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Outline 2/24

& Singular stochastic partial differential equations (SSPDEs) are a recent field of investigation,
blossomed after 2013-2014 when M. Hairer solved the Kardar-Parisi-Zhang (KPZ) equation
and lately found a theory of regularity structure which comprises essentially all the SSPDEs
one could think of. (HAIRER 13,14)

&% SSPDEs are PDEs with noise source terms which do not have a formulation in standard
functional spaces. Meaning the analysis stops even before the problem of showing existence...

o In this talk I would like to first motivate SSPDEs, showing in which context (some of them)
arise and hopefully conveying to you the idea that their §tructure is rigid. There is no much
freedom in choosing them.

&% The origin of this rigidity is universality: they describe large scale fluctuations of whole
families of random fields, irrespective of microscopic details.



% Later on, time permitting, I will show how the intristic difficulties of SSPDEs can be handled
using ideas from paradifferential calculus, in paricular paraproducts and paracontrolled calculus
(G.—~IMKELLER-PERKOWSKI 15).

% This approach is alternative to Hairer's regularity $tructure theory and currently cannot be
applied to all coincievable SSPDEs. When it works delivers a theory which is more similar to
standard PDE theories and therefore amenable to the full set of tools and tricks developed in
PDE theory since long times.

&% Both theories took inspiration from Lyons' rough path theory, which is concerned with
one—dimensional signals (or random functions) and their non-linear transformations via solu-
tions of driven differential equations. In particular rough path theory allows a deterministic
treatment of stochastic differential equations.

% [ will not have time to detail all the current research direction in SSPDEs. It is a very active
field where some fundamental problems are still not well understood.



Growth of one dimensional interfaces 4/24

Three regimes

“Real growth” e.g. ice and water at 10°C; non-reversible;

fluctuations O(t'%); conjectured to rescale to KPZ fixpoint.
Poorly understood. BoropIN, CORWIN, FERRARI, MATETSKI, QUASTEL,
REMENIK, SASAMOTO, SPOHN and many others.

“Coexistence” e.g. ice and water at 0°C; reversible; fluctu-
ations O(t'%); rescales to Gaussian limit. Well understood.
KIPNIS-OLLA-VARADHAN, ZHU, CHANG-YAU and many others.

“Slow growth” e.g. ice and water at 0.1°C; “nearly” reversible,

fluctuations O(t'*), non-Gaussian; rescales to KPZ equa-
tion.




A simple growth model 5124

athé‘(tﬂ x) = agché‘( t: x) + gl/zF(ath(t’ x)) + ’7(t, X), t 2 03 XE ]R3

noise

diffusion J, n(t, %)

<

. drift Fa, h(t, x))

N 2

>n smooth Gaussian field with O(1) stationary correlations. F even polynomial.



Rescaling

> Scaling transformation ho(t, x) = e2h(t/ €%, x/ €).
3 ihe=03%h.+ e 'F(e"%0,h,) + &,

> Noise &(t,x)=e¥?5(t/ €%, x/ ) converges to space-time white noise

E[( f f §g(t,x)go(t,x)dtdx)2]—> f f (o(t,0)?dtdx  as e—0.



Hairer—Quastel weak universality 7124
Theorem. (HAIRER-QUASTEL 15) 3Cy, ¢ s.t.
/1=f F'(Cy"x)y(dx), v=f F(C{*x)y(dx).  y=Normal law.

R R

Then the random field
HJ(t,x) = ho(t,x) - (v/e+ o),

converges in law in C([0, T],T) to H(t, x) solving

H(t,x)=A"og Z(t,x),  8:Z=03%Z(t,x)+AZ(t,x)&(t,x)

(Hopf—Cole solution, the product Z¢ is understood according to Ito calculus).



Other interface growth models 824

> WASEP (Weakly asymmetric simple exclusion) Particles on Z moves independently, only
one particle per size; jump left with rate p, right with rate 1 - p.

For p = 1/2 reversible dynamics, large scale gaussian fluctuations. For p = 1/2 + ¢ rescales to
Hopf-Cole solution of KPZ (BERTINI-GIACOMIN, CMP 97)

> Ginzburg-Landau V¢ interface model. Interacting Brownian motions on Z
dx'=(pV'(r'")-(1-p)V'(r))dt+dB, i€Z, ri=x'-x"1

For p=1/2 reversible dynamics. large scale gaussian fluctuations.

For p=1/2+¢, rescales to the Hopf—Cole solution of the KPZ equation (DiEHL-G.-PERKOWSKI CMP16)



KPZ equation 9/24

Formally H solves the Kardar-Parisi-Zhang equation:
OH=0%H - A[(3,H)*-o0] + £.

Problem: Not well posed. H€ C([0, T]; CY*¥). (oo coming from Ito correction)
> HAIRER (Ann.Math. 13). Solution theory for the KPZ based on rough paths (LYONS)

> GONCALVES—JARA (10, ARMA 13). Solution theory for KPZ based on martingale problem.
Refined martingale problem (G.-JARA, SPDE/AC 13). Uniqueness (G.—PERKOWSKI, JAMS 18)

> HAIRER (Inv.Math. 14), G.—PERKOWSKI (CMP 17) solutions theories based on regularity struc-
tures and paracontrolled distributions.



Mourrat-Weber convergence result 10/24

Theorem. (MOURRAT-WEBER, CPAM17) Take y =e"?, e= N1, and let

0(t, x)=e2h(t/ e, x/ €)

and p-1=¢(C, +A) where

1
C,= z T +0(1) =logy™

WEZ?,0<|w|<y!

Then ¢.— ¢ in law in D(R,, 5 (T?)).

Problem: Equation solved by ¢?



Guessing the equation 11/24
(t.)= (0.2 [ Lhy(s,0)ds + M,
Lhy(s,x)=~h(s, x) + (x,« tanh(Bh,(s)))(x)

=Ky * hy(8, %) = hy(s, %) + (B - 1)(ky» hy)(s, x) - p (KY* h3)(s X)+ -

> Rescaling

0=+ [y + € B )05 - By e g4

W
A, C +A



The dynamic ®3 model 12/24

Guess: ¢ solves the stochastic quantisation equation (SQE) or dynamical ®3 model:

1
3p(t, x)=Ae(t, x) + (co+ A) @(t, x) - §¢(t, x)*+&(t,x), t=0,x€TZ

where ¢ is space-time white noise.

Problem: Equation is not well posed (maybe already clear from oo present there...)
> Linear equation: 9, X =AX+AX+¢

> Regularity X € C([0, T]; C™*) almo$t surely with k>0 arbitrarily small.

> C%=BY, ., Besov-Hélder spaces. f€C% < |Af|=<27 for all i=-1.

> (A})i>_; Littlewood-Paley decomposition. supp(Af)c2iA. f=3 _ Af forall f€5,



Da Prato—-Debussche trick 13/24

(see also BOURGAIN for dispersive equations)

DA PRATO-DEBUSSCHE (Ann.Prob.03). Write ¢ =X + ¢/ where

IX=AX+AX+E =AY+ Ay+oo(X+ tﬁ)—%(X+ )’

oo(X + )~ 5 (X + )=~ (X~ 300X) - (X’ ~ o) - XY~ £
[X*] X4

> Wick powers [X?], [X°] € C([0, T]; C"¥). Well posed equation for /

O =AY + Ay~ 5 IX] - DX - Xy - 5y

K

since ¥ € C([0, T]; C*~) by parabolic regularity and product continuous in C? % x C7¥,



Euclidean Quantum Field theories 14/24
> x €RY Ox = (xq, ..., x4-1, —x3), R% = {x € R% x; = 0}. G Euclidean group of R together with
reflection 6. f8(x)=f(g ' x) for g€G.
>y measure on 5'(R% and S(f) = fé’(lR i e?y(d ) satisfying

1. Euclidean invariance: S(f%)=S(f) for all g€ G.
2. Reflection positivity: ¥(f;,€ S(R%));, the matrix (S(f;- ﬁe))i, j is positive definite.

3. Exponential bounds: for some k and some norm: |S(f)|< /1",

> Then 3 a relativistic quantum theory on an Hilbert space / equipped with a unitary represen-
tation of the Poincaré group. Hamiltonian is positive and has a Poincaré invariant vacuuum

vector.

[see GLIMM, JAFFE “Quantum Physics”]



Euclidean ®3 model 15/24

Measures that satisfy all these properties are rare. When d =3 we know only the Gaussian free
field y, namely the Gaussian measure with covariance

[ ARUAD =110 ), £.8E SR,
and the ®3 measure, formally given by

exp(-2A| ,(¢*/4-oc0p?/2)d
ap- PO D)

(BRYDGES, FEDERBUSH, FROLICH, GLIMM, GUERRA, JAFFE, GALLAVOTTI, MITTER, NELSON, RIVASSEAU, ROSEN, SIMON,
SPENCER, and many others, '70-'80)



> Rigorously this measure can be constructed on a bounded domain A €R® and with an ultra-
violet cutoff ¢ and a mass counterterm a,

exp(-A|, (pe/4 - asp:/2)dx)
ve(dp) = )y 7 p(de)

where ¢, = p.+ ¢ and p.(x)= £ p(x/€) with smooth regularizer p.
Main problem: control the limit as e— 0 of v.. We expect v« p.

> Under y we have p€C™Y27% almoét surely.



Stochastic quantisation 17724

Idea: (PARISI-WU, 81) Find a (fictious) dynamics which has v, as invariant measure and use the
dynamics to construct v.

A possible choice (Langevin dynamics)

91p=Np— Ap:= (QDZ) —a.p.) +¢&

where ¢ is space-time white noise. Problem: How to take the limit e — 07
> It is expected that a,= a’/ ¢+ Aa'log(¢) + a2 where a2 — a* as ¢ — 0.

Wick ordering does not suffice. Da Prato—-Debussche trick does not suffice.
> (HAIRER Inv.Math 14) Local solution theory based on regularity structures.

> (CATELLIER-CHOUK 15, AOP18) Local solution theory based on paracontrolled distributions
(G.—~IMKELLER-PERKOWSKI F.Math.IT 15).



Recent developments
> Global space-time solutions in R* (MOURRAT-WEBER CMP17)
> Ergodicity for dynamical ®; (ROCKNER-ZHU-ZHU CMP17)

> Convergence of lattice discretizations (T°) (HAIRER—-MATETSKI). Complete proof of invariance
of ®3 wrt. the dynamics.

> Global solution in time on T° (MOURRAT-WEBER CMP17). Coming down from infinity.
> Tightness for the ®3 measure via dynamics (ALBEVERIO-KUSUOKA 18)

> Global space-time solutions in R* for parabolic equations and global solutions to elliptic

equations in R*, R® related to the @3, ®5 measures via (conjectured) dimensional reduction.
(G.-HOFMANOVA 18).

> Local theory for hyperbolic ®; model (G.~-KOCH-OH. TAMS18)

At —Ap=—(¢’—c0@) + £.



Invariance principle for a population model 19/24
> v¥(t, x) population size at (t,x). F€C?% F” bounded, F(0)=0.
AVi(t, x) = Apevi(t, x) + F(ve(t, x))n(x),  x€ZAt=0.

> (1%(x))xezz 1.i.d. family with Var[n®(x)] = €% and E[°(x)] = —-F (0)&*c, for suitable c, = [loge].

 F(u)=u: discrete parabolic Anderson model in a small potential.

o F(u)=u(C - u): restricted resources u< C.

Theorem 1. (MARTIN-PERKOWSKI 17) Fix v¥(0, x) =L,_o. Let ut(t,x)=vi(t/ & x/€). Then u‘*— u
(in law) where u solves

du=Au+F(0)ué —F(0)uco,  u(0)= 0.

(linear continuous 2d Anderson model). Here ¢ is a space white noise in d =2.



Anderson Hamiltonian 20/24
> “Toy” problem. Give a well defined meaning to the operator
H=A+¢

in I*(T%) where ¢ is a space-white noise. Domain?
Observation: the domain does not contain smooth functions... £€C™'7

> Paraproducts: fg=f<g+fog+f>gwhere f<g=3%, . AfAgand fog=3, . AfAg.
Hf =Af+&>f+8-f+&<f

Assume f€H® Then &> feH '"* forany a=0, é- fEH* '"* for a>1-2k, E< f€EH* ' "*  for
any o €R.



Paracontrolled Ansatz 21/24
Let X=(1-A)"'¢€C!'"* and assume
f-f<X=f'eH?
Then f€H'* and
AF=Af<X+f)=(Af)<X+ F<AX+Vf<VX+Af*

Hf =Af+E>f+E f+E<f=@M+(D)<X+f<X+Vf<VX+Af'+E<f

cH-2x

Commutator lemma:

- G < -/ @ ol

Hl—3K




Renormalization 22/24

(H—oo)f=f<-)+§of”+§omm(f,§,X2+(\Af)<X+f<X+Vf<VX+Af”+§<f

I_ﬁC&c EPICZK

Define

EoX=¢cX—-oo=1lim (& X, —c,)eCTF.
e—0

Finally for all f€I” such that f - f <X € H* we have a well defined expression

Hrenfzf(§°X)+§ofﬁ+...

> Rigorously: H,=A + &, - c.— H,., in operator resolvent sense.

More involved proof in T>. (ALLEZ-CHOUK, G.~-UGURCAN-ZACHHUBER, LABBE)



COl’lCluSiOIIS 23/24

We have seen several results of convergence of microscopic models to scaling limits given by
non-Gaussian random fields.

These random fields are conjectured to be universal, independent of specific details of the micro-
scopic model.

They solve SSPDEs, equations that, on first sight are not well defined due to the presence of
singular non-linear terms and renormalizations via subtraction of formal infinite quantities.

I tried to make clear that such infinities are not misterious. They are just manifestations of
phenmomena taking place on a different (larger) scale. And the price to pay for universality.

Nowadays we dispose various tools: regularity structures, paracontrolled distributions, the
approach of Otto—Weber, RG approach by Kupiainen, and we try to tackle to more and more
difficult questions...



Thank you.



