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Motivation: Stochastic quantisation of Fermionic Euclidean QFT

Outline

» What is stochasic quantisation (SQ).

» Fermionic EQFT — Grassmann algebras/integration (GA)

» Analysis/Probability on GA? Non-commutative probability setting.
» Grassmann Gaussian r.v./Brownian motion

» Stochastic differential equations and invariant ,states”

» Random fields, Stochastic PDEs, large volume limit in Yukawa-type models.

05> Grassmannian stochastic analysis and the stochastic quantization of Euclidean Fermions | joint work
with Sergio Albeverio, Luigi Borasi, Francesco C. De Vecchi. ArXiv:2004.09637



Stochastic quantisation a2

[]

SQ describes a probability measure (law of a RV) via an equation (for the RV). Basic
example: Langevin dynamics (reversible Markovian dynamics wrt. to a prob. measure).

dp=-VV(p)dt+dB, t>0.

(W(t)); is a stochastic process e.g. with values in RY. V:RM —» R a (potential) function.
Invariant Gibbs measure u:

e~ 2V dy

E[FO)] = [, Fo)—-

EQFT: Wick rotation of QFT. t - t=it R?x R - R**! Euclidean space. Wightman func-
tions — Schwinger functions.

Fermions: quantum particles satisfying Fermi-Dirac statistics (i.e. living in the antisym-
metric tensor of one-particle states).



Fuclidean Fermions 225

[]

> K. Osterwalder and R. Schrader. Euclidean Fermi fields and a Feynman-Kac formula
for Boson-Fermions models. Helvetica Physica Acta, 46:277-302, 1973.

> ¥, ¥* -, P. Schwinger functions are given by

J dpdp O, e P (0@, p)e=" W)
fdtpdtf)e_SE(LP’@ N <e—V(¢,¢>>C

(O, ) =

e, ) =5, C P+ V(p, §)

Berezin integral on a GA A=GA((, ). the fields {, 1 are the generators of a Grassmann
algebra: Y,pp = — P, (Pz =0).

> Under (-)c the variables ¥, are “Gaussian”.



Non-commutative probability 5123

[]

> A non-commutative probability space (A4, w) is given by a C*-algebra 4 and a state
w, a linear normalized positive functional on A4 (i.e. w(aa*)>0).

> For us: random variables with values in a Grassmann algebra A are algebra homo-
morphisms

Hom(A, A4)

(Not canonical!)

> Classical probability: A4 =L*((); C), w(a)= [ a(w)P(dw), A manifold. ./ valuedr.v.
X:

XeHom(L™(M), A)  fEL (M) ~X(f)EA,  X(f)=X(NX(), X(F)=X(f)"

05> L. Accardi, A. Frigerio, and J. T. Lewis. Quantum stochastic processes. Kyoto University. Research
Institute for Mathematical Sciences. Publications, 18(1):97-133, 1982. 10.2977/prims/1195184017



Let V be a vector space and AV the GA generated by V:

v, vw:=v@w—-w®v@w+w), vo v, ...

dim(AV) = 2dm(V),

A V-Grassmann random variable ¥ € ¥ (V) =Hom(AV, /) is an algebra homomorphism
from the Grassmann algebra AV into A.

The law of ¥ € €(V) is the family of its moments w*(F): =w(¥(F)) for all FEAV, also
represented by the linear functional w*: AV - R.

F=) Faua€AV, F¥):=¥(F)=) Fa¥" ¥":=¥(vy)
A A

yogb— _yhbye  \where ¥4=¥(v,).



Two GRV Xe ¢ (V) and Y€ §(W)

> we say that they are compatible if the linear map Z: V& W — 4 given by Z(v) = X(v)
if veV and Z(w) =Y (w) if we W, extends to an homomorphism Z: A(Ve& W) —» A.

(related to kinematic independence)

> Independence. If (X3,...,X,) €S (V1® --- ®V,) are compatible Grassmann variables
with values in the probability space (4, w), then we say that X3,..., X, are (tensor)
independent (with respect to the state w) if, for all F;& AV;, we have that

k k
w(n X]-(F]-)) =[ | w(X(Fy).
j=1 1

]':

By GNS construction and Hilbert space products (via an involution), we can always arrange two given GRV
to be independent. I.E. construct a product (non-comm) probability space.



Topology on (V) 023

[]

% (V) has a natural complete metric topology given by the distance

deo)(X,Y)=|X=Y|cvy= sup [X(@©)=Y(®)]a, (1)

veV,|v|y=1

where | -| 4 is the natural norm in the *-algebra A.

Analysis. The embedding of AV into 4 allows to use the topology of A4 to do
analysis on Grassmann algebras.

Analogy. Gaussian processes in Hilbert space. Abstract Wiener space. “a convenient
place where to hang our (analytic) hat on”.



Right and Left derivatives

BR, BLAV—>AV® 1%

R(fif)=) (V" f K f)®fe  fire €V,
k=1

wfify=Y (U Nfi sl f)®fc  fr-s fuEV.
k=1

Lemma. Let X,Y € ¥ (V) be two compatible Grassmann random variables, then

G(X+Y)=G(X) + Z m(X®Y®---®Y)QRkG)I+0(|YE), GeEAV (2)
k=1

[X+Y e ¥ (V) is the unigue hom. such that (X + Y)(v) = X(v) + Y(v) forve VC AV]



Grassmann Gaussians 10123
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Let V be a real pre-Hilbert space with scalar product (-, -) and with an antisymmetric
bounded operator C:V - V.

> A (V-)Grassmann (centered) Gaussian variable with correlation C is a random variable
Xe G (V) such that

W(X(G)X(f)) =w(X((9rG,Cf))), GEAV,feV. (3)

We also require that | X | ¢ )< oo, i.e that the map X: V — A must be continuous with
respect the topology induced on V by the pre-Hilbert product structure and the (norm)
topology of A.

> Wick's rule: w(X(f1)---X(f,)) =0 if nis odd and if n=2k is even

k
wW(X(f1) - X(fx) = Z (—1)01_[ { foi-1), Cfo@i)v- (4)
o i=1



Brownian motion 11723
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> V-valued white noise: € ¥ (LR ,) ® V) with correlation
(1[0,15] X0, ]1[0,5] R Cw).

>V -valued Brownian motion By(v) = E(sgn(t) 1191 ®v) for ve V and extended: B, ¥ (V).

| B(0) = Bs(@) | a< [ t—5]| 2|0y, ts=0,0€V.
B =(By):er, is a Gaussian process with continuous trajectories. We have that By(v) =0,

w(B(v))=0, w(B(v)By(w))=(v,Cw)(tAs), ts=0, v,weV.
Note that

sup |[BilcoyST.
te[0,T]



[]

(Additive) SDEs

We say that a function ¥.€ CYR, ¥(V)) is a solution to the additive noise SDE with
coefficient G and starting at —T € R if, for any t > —T and any v €V, we have

¥(0) = ¥-1(0)= [ G(¥,,0)ds +Bi(o) — B_1(2),

where ¥_1(v) is an element of ¥(V), G:V — Ayq4V is a linear map and the integral is the
Bochner integral with respect to the norm of 4.

Local existence: by Picard iteration.

Uniqueness: easy.

Global existence? All SDE have polynomial coefficients.



An example 1323

[]

Let V=Wa& W and Ce £,(V) and G:V - AV such that
C= ( (1[ é" ), b — Cla) =17, Z Yop(0pvB), vy, VREW
! B
If we denote by ¥/*:=¥,(v}) and B :=B,(v}) we obtain
P =i+ | _tT g ((—1)1'2 %,ﬁ(qu'ﬁqfffﬁ))ds L =
B

Note that G:V - AV

G(o) =(COrU,v,),  U=) 7y p(0f 0f)(0av3) EAV.
B



Global existence as

[]

Theorem. There is a unique (global in time) solution to the SDE.

Proof. Write © =Y — B, then @%=0y".--Of" with a=a;- - -a, satisfy a finite-dimensional
system of linear equations:

dOf=) cf.B/O;.
b,c

Conclude by applying Grownwall inequality to

> 08 1e<Y 10% a+lel [ 10816 1821 ads.
a a c b



1t0 formula for solutions of SDEs 15723
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C:V -V is an antisymmetric linear map and
QcELIAVOV®V,AV)  (f®v®w)~ Qc(f ®v@w)=(v,Cw)y- f

G:V->AV, K:ZilKinviEAV@Vwe denote by K-GEAV

K-G= Z Ki G(Ui).

Theorem. Let ¥, be the solution to the SDE then for any HE AV and —T <s<t we
have

(H(Y)) = w(H(E) + [ (‘I’S<8RH- G+ %QC(E)I%H)> )ds.




Invariant state 16/23

[]

If w is a positive state, Xe G(V) and U e AV we define the (generally nonpositive) state

wX,U(_) — w(.e—ZU(X))

Definition. We say that e 7> is an invariant measure of the SDE with initial condition
Y_r if forany HE AV and any t,s > —T we have

W H(H(Y) = w ' H (YY) = w(H(Y-_r)e2H).



Theorem. For any even U € AeyenV, the SDE

¥(0)=X@) + [ (%(A0) + ¥((CaxLL0))ds + By(v) ~B_r

i.e. the SDE with drift

G() =A- +(C8RU,-),

where B is a Brownian motion with correlation C and X is an independent Gaussian
initial condition with correlation

Cp:= fooo BATSCeAst

u

has w*Y as invariant measure provided

ATC4—C4A=0.




Stationary solution 1023
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Take the function G with the special form
G(v) =Av+AG(v)

where Ae L(V,V) is a linear map such that A<0, G:V - AogqV, and A €R small.

Theorem. (stationary solution) Under the previous hypotheses, for |A| small
enough, the following equation

() =A [ | G(¥3, M V0)d + Bf()

where B (v) = E(I(_ 4(-) ® ™)), has a unique solution.

> Key fact for proof : supier | Bf'| g(v) < +co.



Stochastic quantization 1012

[]

Theorem. If

G(-)=A-+A{CorU, "),
for |\ | small enough, we have that, for any t € R and for any HE AV,

WXUH(X))  w(H(X)e 2HX)
wX,U(l) o w(e—ZLI(X))

= w(H(YY))

where X is a Gaussian V-random variable with covariance C4.




Series expansion of solutions 20123
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¥,(0) = ©i(0) + | Ot Y (e IFw)ds, t>0,0€V,

¥i=) JdP)NE=To( D)) + Jioool( P)B) +Jijoseloal(PY(E) + - + Jifeuslfefoofonslio]o (D)) + - -

The series is indexed by (planar) trees T which have branches of order 3 and where J is
a multilinear integral operator such that

Jo(@)(8)" = P(vs)

][T1T2T3]((D)(t)“ - Z f; e_(t_S)A%(q,ocz,oan(q))(S)M]Tz(q))(s)mfra(q))(S)Mds

X1,2,3

where e denotes the simple tree and [Ty, ..., T3] the tree with branches T4, ..., Ts.



Global solutions (1)

Theorem. There exists an increasing function E(t) depending on N, | A | ,m such that
for all m>0,

sup | ¥s | <E(¥),

s<t

where recall that (¥});> is the unique solution of the equation.

Key Lemma. Assumem>1. Foranyn>1andany ty,...,t,€[0,T], x1,...,0,€{1,...,N}
we have

Cn+1Tn/2

X1 Xn
| Dy Dr| <(n!)—1/2

where C is a universal constant depending only on N.



Outlook

e Convenient language for Euclidean fermions. Replace Berezin integral.

e In the paper: construction of solutions of SPDEs in the whole space driven by white
noise, but with regularized interaction.

Open problems

e |to integral? Stochastic calculus? Equations with multiplicative noise?

| BiaB;
is an unbounded operator...
e Renormalization? Wick products can be unbounded operators...

e How to handle unbounded operators?



Thanks, and happy new year!



