced the convenient notations: W7 := 4[W;’], W7 := 12][W7].



A change of variables 26/35

> We aim to “complete the square” in order to eliminate the terms which we cannot
control. So we control the system which a drift of the form

g = —AJ(W2+ W2 - Z,) +w,s
Zo=Jolly= AW L TW2- Z.)F K,

where w is a free control and J; = (D) lo4(D).
> Paraproducts. fg=f<g+ fog+ f > g. (Bony, Meyer (’80))
> The cost of such a drift is

1 T 22 T
5 lusl®ds ==~ (Jo(W2 + W2 > Z,))%ds
2Jo e

T : T
—)\/ /(W3+W3> Zs)sts—I—l/ |ws||ds
0 JaA 2Jo



Mixed terms 27/35

> Integration by parts in the time variable allows to transform the mixed terms in this
cost to

T .
—,\/ / (W2 + W2~ Z,)Z,ds = —,\/ (W2 + W3 > Z7p) Zp
0 JA A
T .
—f—)\/ / (W,f’ + W2 - ZS)sts + martingale
0 JA

which after some analysis will cancel the terms

A / (W2Zr + W2Z2)
A

modulo some nice remainder.



Renormalization 28/35

> The quadratic term generated by the new cost looks like (again after some integration
by parts)

X[ [owsvwz - zpas=2 [ [ wdypas

w3 [ [ 104we 27~ 24,2300
122 /0 /A (Ts(WE) (Jo(W2 = Z,)) — 29:W,Z5]ds + A° /0 /A o[(Zs)2 + 2W, Z4|ds

where we have introduced an abitrary function (7;),. In this expression now the first
term is divergent but independend of the control, the two middle terms can be shown to

be finite provided the counterterm -y is chosen appropriately and finally, the last term is
compensated by

297 WTZT+’YT/ Z3.
A A



Paracontrolled analysis 29/35

Let us see how does i1t work for
)\2 FE 2 . -
= 7/ /[(Js(\Ws = Z5))% — 29.22%]ds
SR
> Commautator lemma. J;W2€C ™" and Z, € HY/2~

/(JS(W32>' Zs))zz/(Js(W32>' Zs)) O(JS(WE = Zs))
A A

~ / (J,WE) o (J,W2) 22 + / C(IWE, JWE, Z,)
A

EBg’ﬁ

Therefore

/ / [(JsW2) o (J,W2) — 2%]sz3
WZOZEC K
Similarly

W23 = (J,We) o (J,W5) — 29, W, € C /2%



Renormalized control problem

Wy = (Wr, W2, W, W22 W2°3) c W=C"12*xC 1 #xC 32, xCrxC /2"

> We have shown that

- APy o
_1ogZT()\) = uleng[ E[)\VT(YT—*—IT(’U,)) —|—§/O ||’U,3|%2d.5]
: =
— E[ET<Z<Z>,K<Z>>+A|ZT<z>|‘i4+— / |zs|%zds]
leH, 2 /o
—:  inf EF(l
e (1)

where Z = Z(1) € H/?~¢ and K = K (l) € H*~¢ solve the integral equations
t ¢ t
a / e / J2(W2 s Z4(1))ds + / e
0 0 0

> Hstimates of the form

|Ex(Z(1), K1) < CWrll§ + 8[| Zr(1)|Ze + 6| K ()| 72—



Equicoercivity 31/35

Variational setting. (X, /) canonical variables on C([0, co],20) x LZ([0, 00) x A)
X:={uecP(C(]0,00],8) x LZ([0,00) x A)) | 4= Lawp(W,u) for some u € H,}.

> Then

—logZ7p(A) = inf Fp(p) = inf Fp(u)
LEX uexXx

where, for T € [0, 0],

()= Eu| Br(2(0), KO)+ A Z2O)ny + 3 [l |

> The choice of X is dictated by the fact that the family (Fr)r is now equicoercive,
namely that there exists a compact L C X such that

I =i e ) forsalisrs
z€EK zeX



['-convergence 32/35

> Finally using the continuity of the map F and the lower semicontinuity of the L* and
entropy terms we establish

B e e

T— oo

Namely that

e For every sequence u? — p in A

Foo( ) < liminf Fp(uT),
TE

o For every u € X there exists a sequence u¥ — p in X such that

Foo(p) > limsup Fr(u”).
TP

> A consequence of ['-convergence is the convergence of minima:

lim (—logZ7)= lim inf Fp=min F,.
T— o0 T—o0o X X



Variational representation of the 5 measure

We obtain ezplicit variational formula for the limiting functional
: 4 1[0 2
—logZ(f) = lg%{f E| - AfZOO(l) + Eeo(Z(1), K(1)) + M| Zoo (1) |24 + 5 11s]|72ds
a 0

defined for all f € S(A) with

Enl(f)=UmZr(f),  Zr(f)=ZrBJ/s#7)= [ aIr= ey ag)

> The interest of this formula lies in the fact that the ®5 measure is not absolutely
continuous wrt. the Gaussian free field, so an explicit description was lacking.

> The variational formula seems a promising way to extract informations from this
measure. BE.g. large deviations, weak universality, pathwise properties, etc...



Explicit form of the renormalized cost function

B 2(0), K1) = Bue(2,K) = 3 TS

2—il"
with
Tg} = %n@)(wgo, Kooy Koo) + %][(ngo < Koo) Koo — /\27[(YW§0 = WQJ)KOO
r(2) _

0
T = ) / ][(Wt2>Zf)tht
0

@ - 4>\][WOOK§’O+ 12>\2][(W00W£])K§o+ 12A3][woo(w£§])2f<oo

T = _2)2 / ][fytz,?z'kdt
0
(6) 20[3) = b A= P
R _AZ][‘WOO Koo—>\2/ ][Wt2<>2(Zt)2dt+7/ kD(WE, 28, Z0)
0 0

and

¢l + (£} 17l S Alog(t).



Thank you.

made with TpXy;acs



