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Motivation: Stochastic quantisation of Fermionic Euclidean QFT

Outline

� What is stochasic quantisation (SQ).

� Fermionic EQFT → Grassmann algebras/integration (GA)

� Analysis/Probability on GA? Non-commutative probability setting.

� Grassmann Gaussian r.v./Brownian motion

� Stochastic differential equations and invariant „states“

� Random fields, Stochastic PDEs, large volume limit in Yukawa-type models.

☞ Grassmannian stochastic analysis and the stochastic quantization of Euclidean Fermions | joint work
with Sergio Albeverio, Luigi Borasi, Francesco C. De Vecchi. ArXiv:2004.09637
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SQ describes a probability measure (law of a RV) via an equation (for the RV). Basic
example: Langevin dynamics (reversible Markovian dynamics wrt. to a prob. measure).

dψ=−∇V(ψ)dt+dBt, t⩾0.

(ψ(t))t is a stochastic process e.g. with values in ℝN. V:ℝN →ℝ a (potential) function.
Invariant Gibbs measure μ:

𝔼[F(ψ(t))]→�
ℝN

F(x)e−2V(x)dx
ZV

.

EQFT: Wick rotation of QFT. t→τ= it ℝd×ℝ→ℝd+1 Euclidean space. Wightman func-
tions → Schwinger functions.
Fermions: quantum particles satisfying Fermi–Dirac statistics (i.e. living in the antisym-
metric tensor of one-particle states).
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⊳ K. Osterwalder and R. Schrader. Euclidean Fermi fields and a Feynman-Kac formula
for Boson-Fermions models. Helvetica Physica Acta, 46:277–302, 1973.

⊳ Ψ,Ψ∗→ψ,ψ̄. Schwinger functions are given by

//O(ψ, ψ̄)//= ∫dψdψ̄ O(ψ, ψ̄)e−SE(ψ,ψ̄)

∫dψdψ̄e−SE(ψ,ψ̄) = �O(ψ, ψ̄)e−V(ψ,ψ̄)�C

�e−V(ψ,ψ̄)�C

SE(ψ, ψ̄)= 1
2 (ψ,C ψ̄)+V(ψ, ψ̄)

Berezin integral on a GA Λ=GA(ψ,ψ̄). the fields ψ,ψ̄ are the generators of a Grassmann
algebra: ψαψβ=−ψβψα (ψα

2=0).

⊳ Under //⋅//C the variables ψ,ψ̄ are “Gaussian”.



Non-commutative probability 5/23

[ ]

⊳ A non-commutative probability space (𝒜,ω) is given by a C∗-algebra 𝒜 and a state
ω, a linear normalized positive functional on 𝒜 (i.e. ω(aa∗)⩾0).

⊳ For us: random variables with values in a Grassmann algebra Λ are algebra homo-
morphisms

Hom(Λ,𝒜)

(Not canonical!)
⊳ Classical probability:𝒜=L∞(Ω;ℂ), ω(a)=∫Ωa(ω)ℙ(dω), ℳ manifold. ℳ valued r.v.
X:

X∈Hom(L∞(ℳ),𝒜) f ∈L∞(ℳ)→X( f )∈𝒜, X( fg)=X( f )X(g), X( f ∗)=X( f )∗.

☞ L. Accardi, A. Frigerio, and J. T. Lewis. Quantum stochastic processes. Kyoto University. Research
Institute for Mathematical Sciences. Publications, 18(1):97–133, 1982. 10.2977/prims/1195184017



Let V be a vector space and ΛV the GA generated by V:

v, vw≔v⊗w−w⊗v (v≠w), vv′ v′′, . . . .

dim(ΛV)=2dim(V).
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
A V-Grassmann random variable Ψ∈𝒢(V)=Hom(ΛV,𝒜) is an algebra homomorphism
from the Grassmann algebra ΛV into 𝒜.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
The law of Ψ∈𝒢(V) is the family of its moments ωΨ(F): =ω(Ψ(F)) for all F ∈ΛV, also
represented by the linear functional ωΨ:ΛV →ℝ.

F=�
A

FA vA∈ΛV, F(Ψ)≔Ψ(F)=�
A

FA ΨA, ΨA≔Ψ(vA)

ΨαΨβ=−ΨβΨα, where Ψα=Ψ(vα).



Two GRV X∈𝒢(V) and Y∈𝒢(W)

⊳ we say that they are compatible if the linear map Z:V ⊕W→𝒜 given by Z(v)=X(v)
if v∈V and Z(w)=Y(w) if w∈W, extends to an homomorphism Z:Λ(V ⊕W)→𝒜.

(related to kinematic independence)

⊳ Independence. If (X1, . . . ,Xn)∈𝒢(V1⊕ ⋅ ⋅ ⋅ ⊕Vn) are compatible Grassmann variables
with values in the probability space (𝒜, ω), then we say that X1, . . . , Xn are (tensor)
independent (with respect to the state ω) if, for all Fj∈ΛVj, we have that

ω((((((((((((((((
(�

j=1

k

Xj(Fj)))))))))))))))))
)=�

j=1

k

ω(Xj(Fj)).

By GNS construction and Hilbert space products (via an involution), we can always arrange two given GRV
to be independent. I.E. construct a product (non-comm) probability space.
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𝒢(V) has a natural complete metric topology given by the distance

dG(V)(X,Y)≔‖X−Y‖G(V)= sup
v∈V,|v|V=1

‖X(v)−Y(v)‖A, (1)

where ‖⋅‖A is the natural norm in the ∗-algebra A.

Analysis. The embedding of ΛV into 𝒜 allows to use the topology of 𝒜 to do
analysis on Grassmann algebras.

Analogy. Gaussian processes in Hilbert space. Abstract Wiener space. “a convenient
place where to hang our (analytic) hat on”.



Right and Left derivatives

∂R, ∂L:ΛV →ΛV ⊗V

∂R( f1⋅ ⋅ ⋅ fn)=�
k=1

n

(−1)n−k( f1⋅ ⋅ ⋅fk ⋅ ⋅ ⋅ fn)⊗ fk, f1, . . . , fn∈V.

∂L( f1⋅ ⋅ ⋅ fn)=�
k=1

n

(−1)k−1( f1⋅ ⋅ ⋅fk ⋅ ⋅ ⋅ fn)⊗ fk, f1, . . . , fn∈V.

Lemma. Let X,Y∈𝒢(V) be two compatible Grassmann random variables, then

G(X+Y)=G(X)+�
k=1

n 1
k!m[(X⊗Y⊗ ⋅⋅ ⋅⊗Y)(∂R

k G)]+O(‖Y‖𝒢(V)
n+1 ), G∈ΛV (2)

[X+Y∈𝒢(V) is the unique hom. such that (X+Y)(v)=X(v)+Y(v) for v∈V ⊆ΛV]
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Let V be a real pre-Hilbert space with scalar product //⋅, ⋅//and with an antisymmetric
bounded operator C:V →V.
⊳ A (V-)Grassmann (centered) Gaussian variable with correlation C is a random variable
X∈𝒢(V) such that

ω(X(G)X( f ))=ω(X( //∂RG,Cf //)), G∈ΛV, f ∈V. (3)

We also require that ‖X‖𝒢(V)<∞, i.e that the map X:V →𝒜 must be continuous with
respect the topology induced on V by the pre-Hilbert product structure and the (norm)
topology of 𝒜.
⊳ Wick's rule: ω(X( f1)⋅ ⋅ ⋅X( fn))=0 if n is odd and if n=2k is even

ω(X( f1)⋅ ⋅ ⋅X( f2k))=�
σ

(−1)σ�
i=1

k

// fσ(2i−1),Cfσ(2i)//V. (4)
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⊳ V-valued white noise: Ξ∈𝒢(L2(ℝ+)⊗V) with correlation

//1[0,t]⊗v,1[0,s]⊗Cw//.

⊳V-valued Brownian motion Bt(v)=Ξ(sgn(t)1[0,t]⊗v) for v∈V and extended: Bt∈𝒢(V).

‖Bt(v)−Bs(v)‖A⩽|t− s|1/2‖v‖V, t, s⩾0,v∈V.

B= (Bt)t∈ℝ+ is a Gaussian process with continuous trajectories. We have that B0(v)=0,

ω(Bt(v))=0, ω(Bt(v)Bs(w))= //v,Cw//(t∧ s), t, s⩾0, v,w∈V.

Note that

sup
t∈[0,T]

‖Bt‖G(V)≲T.
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We say that a function Ψ⋅ ∈ C0(ℝ, 𝒢(V)) is a solution to the additive noise SDE with
coefficient G and starting at −T ∈ℝ if, for any t⩾−T and any v∈V, we have

Ψt(v)−Ψ−T(v)=�
−T

t
G(Ψs,v)ds+Bt(v)−B−T(v),

where Ψ−T(v) is an element of 𝒢(V), G:V→ΛoddV is a linear map and the integral is the
Bochner integral with respect to the norm of 𝒜.

Local existence: by Picard iteration.
Uniqueness: easy.

Global existence? All SDE have polynomial coefficients.
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Let V =W ⊕W and C∈ℒa(V) and G:V →ΛV such that

C=((((((((( 0 In
−In 0 ))))))))), vα

i →G(vα)≔ (−1)ivα
i �

β
γα,β(vβ

1 vβ
2), vγ

1,vγ
2 ∈W

If we denote by Ψt
i,α≔Ψt(vα

i ) and Bt
i,α≔Bt(vα

i ) we obtain

Ψt
i,α=Ψ−T

i,α +�
−T

t
Ψs

i,α ⋅((((((((((((−1)i�
β

γα,β�Ψs
1,βΨs

2,β�)))))))))))ds+Bt
i,α−B−T

i,α .

Note that G:V →ΛV

G(vα)= //C∂RU,vα//, U=�
β

γα,β(vβ
1 vβ

2)(vα
1 vα

2)∈ΛV.
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Theorem. There is a unique (global in time) solution to the SDE.

Proof. Write Θ=Ψ−B, then Θ𝔞=Θt
a1⋅ ⋅ ⋅Θt

an with 𝔞=a1⋅ ⋅ ⋅an satisfy a finite-dimensional
system of linear equations:

dΘt
𝔞=�

𝔟,𝔠
c𝔟,𝔠
𝔞 Bt

𝔟Θt
𝔠.

Conclude by applying Grownwall inequality to

�
𝔞

‖Θt
𝔞‖𝒜⩽�

𝔞
‖Θ−T

𝔞 ‖𝒜+|c|�
−T

t
�
𝔠

‖Θs
𝔠‖𝒜�

𝔟
‖Bs

𝔟‖𝒜ds.

□
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C:V →V is an antisymmetric linear map and

QC∈L(ΛV ⊗V ⊗V,ΛV) ( f ⊗v⊗w)↦QC( f ⊗v⊗w)= //v,Cw//V ⋅ f

G:V →ΛV, K=∑i=1
N Ki⊗vi∈ΛV ⊗V we denote by K ⋅G∈ΛV

K ⋅G= �
i=1, . . . .,N

Ki G(vi).

Theorem. Let Ψt be the solution to the SDE then for any H∈ΛV and −T ⩽ s⩽ t we
have

ω(H(Ψt))=ω(H(Ψs))+�
s

t
ω�Ψs�∂RH ⋅G+ 1

2QC(∂R
2H)��ds.
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If ω is a positive state, X∈G(V) and U∈ΛV we define the (generally nonpositive) state

ωX,U(⋅)=ω(⋅e−2U(X))

Definition. We say that e−2U is an invariant measure of the SDE with initial condition
Ψ−T if for any H∈ΛV and any t, s⩾−T we have

ωΨ−T,U(H(Ψs))=ωΨ−T,U(H(Ψt))=ω(H(Ψ−T)e−2U(Ψ−T)).



Theorem. For any even U∈ΛevenV, the SDE

Ψt(v)=X(v)+�
−T

t
(Ψs(Av)+Ψs( //C∂RU,v//))ds+Bt(v)−B−T

i.e. the SDE with drift

G(⋅)=A ⋅+ //C∂RU, ⋅//,

where B is a Brownian motion with correlation C and X is an independent Gaussian
initial condition with correlation

CA≔�
0

∞
eAΤsCeAsds

has ωX,U as invariant measure provided

AΤ CA−CAA=0.
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Take the function G with the special form

G(v)=Av+λG̃(v)

where A∈L(V,V) is a linear map such that A<0, G̃:V →ΛoddV, and λ∈ℝ small.

Theorem. (stationary solution) Under the previous hypotheses, for |λ| small
enough, the following equation

Ψt
s(v)=λ�

−∞

t
G̃(Ψτ

s, eA(t−τ)v)dτ+Bt
A(v)

where Bt
A(v)=Ξ(𝕀(−∞,t](⋅)⊗ eA(t−⋅)v), has a unique solution.

⊳ Key fact for proof : supt∈ℝ‖Bt
A‖G(V)<+∞.
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Theorem. If

G(⋅)=A ⋅+λ //C∂RU, ⋅//,

for |λ| small enough, we have that, for any t∈ℝ and for any H∈ΛV,

ωX,U(H(X))
ωX,U(1)

= ω(H(X)e−2U(X))
ω(e−2U(X))

=ω(H(Ψt
s))

where X is a Gaussian V-random variable with covariance CA.
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Ψt(v)=Φt(v)+�
0

t
Ψs(e−(t−s)F(v))ds, t⩾0,v∈V,

Ψt=�
τ

Jτ(Φ)(t)= J•(Φ)(t)+ J[•••](Φ)(t)+ J[[•••]••](Φ)(t)+ ⋅⋅ ⋅+ J[[•••][•[••[•••]]•]•](Φ)(t)+ ⋅⋅ ⋅

The series is indexed by (planar) trees τ which have branches of order 3 and where J is
a multilinear integral operator such that

J•(Φ)(t)α=Φt(vα)

J[τ1τ2τ3](Φ)(t)α= �
α1,α2,α3

�
0

t
e−(t−s)λα1,α2,α3

α Jτ1(Φ)(s)α1Jτ2(Φ)(s)α2Jτ3(Φ)(s)α3ds

where • denotes the simple tree and [τ1, . . . ,τ3] the tree with branches τ1, . . . , τ3.
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Theorem. There exists an increasing function E(t) depending on N,|λ|,m such that
for all m>0,

sup
s⩽t

‖Ψs‖⩽E(t),

where recall that (Ψt)t⩾0 is the unique solution of the equation.

Key Lemma. Assume m⩾1. For any n⩾1 and any t1, . . . , tn∈ [0,T], α1, . . . , αn∈ {1, . . . ,N}
we have

‖Φt1
α1⋅ ⋅ ⋅Φtn

αn‖⩽ Cn+1Tn/2

(n!)1/2

where C is a universal constant depending only on N.



Outlook
• Convenient language for Euclidean fermions. Replace Berezin integral.

• In the paper: construction of solutions of SPDEs in the whole space driven by white
noise, but with regularized interaction.

Open problems
• Ito integral? Stochastic calculus? Equations with multiplicative noise?

�BtdBt

is an unbounded operator. ..

• Renormalization? Wick products can be unbounded operators.. .

• How to handle unbounded operators?



Thanks, and happy new year!


