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We are concerned here with large scale e�ective description of microscopic random phenomena.

White noise (CLT, Donsker's Invariance principle, ...)

� �: Rd ! R a stationary random �eld under suitable assumptions (e.g. strong mixing,
integrability) with law �.

� Weak topology: �(')=
R
dx'(x)�(x) for a su�ciently large class of '.

� Scaling transformation �"(x) = "¡d/2�(x/"): keeps variance unchanged for �(') but not
mean.

Let �";m the law of '"¡m, m"= "¡d/2E(�(x))¡ �, then

�";m"! �;c as "! 0;

where �;c is the law of the white noise � with intensity c and mean �:

E(�('))= �

Z
'(x)dx; Var(�('))= c

Z
'(x)2dx:
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The description of random non-gaussian scaling limits is less clear:

B In�nitely divisible distributions, Hierarchical models

B Ferromagnetic critical point in d=2; 3 short range spin systems

B Large scale behaviour of d=1; 2; 3; ::: interface models in equilibrium or not

B Interacting Euclidean quantum �elds

B ....

The renormalization group and critical phenomena
Kenneth G. Wilson
Laboratory ofNuclear Studies, Cornell University, Ithaca, ¹wYork 14853

I. INTRODUCTION

This paper has three parts. The first part is a simpli-
fied presentation of the basic ideas of the renormalization
group and the c. expansion applied to critical phenomena,
following roughly a summary exposition given in 1972
(Wilson, 1974a). The second part is an account of the his-
tory (as I remember it) of work leading up to the papers in
1971—1972 on the renormalization group. Finally, some
of the developments since 1971 will be summarized, and
an assessment for the future given.

II. MANY LENGTH SCALES AND THE
RENORMALIZATION GROUP

There are a number of problems in science which have,
as a common characteristic, that complex microscopic
behavior underlies macroscopic effects.
In simple cases the microscopic fluctuations average

out when larger scales are considered, and the averaged
quantities satisfy classical continuum equations. Hydro-
dynamics is a standard example of this, where atomic
fluctuations average out and the classical hydrodynamic
equations emerge. Unfortunately, there is a inuch more
difficult class of problems where fluctuations persist out
to macroscopic wavelengths, and fluctuations on all inter-
mediate length scales are important too.
In this last category are the problems of fully developed

turbulent fluid flow, critical phenomena, and elementary-
particle physics. The problem of magnetic impurities in
nonmagnetic metals (the Kondo problem) turns out also
to be in this category.
In fully developed turbulence in the atmosphere, global

air circulation becomes unstable, leading to eddies on a
scale of thousands of miles. These eddies break down into
smaller eddies, which in turn break down, until chaotic
motions on all length scales down to millimeters have
been excited. On the scale of millimeters, viscosity damps
the turbulent fluctuations, and no smaller scales are im-
portant until atomic scales are reached (see, for example,
Rose and Sulem, 1978).
In quantum field theory, "elementary" particles like

electrons, photons, protons, and neutrons turn out to have
composite internal structure on all size scales down to 0.
At least this is the prediction of quantum field theory. It
is hard to make observations of this small distance struc-
ture directly; instead the particle scattering cross sections

This lecture was delivered December 8, 1982, on the occasion
of the presentation of the 1982 Nobel Prize in Physics.

that experimentalists measure must be interpreted using
quantum field theory. Without the internal structure that
appears in the theory, the predictions of quantum field
theory would disagree with the experimental findings (see,
for example, Criegee and Knies, 1982).
A critical point is a special example of a phase transi-

tion. Consider, for example, the water-steam transition.
Suppose the water and steam are placed under pressure,
always at the boiling temperature. At the critical
point—a pressure of 218 atm and temperature of 374'C
(Weast, 1981)—the distinction between water and steam
disappears, and the whole boiling phenomenon vanishes.
The principal distinction between water and steam is that
they have different densities. As the pressure and tem-
perature approach their critical values, the difference in
density between water and steam goes to zero. At the
critical point one finds bubbles of steam and drops of wa-
ter intermixed at all size scales from macroscopic, visible
sizes down to atomic scales. Away from the critical
point, surface tension makes small drops or bubbles un-
stable; but as water and steam become indistinguishable at
the critical point, the surface tension between the two
phases vanishes. In particular, drops and bubbles near
micron sizes cause strong light scattering, called "critical
opalescence, "and the water and steam become milky.
In the Kondo effect, electrons of all wavelengths, from

atomic wavelengths up to very much larger scales, all in
the conduction band of a metal, interact with the magnet-
ic moment of each impurity in the metal (see, for exam-
ple, Anderson, 1970).
Theorists have difficulties with these problems because

they involve very many coupled degrees of freedom. It
takes many variables to characterize a turbulent flow or
the state of a fiuid near the critical point. Analytic
methods are most effective when functions of only one
variable (one degree of freedom) are involved. Some ex-
tremely clever transformations have enabled special cases
of the problems mentioned above to be rewritten in terms
of independent degrees of freedom which could be solved
analytically. These special examples include Onsager's
solution of the two-dimensional Ising model of a critical
point (Onsager, 1944), the solution of Andrei and Wieg-
mann of the Kondo problem (Andrei, 1980, 1982; Andrei
and Lowenstein, 1981; Wiegmann, 1980, 1981, Filyov
et al. , 1981), the solution of the Thirring model of a
quantum field theory (Johnson, 1961), and the simple
solutions of noninteracting quantum fields. These are,
however, only special cases; the entire problem of fully
developed turbulence, many problems in critical phenom-
ena, and virtually all examples of strongly coupled quan-
tum fields have defeated analytic techniques up till now.
Computers can extend the capabilities of theorists, but

Reviews of Modern Physics, Vol. 55, No. 3, July 1983 Copyright 1983The Nobel Foundation



Wilson's Renormalisation Group 4/23

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

A theoretical framework for the description of these more general scaling limits is provided by
Wilson's RG

The renormalization group and critical phenomena
Kenneth G. Wilson
Laboratory ofNuclear Studies, Cornell University, Ithaca, ¹wYork 14853
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BRescaling, analysing how the theory
changes from scale to scale, give rise to a
dynamical system

BBasins of attractions are universality
classes, all the systems display similar large
scale behaviour
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CLT is a particular �xpoint with its
own basin of attraction.

Unstable directions out of the Gaussian �x-
points (may) go to other (IR) �xpoints.

This hints to the possibility of introducing
class of models which describe these fix-
points as (universal) perturbations of Gaus-
sian models.

The trajectory describes perfect theories
where rescaling implies only a change of para-
meters.
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(a) proliferating cancer cells (b) particle deposition in suspension droplet
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x

h(x,t)
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Figure 1: Experimental examples of growing interfaces. (a) Front evolution of cancer cell colonies (“HeLa cells” from human cervix cancer)
cultured in Petri dishes [24]. Here the colonies are two-dimensional, so that the interfaces are one-dimensional, and they grow because of the
division of cancer cells. The 1D KPZ exponents were found [24]. Similar growth was also observed with Vero cells (from African Green Monkey
kidney), which are not tumorigenic but invasive [25, 26]. (b) Deposition of spherical colloid particles onto the edge of a suspension droplet, during
its evaporation process [27]. Fluid flows outward because of capillary e↵ect, carrying colloids and leaving them at the droplet edge. The 1D
KPZ exponents were observed when slightly elongated particles were used [28]. Reprints with permission from [24](a) and [27](b) with some
adaptations. The axes and the arrows are added by the present author. The displayed amplitudes of �h are only schematic.

The aim of this lecture note is to tempt non-specialists into this rapidly evolving field around the KPZ class. It is
not a review of recent mathematical approaches nor a technical guide to solve the problems, for which the readers are
referred to more appropriate reviews [14, 15, 17, 18] and references therein. Instead, it is intended to provide useful
information for non-specialist physicists to join the game, in a brief but self-contained manner: how the KPZ class is
linked to various problems, what the main outcomes and implications for physicists are, and what kind of intuitions
we can use, from the limited view of an experimentalist admirer and user of those mathematical developments.

This lecture note is organized as follows. Section 2 describes what kind of interfaces we deal with, on the basis of
some experimental observations. Section 3 introduces continuum equations and their associated universality classes,
including the KPZ equation and the KPZ class, and review their basic properties. Properties of the KPZ equation
are further described in Sec. 4. Sections 5 and 6 illustrate some exact results for the 1D KPZ class, focusing on the
distribution of interface fluctuations. Section 7 reviews experimental observations of growing interfaces in turbulent
liquid crystal, to be compared with the exact results described in the preceding sections. In Sec. 8 we briefly discuss
the situation in higher dimensions. Section 9 provides brief concluding remarks.

2. Examples of quiescent and growing interfaces

The surface of water at rest is probably a symbol of something flat and smooth. Indeed, according to the capillary
wave theory [22], which accounts for thermal excitations of such a free interface between two fluid phases, the
amplitude of fluctuations under gravity is in the order of

p
kBT/� with the Boltzmann constant kB, temperature T ,

and interfacial tension �. For molecular fluids, it is usually shorter than 1 nm [22, 23]; therefore, the interface is
su�ciently smooth when observed at macroscopic length scales. But what happens if one of the phases is more stable
than the other, hence taking over the region of the metastable state? What happens if one of the phases is solid and
molecules are deposited on it one after another, such as in thin film growth? What happens if there is an aggregate
of particles that can replicate themselves, such as living cells? Or, conversely, what happens if particles are being
removed from the surface of the aggregate? In all such cases the interface (or the edge of the aggregate) would move
in either direction, typically with fluctuations growing in time.

Let’s see some examples. Figure 1(a) shows snapshots of colonies of human cancer cells (HeLa), cultured in
Petri dishes [24]. Those cells were initially cultured with an obstacle attached on the Petri dish bottom, which set

2
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Dynamic Scaling of Growing Interfaces
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Mehran Kardar
Physics Department, Harvard University, Cambridge, Massachusetts 02138

Giorgio Parisi
Physics Department, University ofRome, I 00-I 73 Rome, Italy

Yi-Cheng Zhang
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A model is proposed for the evolutior. of the profile of a growing interface. The deterministic
growth is solved exactly, and exhibits nontrivial relaxation patterns. The stochastic version is stud-
ied by dynamic renormalization-group techniques and by mappings to Burgers's equation and to a
random directed-polymer problem. The exact dynamic scaling form obtained for a one-dimensional
interface is in excellent agreement with previous numerical simulations. Predictions are made for
more dimensions.

PACS numbers: 05.70.Ln, 64.60.Ht, 68.35.Fx, 81.15.Jj

Many challenging problems are associated with
growth patterns in clusters' and solidification fronts. '
Several models have been proposed recently to
describe the growth of smoke and colloid aggregates,
flame fronts, tumors, etc. ' It is generally recognized
that the growth process occurs mainly at an "active"
zone on the surface of the cluster, with interesting
scaling properties. ' However, a systematic analytic
treatment of the static and dynamic fluctuations of the
growing interface has been lacking so far.
In this paper we propose a model for the time evolu-

tion of the profile of a growing interface, and examine
its properties. Guided by the ideas of universality we
write down the simplest nonlinear, local differential
equation governing the growth of the profile applicable
to such processes as vapor deposition4 or the Eden
model. ' The analysis of this equation is considerably
simplified by mappings to two different, albeit more
familiar, forms. One is the hydrodynamic problem of
the Burgers's equation, and the other is a directed
polymer in a random environment. The deterministic
growth of the profile can in fact be obtained exactly,
and its long-time relaxation behavior exhibits very in-
teresting patterns related to the shock waves in
Burgers's equation. 6 The stochastic growth is treated
by dynamic renormalization-group techniques. For a
one-dimensional interface a fluctuation-dissipation
theorem9 exists, leading to an exact dynamic exponent
z =—,'. This result is in excellent agreement with pre-
vious numerical simulations of ballistic aggregation'
and Eden clusters. " For two-dimensional interfaces,
the mapping to the random directed-polymer problem
is used to make an efficient indirect numerical simula-
tion with the result z —1.5. A nontrivial behavior is
also predicted for the static fluctuations in this case.

The interface profile, suitably coarse-grained, is
described by a height h(x, t). As usual, it is con-
venient to ignore overhangs so that h is a single-valued
function of x. The simplest nonlinear Langevin equa-
tion for a local growth of the profile is given by'2

The first term on the right-hand side describes relaxa-
tion of the interface by a surface tension v. The
second term is the lowest-order nonlinear term that
can appear in the interface growth equation, and is
justified later on with the Eden model as an example.
Edwards and Wilkinson'3 have studied Eq. (1) without
the nonlinear term, but we demonstrate that such a
term is necessary, and responsible for the unusual
properties of the growing interface. Higher-order
terms can also be present, but they are irrelevant, and
will not modify the universal scaling properties. The
noise q(x, t) has a Gaussian distribution with
(7l(x, t)) =0, and
(q(x, t )q(x', t') ) = 2D5~(x —x') 6(t —t'),

although the actual form of the distribution is ir-
relevant. In principle there is also a velocity term,
which is removed by choice of an appropriate moving
coordinate system. Note that Eq. (I) is invariant
under translations h lt +const, and obeys the infini-
tesimal reparametrization

h+a X, X X+Xat,
which describes the tilting of the interface by a small
angle.
To justify the nonlinear term in Eq. (1), consider

the growth of an Eden cluster5 taking place by addition

1986 The American Physical Society
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The KPZ equation de�nes a one-parameter
family of models

@th=�h+�[(rh)2¡1] + �

B Di�usive rescaling

h"(t; x)= "1/2h(t/"2; x/")¡ "¡1/2m

B �=0 : Gaussian �xpoint



B � grows under scaling (relevant direction)

@th"=�h"+�"¡1/2(rh")2+ �

B �!1 : KPZ �xpoint equivalent to

@th�= ��h�+�(rh�)2+ �
p

��; �! 0:

B Recent results by Matetski, Quastel, Remenik on the law
of the KPZ �xpoint as integrable system.
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B The KPZ equation is the (unique?) critical trajectory exiting the Gaussian fp.

B Precise mathematical description of this trajectory has been a longstanding mathematical
problem moreover it is interesting to characterise models which can lead to KPZ� under scaling
(weak�universality).

B Bertini and Giacomin (1996) provided a construction of this critical trajectory via a particular
family of stochastic discrete models (WASEP�)�2R and a suitable rescaling transformation R".

B � is a asymmetry parameter (inducing large scale �ux of particles) whose in�uence �grows�
under rescaling.

R"WASEP0!Gaussianmodel; R"WASEP"1/2�!KPZ�

B KPZ� is identi�ed via Hopf�Cole transformation:

h= logZ; @tZ =Z�

where the Stochastic Heat equation is interpreted in Ito sense (martingale theory).

B This trick does seldom work. Without more �exible description of KPZ� is it di�cult to prove
convergence.
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B Hairer (2013, 2014) devised a successful approach to give an intrinsic meaning to the KPZ
equation. This allows a rigorous description of the (KPZ�)� random �elds solving

@th=�h+�[(rh)2¡1] + �:

The random �eld h is described in terms of the Gaussian �xpoint @tX =�X + �.

� Rough paths, regularity structures (Hairer)

h(x)¡h(y)=X(x)¡X(y)+Y (x; y)+h0(x)Z(x; y)+O(jx¡ y j3/2+)

� Paracontrolled distributions (G, Imkeller, Perkowski)

�ih=�iX +�iY +(�6i¡1h0)�iZ +O(2¡3/2i)

� Energy solutions/martingale problem (Jara, Gonçalves, G., Perkowski)

dh(t)¡�h(t) dt¡dB(t)=dM(t); dB(t)= lim
�
[(r�� �h)2¡C�]dt

� Other approaches: Renormalization group (Kupiainen), Otto & Weber approach...
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B Hairer and Quastel proved (2015) that scaling limits of random �elds HQ(F ; �;L) solution to

@th=�h+F (rh)+ �

on a periodic domain of size L, converges to KPZ:

R"HQ("1/2F ; �; "¡1L)!KPZ�

where � is a function of F , whenever F is polynomial and � short range Gaussian �eld. (NB:
proper recentering of the scaling transformation is needed.)

B Regularity structures/Paracontrolled distributions analysis of scaling limits of particle systems
is still a di�cult problem. The expansion requires a precise control of the dynamics (but see
recent results by Matetski and Quastel)

B Gonçalves�Jara energy solutions allow to prove convergence to KPZ� for a large class of
microscopic particle models, always in the same weak asymmetric regime.

B This and other results obtained via integrable models con�rms the heuristic picture that there
are no other relevant �xpoint for interface growth in 1d. The KPZ �xpoint describes the large
scale dynamics of growing interfaces.
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B Scalar �elds in d = 3 dimensions can be used to describe (mesoscopic) magnetization in
ferromagnetic system or (Euclidean) scalar quantum �elds in 2 + 1 dimensions: we are looking
for a non�gaussian �xpoint of the RG, the Wilson�Fisher �xed point.

B The relevant family ¡(�) of centered Gaussian models has covariance

E[X(x)X(y)] = (¡�+ �)¡1(x; y)

B Under rescaling R" which �xes ¡(0) the parameter � grows: R"¡(�)=¡("¡2�), leading to
the high temperature �xpoint �!1, where correlations are absent in the macroscopic scale.

B A class of perturbations of the models ¡(�) is given in terms of a pathwise dynamic picture:
promote X(x) to a time dependent random �eld satisfying the Langevin equation

@tX =¡(¡�+ �)X + �

and introduce the family of dynamic Ginzburg�Landau models DGL(V 0; �) of the form

@t'=�'¡V 0(')+ �

where V 0 is an odd function (we want to preserve the '$¡' symmetry).
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B Scaling transformation

'"(t; x)= "¡1/2'(t/"2; x/"); �"(t; x)= "¡5/2�(t/"2; x/");

B Equation for R"DGL(V 0; �)=DGL("¡2V 0("1/2 � ); �")

@t'"=�'"¡ "¡5/2V 0("1/2'")+ �"

B If V 0(')= a1'+ a3'
3+ ��� then

"¡5/2V 0("1/2'")= "¡2a1'+ "¡1a3'
3+ "0a5'

5+ "1a7'
7+ ���

B Two relevant directions, associated to ' and '3:

� Direction ' points towards the high temperature (HT) �xpoint

� Direction '3 points in a new direction ! Wilson�Fisher (WF) �xpoint

In order to construct the critical trajectory to WF we need to avoid to be attracted by HT.
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B Allow for general family (F")" of interactions to be tuned while rescaling.

L u"(t; x)=¡"¡5/2F"("1/2u"(t; x))+ �"(t; x)

B Expand around the Gaussian model and parametrize F" via chaos expansion wrt. Y"

L Y"= �"; v"=Y"+u";

F~" (x) :=F"(x)¡ f0;"¡ f1;"x¡ f2;"H2(x; �Y ;"
2 )=

X
n>3

fn;"Hn(x; �Y ;"
2 );

B Introduce constants (with �(m)= "(m¡5)/2F~"
(m)("1/2Y"))

d" :=
1
9

Z
s;x

Ps(x)E[�0
(1)
�(s;x)
(1)

]; d~" := 2 "¡1/2f3;"f2;"

Z
s;x

Ps(x)[CY ;"(s; x)]
2;

d" :=
1
6

Z
s;x

Ps(x)E[�0
(0)�(s;x)

(2)
]; d̂" :=

1
3

Z
s;x

Ps(x)E[�0
(0)�(s;x)

(1)
];

d" := 2 d" +3 d" :
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B Assume

a) (F")"�C9(R) and sup";x
P

k=0
9 j@xkF"(x)j6Cecjxj",

b) the vector �"=(�"
(0); �"

(1); �"
(2); �"

(3))2R4

�"
(3) = "¡1f3;" �"

(1) = "¡2f1;"¡ 3"¡1d"

�"
(2) = "¡3/2f2;" �"

(0) = "¡5/2f0;"¡ "¡3/2f2;" d" ¡ 3"¡1d~" ¡ 3"¡1d̂"

has a �nite limit �=(�(0); �(1); �(2); �(3))2R4 as "! 0.

Theorem (Furlan, G, 2017) The family of random �elds (u")" converge in law and locally
in time to a limiting random �eld u(�) in the space CTC ¡1/2¡�(T3).

The law of u(�) depends only on the value of � and not on the other details of the nonlinearity
or on the covariance of the noise term.

B The limit manifold (u(�))� contains the critical trajectory from ¡(0) to WF. Called also the
dynamic �34 model with parameter vector �2R4.

B Proven for Pol/Gaussian by Hairer and Xu (2016), for Pol/Non-Gauss by Xu and Shen. Non-
pol/Gaussian Furlan, G. (2017).
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We search for alternatives to the trivial P~ field theory by considering nonpolynomial potentials.
Such theories are renormalizable when the natural cutoff dependences of the coupling constants are
taken into account. We find a continuum of fixed points, which includes the well-known Gaussian
fixed point. The Axed-point density has a maximum at a location corresponding to a theory with
a Higgs boson mass of approximately 2700 GeV. The Gaussian fixed point is UV stable in some
directions in the extended parameter space. Along such directions we obtain nontrivial asymptotically
free theories.

PACS numbers: 11.10.Hi, 11.10.Kk, 11.10.Lm

The Higgs field of the standard model, usually taken
to be a scalar field with quartic self-interaction, has been
overshadowed by the issue of "triviality"; namely, the
renormalized coupling vanishes in the limit of infinite
cutoff [1). This has been verified by numerical calcu-
lations [2], and the implications for phenomenology have
been examined [3]. In terms of Wilsons's renormalization
group (RG) [1], the reason for triviality is that the contin-
uum (or infinite-cutoff) limit is identified with an infrared
(IR) Gaussian fixed point, so that the theory approaches
a free field theory in the low-energy limit. It is natural
to ask whether there are alternative continuum limits that
yield a nontrivial theory. As one of us [4] noted earlier,
in a p theory in 4 —e dimensions there are RG trajecto-
ries on which the Gaussian fixed point appears as an UV
fixed point. Theories built along these trajectories would
be nontrivial and asymptotically free. Unfortunately, they
become trivial as e 0. However, this scenario has led
us to search for nontrivial theories in an extended param-
eter space. In this Letter we report on some positive re-
sults.
The model being investigated is an N-component real

scalar field theory in d dimensions, with arbitrary power-
law self-coupling. We are interested in how the couplings
transform under a change of energy scale, and the
inclusion of all powers is necessary for closure under
the RG. The theory remains renormalizable in the usual
perturbative sense when we recognize that the coupling
constants must depend on the cutoff in specific manners.
These dependences are such that the S matrix of the
theory for d = 4 is that of an effective P4 theory, whose
effective coupling depends on all the coupling constants
of the underlying theory. To study the renormalization
of the effective coupling, we must examine the RG
fIow in the infinite-dimensional parameter space of the
extended theory. This is done using Wilson's method of
momentum-shell integration, and the main results may be
summarized as follows.

(a) In the extended parameter space, some RG trajecto-
ries fIow into the Gaussian fixed point, while others How
out of it. The Gaussian fixed point is UV stable with
respect to the latter type of trajectories, along which the
theory is nontrivial and asymptotically free. Spontaneous
symmetry breaking occurs along some trajectories of
this type.
(b) There exists a one-parameter continuum of non-

trivial fixed points. For the Higgs field (N = 4, d = 4)
the density of fixed points is maximum at a location cor-
responding to a potential with broken symmetry. The
Higgs boson mass calculated from this potential is ap-
proximately 2700 GeV.
The model. —The Euclidean action of our model is

sl 41 = d'x
2 (~4

)' + v(4'),1

v(@ ) = gg, .(@ )",
n=1

pK+ d—Kd/2 (2)
where uK is a dimensionless parameter. We define u2 =
r/2, and write for the bare-mass square

mp = 2g2 = rA2 = = 2

In the conventional renormalization scheme, a dimen-
sionless coupling constant is considered renormalizable;
but any higher coupling is rejected on the basis that it leads
to divergencies that cannot be canceled by a finite num-
ber of counter terms. In d dimensions, according to this
rule, only PM and lower-order theories are renormalizable,
where M = 2d/(d —2). With the cutoff dependence (2)
taken into account, however, the higher couplings do not

(3)

where P;(x) (i = 1, . . . , N) are real fields, and P2 = @,@;.
There is a momentum cutoff (or equivalent inverse lattice
spacing) A, which is assumed to be the only intrinsic
scale in the theory. Since the coupling constant gK has
dimension (momentum) +" I, it must depend on the
cutoff according to
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B Halpern and Huang theorized
about possible non-polynomial rel-
evant and asymptotically free direc-
tions at the Gaussian fp.

F (u)/ exp(cd(d¡ 2)u2)

B The status of this proposal is not clear to me, some objection moved by Morris & C.

� Halpern, Kenneth, and Kerson Huang. �Halpern and Huang Reply:� Physical Review Letters 77, no. 8 (August
19, 1996): 1659�1659.

� Morris, Tim R. �Comment on �Fixed-Point Structure of Scalar Fields�.� Physical Review Letters 77, no. 8
(August 19, 1996): 1658�1658.

� Bridle, I. Hamzaan, and Tim R. Morris. �Fate of Nonpolynomial Interactions in Scalar Field Theory.� Physical
Review D 94, no. 6 (September 28, 2016): 065040.

B Rigorous techniques can help to rule out such directions (my current guess).
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B Taylor expansion

L u" = �"¡�(0)¡�(1)v"¡
1
2
�(2)v"

2¡ 1
6
�(3)v"

3¡R"(v")

¡"¡3/2f0;"¡ "¡1f1;"(Y"+ v")¡ "¡1/2f2;"(JY"2K+2v"Y"+ v"
2):

B Stochastic driving terms

L Y" := �(0); Y~" := "¡1/2f2;" JY"2K;

Y" :=
1
3
�(1) Y" := Y" �Y" ¡ d" ;

L Y" := Y" ; Y" := Y" �Y" ¡ d" Y"¡ d̂" ;

Y" :=
1
6
�(2); Y" := Y" �Y" ¡ d" ;

Y"
? :=

1
6
�(3); Y~" := Y~" �Y" ¡ d~" ;

Y"
� 2CTC j� j¡� Y"

? Y" Y" Y~" Y" Y" Y" Y~" Y"
j� j = 0 ¡1/2 ¡1 ¡1 1/2 0 0 0 ¡1/2
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

L v" = ¡Y" ¡Y~" ¡ 3Y" v"¡ 3Y" v"2¡Y"?v"3

¡"¡5/2f0;"¡ "¡2f1;" (Y"+ v")¡ "¡3/2f2;" (2Y" v"+ v"
2)¡R"(v")

B Paracontrolled Ansatz (a change of unknowns v"! v"
])

v"=¡Y" ¡Y~" ¡ 3v"�Y" + v"
]; '"= v"+Y"

B Renormalized products

Y" �̂v" := v"Y" ¡ v"�Y" +(3 v" d" + d" Y"+ d̂" + d~" )

= v"�Y" ¡Y~" ¡Y" ¡ 3v"Y" + v"
] �Y" ¡ 3 com1(v"; Y" ; Y" )

v"�Y" := v"Y"+ d" = '"Y"¡Y" �Y"¡Y" �Y"¡Y"

Y" �(Y" )2 := Y" (Y" )2¡ 2d" Y"

Y" �v"2 := Y" v"
2+2d" v"=Y" �(Y" )2¡ 2 (Y" �Y" )'"+Y" '"

2
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Y"!Y(�)

Y" := (Y"
?; Y" ; Y" ; Y~" ; Y" ; Y" ; Y" ; Y~" ; Y" )

Y(�) := (�(3); �(3)X; �(3)X ;�(2)X ; �(3)X ; (�(3))2X ; (�(3))2X ;�(3)�(2)X ; (�(3))2X )

L X := �

X := JX3K;
X := JX2K;

�qX := �q(X �X)=
Z
�1;�2

JX�1
3 KX�2 ��1;�2;

�qX := �q(1¡J0)(X �X )=

Z
�1;�2

(1¡ J0)(JX�1
2 KJX�2

2 K) ��1;�2;

�qX :=

Z
�1;�2

(1¡ J1)(JX�1
3 KJX�2

2 K) ��1;�2+6

Z
s;x
[�qX(t+ s; x�¡x)¡�qX(t; x�)]Ps(x) [CX(s; x)]

2;
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

B Malliavin calculus D; �; L=¡�D, Q1
n :=

Q
k=1
n (k¡L)¡1:

��
(m)

=
X
k=0

n¡1 E
¡
��
(m+k)�
k!

JY";�k K+ �n
¡
Q1
n��

(m+n)
h�

n�

=
X
k=0

n¡1

"(m+k¡5)/2(m+ k)!
k!

f~m+k;"JY";�k K+ �n
¡
Q1
n��

(m+n)
h�

n�

B BDG�like estimatesR
�
�̂�
(m)

��

Lp(
)

=
�4¡mR

�
Q1
4¡m��

(4)
h�

4¡m��


Lp(
)

6
Q1

4¡mR
�
��
(4)
h�

4¡m��


D4¡m;p

. P
k=0
4¡mDkQ1

4¡mR
�
��
(4)
h�

4¡m��


Lp(
)

.
R

�
��
(4)
h�

4¡m��


H
4¡m
2


Lp/2(
)

1/2

.
R

�
��
(4)
�� 0
(4)hh�
4¡m; h� 0
4¡miH
4¡m���� 0


Lp/2(
)

1/2

.
�R

�;� 0

��(4)�� 0(4)Lp/2(
) jhh� ; h� 0ij4¡m j���� 0j�1/2
.

h
"
R
�;� 0

"¡1

2��
(4)


Lp(
)

"¡1

2�� 0
(4)


Lp(
)

jhh� ; h� 0ij4¡mj���� 0j
i1
2

.
h
"�
R
�;� 0

"¡1

2��
(4)


Lp(
)

"¡1

2�� 0
(4)


Lp(
)

jhh� ; h� 0ij3¡m+� j���� 0j
i1
2;
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

B Partial contractions for products of local operators

��1
(0)
��2
(2)

= E
�
��1
(0)
��2
(2)�

+ �Q1D(��1
(0)
��2
(2)
);

��1
(1)
��2
(1)

= E
�
��1
(1)
��2
(1)�

+ �Q1D(��1
(1)
��2
(1)
);

��1
(0)
��2
(1)

= E
�
��1
(0)
��2
(1)�

+ �
�
J0D

¡
��1
(0)
��2
(1)��

+ �2Q1
2D2(��1

(0)
��2
(1)
)

= E
�
��1
(0)
��2
(1)�

+Y"(�1)E
�
��1
(1)
��2
(1)�

+Y"(�2)E
�
��1
(0)
��2
(2)�

+ �2Q1
2D2(��1

(0)
��2
(1)
)

B Partial expansion for contractions

E
�
��1
(m)

��2
(n)�

=
3!2

(3¡m)!(3¡n)!("
¡1f3;")2E[JY";�1

3¡mKJY";�2
3¡nK] + 3!

(3¡m)!"
¡1f3;"E

�
JY";�1

3¡mK�̂�2
(n)�

+
3!

(3¡n)!"
¡1f3;"E

�
JY";�2

3¡nK�̂�1
(m)�

+E
�
�̂�1
(m)

�̂�2
(n)�

;

B Control of remainders

�̂�1
(4¡m)

�̂�2
(4¡n)

= �m(Q1
m��1

(4)
h�1

m)�n

¡
Q1
n��2

(4)
h�2

n�

=
X

(q;r;i)2I
C
q;r;i

"
1+

r+q

2
¡i
�m+n¡q¡r(h�1+r¡i

m+r¡i(�1)h�1

m+r¡i;�1+q¡i

n+q¡i(�2)h�2

n+q¡iiH
q+r¡i)



Thanks.
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