Grassmannian stochastic analysis

M. Gubinelli – University of Bonn & HCM M . M and M and M and M and M and M M M

Motivation: Stochastic quantisation of Fermionic Euclidean QFT

Outline

- \blacktriangleright What is stochasic quantisation (SQ).
- \blacktriangleright Fermionic EQFT \rightarrow Grassmann algebras/integration (GA)
- Analysis/Probability on GA? Non-commutative probability setting.
- \mathbf{r} Grassmann Gaussian r.v./Brownian motion
- \blacktriangleright Stochastic differential equations and invariant "states"
- Random fields, Stochastic PDEs, large volume limit in Yukawa-type models.

☞ Grassmannian stochastic analysis and the stochastic quantization of Euclidean Fermions [|] ^joint wor^k with Sergio Albeverio, Luigi Borasi, Francesco C. De Vecchi. ArXiv:2004.09637

 \Box

SQ describes a probability measure (law of a RV) via an equation (for the RV). Basic example: Langevin dynamics (reversible Markovian dynamics wrt. to a prob. measure).

$$
d\psi = -\nabla V(\psi)dt + dB_t, \qquad t \geq 0.
$$

 $(\psi(t))_t$ is a stochastic process e.g. with values in \mathbb{R}^N . $V: \mathbb{R}^N \to \mathbb{R}$ a (potential) function. Invariant Gibbs measure μ:

$$
\mathbb{E}[F(\psi(t))] \to \int_{\mathbb{R}^N} F(x) \frac{e^{-2V(x)} dx}{Z_V}.
$$

EQFT: Wick rotation of QFT. $t \to \tau = it \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^{d+1}$ Euclidean space. Wightman functions \rightarrow Schwinger functions.

Fermions: quantum particles satisfying Fermi–Dirac statistics (i.e. living in the antisym metric tensor of one-particle states).

Euclidean Fermions **Euclidean** $\frac{4}{23}$

 \lceil

⊳ K. Osterwalder and R. Schrader. Euclidean Fermi fields and a Feynman-Kac formula for Boson-Fermions models. *Helvetica Physica Acta*, 46:277–302, 1973.

 $\rhd \Psi$, $\Psi^* \rightarrow \psi$, $\bar{\psi}$. Schwinger functions are given by

$$
\langle O(\psi, \bar{\psi}) \rangle = \frac{\int d\psi d\bar{\psi} O(\psi, \bar{\psi}) e^{-S_E(\psi, \bar{\psi})}}{\int d\psi d\bar{\psi} e^{-S_E(\psi, \bar{\psi})}} = \frac{\langle O(\psi, \bar{\psi}) e^{-V(\psi, \bar{\psi})} \rangle_C}{\langle e^{-V(\psi, \bar{\psi})} \rangle_C}
$$

$$
S_E(\psi, \bar{\psi}) = \frac{1}{2}(\psi, C \bar{\psi}) + V(\psi, \bar{\psi})
$$

Berezin integral on a GA $\Lambda = GA(\psi, \overline{\psi})$. the fields $\psi, \overline{\psi}$ are the generators of a Grassmann algebra: $\psi_\alpha \psi_\beta = -\psi_\beta \psi_\alpha$ ($\psi_\alpha^2 = 0$).

 $2(47 - 47)$

⊳ Under /⋅/*^C* the variables ψ,ψ¯ are "Gaussian".

Non-commutative probability **Single 10** s/23

 \lceil

 \triangleright A non-commutative probability space (\mathcal{A} ,ω) is given by a C*-algebra \mathcal{A} and a *state* ω , a linear normalized positive functional on $\mathcal A$ (i.e. $\omega(aa^*)\!\geqslant\!0).$

⊳ For us: random variables with values in a Grassmann algebra Λ are algebra *homo morphisms*

 $\text{Hom}(\Lambda,\mathcal{A})$

(Not canonical!)

 \Rightarrow Classical probability: $\mathcal{A} = L^{\infty}(\Omega; \mathbb{C})$, $\omega(a) = \int_{\Omega} a(\omega) \mathbb{P}(\mathrm{d}\omega)$, *M* manifold. *M* valued r.v. *X*:

 $X \in \text{Hom}(L^{\infty}(\mathcal{M}), \mathcal{A}) \quad f \in L^{\infty}(\mathcal{M}) \to X(f) \in \mathcal{A}, \quad X(fg) = X(f)X(g), \quad X(f^*) = X(f)^*$.

☞ ^L. Accardi, A. Frigerio, and J. T. ^Lewis. Quantum stochastic processes. *Kyoto University. Research Institute for Mathematical Sciences. Publications*, 18(1):97–133, 1982. 10.2977/prims/1195184017

Let *V* be a vector space and Λ*V* the GA generated by *V*:

$$
v, \quad vw := v \otimes w - w \otimes v \, (v \neq w), \quad vv' \, v''
$$

 $\dim(\Lambda V) = 2^{\dim(V)}$.

 $\forall A$ *V*-Grassmann random variable $\Psi \in \mathcal{G}(V) = \text{Hom}(\Lambda V, \mathcal{A})$ is an algebra homomorphism from the Grassmann algebra Λ *V* into \mathcal{A} .

The *law* of $\Psi \in \mathcal{G}(V)$ is the family of its moments $\omega^{\Psi}(F) := \omega(\Psi(F))$ for all $F \in \Lambda V$, also represented by the linear functional ω^{Ψ} : $\Lambda V \rightarrow \mathbb{R}$.

$$
F = \sum_{A} F_A v_A \in \Lambda V, \qquad F(\Psi) := \Psi(F) = \sum_{A} F_A \Psi^A, \qquad \Psi^A := \Psi(v_A)
$$

 $\Psi^{\alpha}\Psi^{\beta} = -\Psi^{\beta}\Psi^{\alpha}$, where $\Psi^{\alpha} = \Psi(v_{\alpha})$.

Two GRV $X \in \mathcal{G}(V)$ and $Y \in \mathcal{G}(W)$

 \triangleright we say that they are **compatible** if the linear map $Z:V\oplus W\rightarrow\mathcal{A}$ given by $Z(v)=X(v)$ if $v \in V$ and $Z(w) = Y(w)$ if $w \in W$, extends to an homomorphism $Z: \Lambda(V \oplus W) \to \mathcal{A}$.

(related to kinematic independence)

⊳ *Independence.* If (*X*1,. . . , *Xn*)∈(*V*1⊕ ⋅⋅⋅ ⊕*Vn*) are compatible Grassmann variables with values in the probability space $({\cal A}, \omega)$, then we say that X_1, \ldots, X_n are (tensor) independent (with respect to the state ω) if, for all $F_i \in \Lambda V_i$, we have that

$$
\omega\left(\prod_{j=1}^k X_j(F_j)\right) = \prod_{j=1}^k \omega(X_j(F_j)).
$$

By GNS construction and Hilbert space products (via an involution), we can always arrange two given GRV to be independent. I.E. construct a product (non-comm) probability space.

Topology on $\mathscr{G}(V)$ 8/23

 $\mathcal{G}(V)$ has a natural complete metric topology given by the distance

$$
d_{G(V)}(X,Y) := \|X - Y\|_{G(V)} = \sup_{v \in V, \|v\|_V = 1} \|X(v) - Y(v)\|_A,
$$
 (1)

where ‖⋅‖*^A* is the natural norm in the ∗-algebra *A*.

Analysis. The embedding of ΔV into $\mathcal A$ allows to use the topology of $\mathcal A$ to do analysis on Grassmann algebras.

Analogy. Gaussian processes in Hilbert space. Abstract Wiener space. "a convenient place where to hang our (analytic) hat on".

Right and Left derivatives

 $∂_R, ∂_L: ΔV → ΔV ⊗ V$

$$
\partial_R(f_1\cdots f_n)=\sum_{k=1}^n\;(-1)^{n-k}(f_1\cdots f_k\cdots f_n)\otimes f_k,\qquad f_1,\ldots,f_n\in V.
$$

$$
\partial_L(f_1\cdots f_n)=\sum_{k=1}^n\;(-1)^{k-1}(f_1\cdots f_k\cdots f_n)\otimes f_k,\qquad f_1,\ldots,f_n\in V.
$$

Lemma. *Let X*,*Y*∈(*V*) *be two compatible Grassmann random variables, then*

$$
G(X+Y) = G(X) + \sum_{k=1}^{n} \frac{1}{k!} m[(X \otimes Y \otimes \cdots \otimes Y)(\partial_K^k G)] + O(\|Y\|_{\mathcal{G}(V)}^{n+1}), \qquad G \in \Lambda V
$$
 (2)

 $[X + Y \in \mathcal{G}(V)$ is the unique hom. such that $(X + Y)(v) = X(v) + Y(v)$ for $v \in V \subseteq \Lambda V$

Grassmann Gaussians 10/23

 \lceil

Let *V* be a real pre-Hilbert space with scalar product $\langle \cdot, \cdot \rangle$ and with an antisymmetric bounded operator $C: V \rightarrow V$.

⊳ A (*V*-)Grassmann (centered) Gaussian variable with correlation *C* is a random variable $X \in \mathcal{G}(V)$ such that

$$
\omega(X(G)X(f)) = \omega(X(\langle \partial_R G, Cf \rangle)), \qquad G \in \Lambda V, f \in V.
$$
 (3)

We also require that $||X||_{\mathcal{G}(V)} < \infty$, i.e that the map $X: V \to \mathcal{A}$ must be continuous with respect the topology induced on *V* by the pre-Hilbert product structure and the (norm) topology of \mathcal{A} .

 \triangleright Wick's rule: $\omega(X(f_1)\cdots X(f_n))=0$ if *n* is odd and if $n=2k$ is even

$$
\omega(X(f_1)\cdots X(f_{2k})) = \sum_{\sigma} (-1)^{\sigma} \prod_{i=1}^{k} \langle f_{\sigma(2i-1)}, C f_{\sigma(2i)} \rangle_V.
$$
 (4)

Brownian motion 11/23

 \triangleright *V*-valued white noise: $\Xi \in \mathscr{G}(L^2(\mathbb{R}_+) \otimes V)$ with correlation

/1[0,*t*]⊗*v*,1[0,*s*]⊗*Cw*/.

 \triangleright *V*-valued Brownian motion $B_t(v) = \Xi(\text{sgn}(t) 1\mathbb{1}_{[0,t]} \otimes v)$ for $v \in V$ and extended: $B_t \in \mathcal{G}(V)$.

$$
\|B_t(v) - B_s(v)\|_{A} \leqslant |t - s|^{1/2} \|v\|_{V}, \quad t, s \geqslant 0, v \in V.
$$

 $B\!=\!(B_t)_{t\in\mathbb{R}_+}$ is a Gaussian process with continuous trajectories. We have that $B_0(v)\!=\!0$,

 $\omega(B_t(v)) = 0$, $\omega(B_t(v)B_s(w)) = \langle v, Cw \rangle (t \wedge s)$, $t, s \ge 0$, $v, w \in V$.

Note that

 \sup $||B_t||_{G(V)} \leq T$. *t*∈[0,*T*]

(Additive) SDEs 12/23

We say that a function $\Psi \in C^0(\mathbb{R},\mathcal{G}(V))$ is a solution to the additive noise SDE with coefficient *G* and starting at −*T* ∈ℝ if, for any *t*⩾−*T* and any *v*∈*V*, we have

$$
\Psi_t(v) - \Psi_{-T}(v) = \int_{-T}^t G(\Psi_s, v) ds + B_t(v) - B_{-T}(v),
$$

where $\Psi_{-T}(v)$ is an element of $\mathcal{G}(V)$, $G:V \to \Lambda_{odd}V$ is a linear map and the integral is the Bochner integral with respect to the norm of \mathcal{A} .

Local existence: by Picard iteration.

Uniqueness: easy.

Global existence? All SDE have polynomial coefficients.

An example 13/23

Let $V = W \oplus W$ and $C \in \mathcal{L}_a(V)$ and $G: V \to \Lambda V$ such that

$$
C = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}, \qquad v^i_{\alpha} \to G(v_{\alpha}) := (-1)^i v^i_{\alpha} \sum_{\beta} \gamma_{\alpha,\beta} (v^1_{\beta} v^2_{\beta}), \qquad v^1_{\gamma}, v^2_{\gamma} \in W
$$

If we denote by $\Psi_t^{i,\alpha} := \Psi_t(v^i_\alpha)$ and $B_t^{i,\alpha} := B_t(v^i_\alpha)$ we obtain

$$
\Psi_t^{i,\alpha} = \Psi_{-T}^{i,\alpha} + \int_{-T}^t \Psi_s^{i,\alpha} \cdot \left((-1)^i \sum_{\beta} \gamma_{\alpha,\beta} (\Psi_s^{1,\beta} \Psi_s^{2,\beta}) \right) ds + B_t^{i,\alpha} - B_{-T}^{i,\alpha}.
$$

Note that *G*:*V* →Λ*V*

$$
G(v_{\alpha}) = \langle C\partial_R U, v_{\alpha} \rangle, \qquad U = \sum_{\beta} \gamma_{\alpha,\beta} (v_{\beta}^1 v_{\beta}^2)(v_{\alpha}^1 v_{\alpha}^2) \in \Lambda V.
$$

Global existence and the contract of the 14/23

Theorem. *There is a unique (global in time) solution to the SDE.*

Proof. Write $\Theta = \Psi - B$, then $\Theta^{\mathfrak{a}} = \Theta^{\mathfrak{a}_1}_t \cdots \Theta^{\mathfrak{a}_n}_t$ with $\mathfrak{a} = a_1 \cdots a_n$ satisfy a finite-dimensional system of linear equations:

$$
d\Theta_t^{\mathfrak{a}} = \sum_{\mathfrak{b},\mathfrak{c}} c_{\mathfrak{b},\mathfrak{c}}^{\mathfrak{a}} B_t^{\mathfrak{b}} \Theta_t^{\mathfrak{c}}.
$$

Conclude by applying Grownwall inequality to

$$
\sum_{\mathfrak{a}} \|\Theta_t^{\mathfrak{a}}\|_{\mathcal{A}} \leqslant \sum_{\mathfrak{a}} \|\Theta_{-T}^{\mathfrak{a}}\|_{\mathcal{A}} + |c| \int_{-T}^{t} \sum_{\mathfrak{c}} \|\Theta_s^{\mathfrak{c}}\|_{\mathcal{A}} \sum_{\mathfrak{b}} \|B_s^{\mathfrak{b}}\|_{\mathcal{A}} ds.
$$

□

Itô formula for solutions of SDEs 15/23

 \lceil

 $C: V \rightarrow V$ is an antisymmetric linear map and

 $Q_C \in \mathcal{L}(\Lambda V \otimes V \otimes V, \Lambda V)$ (*f* $\otimes v \otimes w$) $\mapsto Q_C(f \otimes v \otimes w) = \langle v, Cw \rangle_V \cdot f$

 $G:V \to \Lambda V$, $K = \sum_{i=1}^{N} K_i \otimes v_i \in \Lambda V \otimes V$ we denote by $K \cdot G \in \Lambda V$

$$
K \cdot G = \sum_{i=1,\ldots,N} K_i G(v_i).
$$

Theorem. *Let* Ψ*^t be the solution to the SDE then for any H* ∈Λ*V and* −*T* ⩽*s*⩽*t we have*

$$
\omega(H(\Psi_t)) = \omega(H(\Psi_s)) + \int_s^t \omega\bigg(\Psi_s\bigg(\partial_R H \cdot G + \frac{1}{2}Q_C(\partial_R^2 H)\bigg)\bigg) ds.
$$

Invariant state 16/23

If ω is a positive state, *X*∈*G*(*V*) and *U*∈Λ*V* we define the (generally nonpositive) state

 $\omega^{X,U}(\cdot) = \omega(\cdot e^{-2U(X)})$

Definition. *We say that e*−2*^U is an invariant measure of the SDE with initial condition* Ψ−*^T if for any H* ∈Λ*V and any t*,*s*⩾−*T we have*

$$
\omega^{\Psi_{-T},U}(H(\Psi_s)) = \omega^{\Psi_{-T},U}(H(\Psi_t)) = \omega(H(\Psi_{-T})e^{-2U(\Psi_{-T})}).
$$

Theorem. For any even $U \in \Lambda_{\text{even}}V$, the SDE

$$
\Psi_t(v) = X(v) + \int_{-T}^t (\Psi_s(Av) + \Psi_s(\langle C\partial_R U, v \rangle)) ds + B_t(v) - B_{-T}
$$

i.e. the SDE with drift

$$
G(\cdot) = A \cdot + \langle C \partial_R U, \cdot \rangle,
$$

where B is a Brownian motion with correlation C and X is an independent Gaussian initial condition with correlation

$$
C_A := \int_0^\infty e^{A^T s} C e^{As} ds
$$

has ω*^X*,*^U as invariant measure provided*

$$
A^{\mathrm{T}} C_A - C_A A = 0.
$$

Stationary solution 1972 1972 1972

Take the function *G* with the special form

 $G(v) = Av + \lambda \tilde{G}(v)$

where $A \in \mathcal{L}(V,V)$ is a linear map such that $A < 0$, $\tilde{G}: V \to \Lambda_{\text{odd}} V$, and $\lambda \in \mathbb{R}$ small.

Theorem. *(stationary solution) Under the previous hypotheses, for* |λ| *small enough, the following equation*

$$
\Psi_t^s(v) = \lambda \int_{-\infty}^t \tilde{G}(\Psi_{\tau}^s, e^{A(t-\tau)}v) d\tau + B_t^A(v)
$$

where $B_t^A(v) = \Xi(\mathbb{I}_{(-\infty,t]}(\cdot) \otimes e^{A(t-\cdot)}v)$, has a unique solution.

⊳ Key fact for proof : sup*^t*∈ℝ ‖*B^t ^A*‖*G*(*V*)<+∞.

Stochastic quantization and the state of the state of

Theorem. *If* $G(\cdot) = A \cdot + \lambda \langle C \partial_R U, \cdot \rangle$ *for* |λ| *small enough, we have that, for any t*∈ℝ *and for any H* ∈Λ*V,* $\omega^{X,U}(H(X))_\omega$ $\omega^{X,U}(1)$ – $=\frac{W(1-(1))^{2}}{(1-(2))^{2}}$ $ω(H(X)e^{-2U(X)})$ – $ω(1)$ $\omega(e^{-2U(X)})$ $=\omega(H(\Psi_t^s))$

where X is a Gaussian V-random variable with covariance CA.

Series expansion of solutions **EXECUTE:** 20/23

$$
\Psi_t(v) = \Phi_t(v) + \int_0^t \Psi_s(e^{-(t-s)}F(v))\mathrm{d} s, \qquad t \geq 0, v \in V,
$$

$$
\Psi_t = \sum_{\tau} J_{\tau}(\Phi)(t) = J_{\bullet}(\Phi)(t) + J_{\left[\bullet \bullet \bullet\right]}(\Phi)(t) + J_{\left[\left[\bullet \bullet \bullet\right] \bullet \bullet\right]}(\Phi)(t) + \cdots + J_{\left[\left[\bullet \bullet \bullet\right] \bullet \bullet\right] \bullet \left[\bullet \bullet \left[\bullet \bullet\right] \bullet\right]}(\Phi)(t) + \cdots
$$

The series is indexed by (planar) trees τ which have branches of order 3 and where *J* is a multilinear integral operator such that

$$
J_{\bullet}(\Phi)(t)^{\alpha} = \Phi_t(v_{\alpha})
$$

$$
J_{[\tau_1\tau_2\tau_3]}(\Phi)(t)^{\alpha} = \sum_{\alpha_1,\alpha_2,\alpha_3} \int_0^t e^{-(t-s)} \lambda^{\alpha}_{\alpha_1,\alpha_2,\alpha_3} J_{\tau_1}(\Phi)(s)^{\alpha_1} J_{\tau_2}(\Phi)(s)^{\alpha_2} J_{\tau_3}(\Phi)(s)^{\alpha_3} ds
$$

where • denotes the simple tree and $[\tau_1, \ldots, \tau_3]$ the tree with branches τ_1, \ldots, τ_3 .

Theorem. There exists an increasing function $E(t)$ depending on N, $|\lambda|$, *m* such that *for all* $m > 0$,

> $\sup \|\Psi_s\| \leqslant E(t)$, $s \leq t$

where recall that $(\Psi_t)_{t>0}$ *is the unique solution of the equation.*

Key Lemma. Assume $m \ge 1$. For any $n \ge 1$ and any $t_1, \ldots, t_n \in [0, T]$, $\alpha_1, \ldots, \alpha_n \in \{1, \ldots, N\}$ *we have*

$$
\|\Phi_{t_1}^{\alpha_1}\!\!\cdots\!\Phi_{t_n}^{\alpha_n}\| \leqslant \frac{C^{n+1}T^{n/2}}{(n!)^{1/2}}
$$

where C is a universal constant depending only on N.

Outlook

- Convenient language for Euclidean fermions. Replace Berezin integral.
- In the paper: construction of solutions of SPDEs in the whole space driven by white noise, but with regularized interaction.

Open problems

• Ito integral? Stochastic calculus? Equations with multiplicative noise?

 B_t **d** B_t

is an unbounded operator...

- Renormalization? Wick products can be unbounded operators...
- How to handle unbounded operators?

Thanks, and happy new year!