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Part I ⋅ stochastic analysis & Euclidean QFTs



Euclidean quantum fields

⊳ Functional integral representation φ:ℝd→ℝ, d=1,2, 3,(4)

�
𝒮′(ℝd)

O(φ)ν(dφ)= 1
Z�

𝒮′(ℝd)
O(φ)e−S(φ)dφ,

S(φ)=�
ℝd

1
2 |∇φ(x)|2 + 1

2m
2|φ(x)|2 +V(φ(x))dx

ill-defined:
• large scale problems: the integral in S(φ) extends over all the space, sample

paths not expected to decay at infinity in any way.
• small scale problems: sample paths are not expected to be functions, but only

distributions, the quantity V(φ(x)) does not make sense.
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other approaches

⊳ (renormalized) Dyson–Schwinger equations / integration by parts formulas

�F(φ)δS(φ)
δφ + δF(φ)

δφ �=0

[recent paper with M. Turra and F. de Vecchi ⋅ “A singular integration by parts formula for the exponential Euclidean QFT on
the plane” ⋅ arXiv:2212.05584]

⊳Cohomological approach (Batalin–Vilkovisky) / factorisation algebras [e.g. Costello–Gwil-

liam]



stochastic quantisation

Parisi–Wu ('84) introduce a stationary stochastic evolution associated with the EQF

∂tΦ(t,x)=−δS(Φ(t,x))
δΦ +η(t,x), t⩾0,x∈ℝd,

with η space-time white noise

⟨Φ(t,x1)⋅ ⋅ ⋅Φ(t,xn)⟩= 1
Z�

𝒮′(ℝd)
φ(t,x1)⋅ ⋅ ⋅φ(t,xn)e−S(φ)dφ, t∈ℝ

transport interpretation: the map

η↦Φ(t, ⋅)

sends the Gaussian measure of the space-time white noise to the EQF measure.



an (pre)history of stochastic quantisation (personal & partial)

• 1984 – Parisi/Wu – SQ (for gauge theories)
• 1985 – Jona-Lasinio/Mitter – “On the stochastic quantization of field theory” (rigorous SQ

for Φ2
4 on bounded domain)

• 1988 – Damgaard/Hüffel – review book on SQ (theoretical physics)
• 1990 – Funaki – Control of correlations via SQ (smooth reversible dynamics)
• 1990–1994 – Kirillov – “Infinite-dimensional analysis and quantum theory as semimartin-

gale calculus”, “On the reconstruction of measures from their logarithmic derivatives”,
“Two mathematical problems of canonical quantization.”

• 1993 – Ignatyuk/Malyshev/Sidoravichius – “Convergence of the Stochastic Quantization
Method I,II” [Grassmann variables + cluster expansion]

• 2000 – Albeverio/Kondratiev/Röckner/Tsikalenko – “A Priori Estimates for Symmetrizing
Measures. . .” [Gibbs measures via IbP formulas]

• 2003 – Da Prato/Debussche – “Strong solutions to the stochastic quantization equations”
• 2014 – Hairer – Regularity structures, local dynamics of Φ3

4

• 2017 – Mourrat/Weber – coming down from infinity for Φ3
4

• 2018 – Albeverio/Kusuoka – “The invariant measure and the flow associated to Φ3
4 . . .”

• 2021 – Hofmanova/G. – Global space-time solutions for Φ3
4 and verification of axioms

• 2020-2021 – Chandra/Chevyrev/Hairer/Shen – SQ for Yang–Mills 2d/3d (local theory)



what is stochastic quantisation?



analysis

Data aequatione quotcunque fluentes quantitates involvente, fluxiones invenire; et vice versa (Newton)

[Given an equation involving any number of fluent quantities to find the fluxions, and vice versa]



diffusion processes

The word “random” comes from a French hunting term: “randon” designates
the erratic course of the deer which zigzags trying to escape the dogs. The
word also gave “randonnée” (hiking) in French.



Ito's idea

Ito arrived to his calculus while trying to understand Feller's theory of diffusions an
evolution in the space of probability measures and he introduced stochastic differ-
ential equations to define a map (the Ito map) which send Wiener measure to the
law of a diffusion.

⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒
Φ

Bt Xt



stochastic analysis

[...] there now exists a reasonably well-defined amalgam of prob-
abilistic and analytic ideas and techniques that, at least among the
cognoscenti, are easily recognized as stochastic analysis. Nonetheless,
the term continues to defy a precise definition, and an understanding
of it is best acquired by way of examples.

(D. Stroock, “Elements of stochastic calculus and analysis ”, Springer,
2018)

Nowadays: Ito integral, Ito formula, stochastic differential equations, Girsanov's formula,
Doob's transform, stochastic flows, Tanaka formula, local times, Malliavin calculus, Skorokhod
integral, white noise analysis, martingale problems, rough path theory. . .
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stochastic analysis

Newton's calculus Ito's calculus

planet orbit object Markov diffusion

(x,y)∈𝒪⊆ℝ2 global description Pt(x,dy)

α(x−x0)2 +β(y−y0)2 =γ . Pt+s(x, dy)=∫Ps(x, dz)Pt(z,dy)

t change parameter t

x(t+δt)≈x(t)+aδt+o(δt) local description Pδt(x, dy)≈ e− (y−x−b(x)δt)a(x)−1(y−x−b(x)δt)
2δt

dy
Zx(δt)d/2

at+bt2 + ⋅⋅ ⋅ building block (Wt)t

(ẍ(t), ÿ(t))=F(x(t),y(t)) local/global link dXt =a(Xt)dWt+b(Xt)dt

⊳ other examples: rough paths, regularity structures, SLE,. . .



stochastic quantisation as a stochastic analysis

Ito's calculus stoch. quantisation

Markov diffusion object EQF

Pt(x, dy) global description
1
Z∫𝒮′(ℝd)O(φ)e

−S(φ)dφ

Pt+s(x, dy)=∫Ps(x, dz)Pt(z, dy) . �F(φ)δS(φ)
δφ + δF(φ)

δφ �=0

t change parameter t

Pδt(x, dy)≈ e− (y−x−b(x)δt)a(x)−1(y−x−b(x)δt)
2δt

dy
Zx(δt)d/2 local description ϕ(t+δt)≈αϕ(t)+βδX(t)+ ⋅⋅ ⋅

(Wt)t building block
(X(t))t

∂tX= 1
2[(Δx−m2)X]+ξ

dXt=a(Xt)dWt+ b(Xt)dt local/global link ∂tϕ= 1
2[(Δx−m2)ϕ−V ′(ϕ)]+ξ



stochastic analysis of EQFs

• parabolic stochastic quantisation

∂tϕ(t)= 1
2[(Δx−m2)ϕ(t)−V ′(ϕ(t))]+ξ(t)

[MG, M. Hofmanová ⋅ Global Solutions to Elliptic and Parabolic Φ4 Models in Euclidean Space ⋅ Comm. Math. Phys.
2019 |MG, M. Hofmanová ⋅ A PDE Construction of the Euclidean Φ3

4 Quantum Field Theory ⋅ Comm. Math. Phys. 2021]

• canonical stochastic quantisation ⋅ singular stochastic wave equations

∂t
2ϕ(t)+∂tϕ(t)= 1

2[(Δx−m2)ϕ(t)−V ′(ϕ(t))]+ξ(t)

[MG, H. Koch, T. Oh ⋅ Renormalization of the two-dimensional stochastic non- linear wave equations ⋅ Trans. Am. Math.
Soc. 2018 | MG, H. Koch, and T. Oh ⋅ Paracontrolled Approach to the Three-Dimensional Stochastic Nonlinear Wave
Equation with Quadratic Nonlinearity ⋅ Jour. Europ. Math. Soc. 2022]



• elliptic stochastic quantisation ⋅ supersymmetric proof

−Δzϕ(z)= 1
2[(Δx−m2)ϕ(z)−V ′(ϕ(z))]+ξ(z), z∈ℝ2

[S. Albeverio, F. De Vecchi, MG ⋅ Elliptic Stochastic Quantization ⋅ Ann. Prob. 2020]

• variational method/FBSDE ⋅ stochastic control problem ⋅ Γ-convergence

log� e f (φ)−S(φ)dφ=inf
u

𝔼� f(Φ∞
u )+V(Φ∞

u )+ 1
2�

0

∞
|us|ds�

scale parameter t∈[0,∞] ⋅ Φt
u=Xt+∫0

tJsusds
[N. Barashkov, MG ⋅ A Variational Method for Φ3

4 ⋅ Duke Math. Jour. 2020]



Part II ⋅ the FBSDE for Grassmann measures



Euclidean Fermions

Fermions: quantum particles satisfying Fermi–Dirac statistics

EQFT: Wick rotation of QFT. t→τ = it, ℝd× ℝ→ℝd+1 Euclidean space. Wightman
functions → Schwinger functions.

Ψ,Ψ∗ →ψ,ψ̄.

☞ K. Osterwalder and R. Schrader. Euclidean Fermi fields and a Feynman-Kac formula for
Boson-Fermions models. Helvetica Physica Acta, 46:277–302, 1973.

Euclidean fermion fields ψ, ψ̄ form a Grassmann algebra
ψαψβ =−ψβψα (ψα

2 =0).



Schwinger functions

⊳ Schwinger functions are given by a Berezin integral on Λ=GA(ψ, ψ̄)

⟨O(ψ, ψ̄)⟩= ∫dψdψ̄ O(ψ, ψ̄)e−SE(ψ,ψ̄)

∫dψdψ̄e−SE(ψ,ψ̄) = �O(ψ, ψ̄)e−V(ψ,ψ̄)�C
�e−V(ψ,ψ̄)�C

SE(ψ, ψ̄)= 1
2(ψ,C ψ̄)+V(ψ, ψ̄) ⟨O(ψ, ψ̄)⟩C= ∫dψdψ̄O(ψ, ψ̄)e−1

2(ψ,Cψ̄)

∫dψdψ̄ e−1
2(ψ,Cψ̄)

⊳ Under ⟨⋅⟩C the variables ψ,ψ̄ are “Gaussian” (Wicks' rule):

⟨ψ(x1)⋅ ⋅ ⋅ψ(x2n)⟩C=�
σ

(−1)σ⟨ψ(xσ(1))ψ(xσ(2))⟩C⋅ ⋅ ⋅⟨ψ(xσ(2n−1))ψ(xσ(2n−1))⟩C



algebraic probability

⊳ a non-commutative probability space (𝒜, ω) is given by a C∗-algebra 𝒜 and a
state ω, a linear normalized positive functional on 𝒜 (i.e. ω(aa∗)⩾0).

⊳ a random variable is an algebra homomorphism into 𝒜
☞ L. Accardi, A. Frigerio, and J. T. Lewis. Quantum stochastic processes. Kyoto Uni-
versity. Research Institute for Mathematical Sciences. Publications, 18(1):97–133, 1982.
10.2977/prims/1195184017

example. (classical) random variable X with values on a manifold ℳ?

Ω →→→→→→→→→
X

ℳ→→
f

ℝ

f ∈L∞(ℳ;ℂ)→X( f)∈𝒜=L∞(Ω;ℂ), X( fg)=X( f)X(g), X( f ∗)=X( f)∗.

algebraic data: 𝒜=L∞(Ω;ℂ), ω(a)=∫Ωa(ω)ℙ(dω), X∈Hom∗(L∞(ℳ),𝒜).



Grassmann probability

⊳ random variables with values in a Grassmann algebra Λ are algebra homomorph-
isms

𝒢(V)=Hom(ΛV,𝒜)

The embedding of ΛV into 𝒜 allows to use the topology of 𝒜 to do analysis
on Grassmann algebras.

d𝒢(V)(X,Y)≔ ‖X−Y‖𝒢(V)= sup
v∈V,|v|V=1

‖X(v)−Y(v)‖𝒜,

analogy. Gaussian processes in Hilbert space. Abstract Wiener space. “a con-
venient place where to hang our (analytic) hat on”.



back to QFT: IR & UV problems

QFT requires to consider the formula (Fermionic path integral)

⟨O(ψ, ψ̄)⟩C,V = �O(ψ, ψ̄)e−V(ψ,ψ̄)�C
�e−V(ψ,ψ̄)�C

with local interaction

V(ψ, ψ̄)=�
ℝd

P(ψ(x), ψ̄(x))dx

and singular covariance kernel (due to reflection positivity)

⟨ψ̄(x)ψ(y)⟩∝ |x−y|−α

this gives an ill-defined representation
• large scale (IR) problems
• small scale (UV) problems

well understood in the constructive QFT literature (Gawedzki, Kupiainen, Lesniewski,
Rivasseau, Seneor, Magnen, Feldman, Salmhofer, Mastropietro, Giuliani, . . . )



what about stochastic quantisation for Grassmann measures?

☞ Ignatyuk/Malyshev/Sidoravichius | “Convergence of the Stochastic Quantization Method
I,II”, 1993. [Grassmann variables + cluster expansion]

weak topology + solution of equations in law + infinite volume limit but no removal
of the UV cutoff

*
☞ “Grassmannian stochastic analysis and the stochastic quantization of Euclidean Fermions”
| joint work with Sergio Albeverio, Luigi Borasi, Francesco C. De Vecchi. arXiv:2004.09637
(PTRF)

algebraic probability viewpoint + strong solutions via Picard interation + infinite
volume limit but no removal of the UV cutoff

☞ “A stochastic analysis of subcritical Euclidean fermionic field theories” | joint work with
Francesco C. De Vecchi and Luca Fresta. arXiv:2210.15047

alg. prob. + forward-backward SDE + infinite volume limit & removal of IR cutoff
in the whole subcritical regime



Grassmann stochastic analysis

⊳ filtration (𝒜t)t⩾0, conditional expectation ωt:𝒜→𝒜t,

ωt(ABC)=Aωt(B)C, A,C∈𝒜t.

⊳ Brownian motion (Bt)t⩾0 with Bt∈𝒢(V)

ω(Bt(v)Bs(w))= ⟨v,Cw⟩(t∧ s), t, s⩾0,v,w∈V.

‖Bt−Bs‖≲ |t− s|1/2.

⊳ Ito formula

Ψt=Ψ0 +�
0

t
Bu(Ψu)du+Xt, ω(Xt⊗Xs)=Ct∧s

ωs(Ft(Ψt))=ωs(Fs(Ψs))+�
s

t
ωs[∂uFu(Ψu)+ℒFu(Ψu)]du,

ℒuFu= 1
2DĊu

2 Fu+ ⟨Bu,DFu⟩



the forward-backward SDE

[joint work with Francesco C. De Vecchi and Luca Fresta]

let Ψ be a solution of

dΨs= Ċs ωs(DV(ΨT))ds+dXs, s∈[0,T], Ψ0 =0.

where (Xt)t is Gaussian martingale with covariance ω(Xt⊗Xs)=Ct∧s. Then

ω(eV(XT))ω(e−V(ΨT))=1

and

ω(O(ΨT))= ω(O(XT)eV(XT))
ω(eV(XT))

= ⟨O(ψ)eV(ψ)⟩CT

⟨eV(ψ)⟩CT

for any O.

⊳ this FBSDE provides a stochastic quantisation of the Grassmann Gibbs measure
along the interpolation (Xt)t of its Gaussian component



the backwards step

let Ft be such that FT =DV. By Ito formula

Bs≔ωs(DV(ΨT))=ωs(FT(ΨT))

=Fs(Ψs)+�
s

T
ωs��∂uFu(Ψu)+ 1

2DĊu

2 Fu(Ψu)+ ⟨Bu, ĊuDFu(Ψu)⟩��du

=Fs(Ψs)+�
s

T
ωs��∂uFu(Ψu)+ 1

2DĊu

2 Fu(Ψu)+ ⟨Bu, ĊuDFu(Ψu)⟩��du

letting Rt=Bt−Fs(Ψs) we have now the forwards-backwards system

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{ Ψt=∫0

t Ċs (Fs(Ψs)+Rs)ds+Xt,

Rt=∫t
T ωt[Qu(Ψu)]du+∫t

T ωt[⟨Ru, ĊuDFu(Ψu)⟩]du
with

Qu≔∂uFu+ 1
2DĊu

2 Fu+ ⟨Fu, ĊuDFu⟩



solution theory

⊳ standard interpolation for C∞ = (1 + Δℝd)γ−d/2, γ ⩽ d/2. χ ∈C∞(ℝ+), compactly
supported around 0:

Ct≔(1+Δℝd)γ−d/2χ(2−2t(−Δℝd)), ‖Ċ‖ℒ(L∞,L∞)≲22γ−d, ‖Ċ‖ℒ(L1,L∞)≲22γ

⊳ the system

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{ Ψt=∫0

t Ċs (Fs(Ψs)+Rs)ds+Xt,

Rt=∫t
T ωt[Qu(Ψu)]du+∫t

T ωt[⟨Ru, ĊuDFu(Ψu)⟩]du

can be solved by standard fixpoint methods for small interaction, uniformly in the
volume since X stays bounded as long as T<∞:

‖Xt‖L∞(ℝd)≲2γt.

⊳ decay of correlations can be proved by coupling different solutions (Funaki '96).
⊳ limit T→∞ requires renormalization when γ∈[0,d/2].



relation with the continuous RG

if we take F such that Q=0 we have R=0 and then

Ψt =�
0

t
Ċs (Fs(Ψs))ds+Xt,

with

∂uFu+ 1
2DĊu

2 Fu+ ⟨Fu, ĊuDFu⟩=0, FT =DV.

define the effective potential Vt by the solution of the HJB equation

∂uVu+ 1
2DĊu

2 Vu+ ⟨DVu, ĊuDVu⟩=0, VT =V.

then Ft=DVt and the FBSDE computes the solution of the RG flow equation along
the interacting field.
⊳ so far a full control of the Fermionic HJB equation has not been achieved (work
by Brydges, Disertori, Rivasseau, Salmhofer, . . . ). Fermionic RG methods rely on a
discrete version of the RG iteration.



approximate flow equation

thanks for the FBSDE we are not bound to solve exactly the flow equation and we
can proceed to approximate it.
⊳ linear approximation. take

∂uFu+ 1
2DĊu

2 Fu=0, FT =DV.

this corresponds to Wick renormalization of the potential V:

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{ Ψt=∫0

t Ċs (Fs(Ψs)+Rs)ds+Xt,

Rt=∫t
T ωt[⟨Fu(Ψu), ĊuFu(Ψu)⟩]du+∫t

T ωt[⟨Ru, ĊuDFu(Ψu)⟩]du

the key difficulty is to show uniform estimates for

�
t

T
ωt[⟨Fu(Ψu), ĊuFu(Ψu)⟩]du

as T→∞. we cannot expect better than ‖Ψt‖≈ ‖Xt‖≈2γt.



polynomial truncation

a better approximation is to truncate the equation to a (large) finite polynomial
degree

∂uFu+ 1
2DĊu

2 Fu+Π⩽K⟨Fu, ĊuDFu⟩=0

where Π⩽K denotes projection on Grassmann polynomials of degree ⩽K and take

Ft(ψ)= �
k⩽K

Ft
(k)ψ⊗k.

With this approximation one can solve the flow equation and get estimates

�Ft
(k)�⩽ 2(α−βk)t

(k+1)2 , t⩾0,

with α=3β, β=d/2−γ, provided the initial condition FT=DV is appropriately renor-
malized.



FBSDE in the full subcritical regime

with the truncation ΠK we have

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{ Ψt=∫0

t Ċs (Fs(Ψs)+Rs)ds+Xt,

Rt=∫t
T ωt[Π>K⟨Fu, ĊuDFu⟩(Ψu)]du+∫t

T ωt[⟨Ru, ĊuDFu(Ψu)⟩]du

but now observe that

‖Ψt‖≈ ‖Xt‖≲2γt �Ft
(k)Ψt

⊗k�≲2(γk−β(k−3))t

which is exponentially small for k large as long as γ⩽d/4 (full subcrititcal regime).

now the term

�
t

T
ωt[Π>K⟨Fu, ĊuDFu⟩(Ψu)]du

can be controlled uniformly as T→∞ and also the full FBSDE system. (!)



thanks


