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Euclidean quantum fields (EQFs)

are particular class of probability measures on 𝒮ʹ(Rd):

�
𝒮ʹ(Rd)

O(φ)ν(dφ)= 1Z�
𝒮ʹ(Rd)

O(φ)e−S(φ)dφ,

S(φ)=�
Rd

1
2|∇φ(x)|2+ 12m

2|φ(x)|2+p(φ(x))dx

for some non-linear function p:R→R�0, e.g. a polynomial bounded below,
exponentials, trig funcs.
Introduced in the '70-'80 as a tool to constructs models of (bosonic) quantum field theories
in the sense of Wightman via the reconstruction theorem of Osterwalder–Schrader.

ill-defined representation:
• large scale problems: the integral in S(φ) extends over all the space,
sample paths not expected to decay at infinity in any way.

• small scale problems: sample paths are not expected to be function,
but only distributions, the quantity p(φ(x)) does not make sense.



stochastic quantisation

x introduced in the '80 by Parisi/Wu (and similar methods by Nelson)

Idea: build the measure ν as invariant law to a stochastic partial differ-
ential equation

∂tϕ(t, x)= 12[(Δx−m2)ϕ(t, x)−pʹ(ϕ(t, x))]+21/2ξ(t, x)

tB−−−R fictious “simulation time”, x B−−−Rd, ξ space-time white noise,

Law(ϕ(t, ⋅))=ν

why is this a good idea?

stochastic quantisation is a stochastic analysis of EQFs



stochastic analysis

x Ito & Dœblin introduced a variety of analysis adapted to the sample paths
of a stochastic process.
x consider a family of kernels (Pt)t�0 onRd satisfying Chapman–Kolmogorov
equation

Pt+s(x, dy)=�Ps(x, dz)Pt(z, dy)

which defines a probability P on C(R�0,Rd): the law of a continuous Markov
process.
x sample paths have a “tangent” process. Ito identified it as a particular
Lévy process: the Brownian motion (Wt)t.
x stochastic calculus: from the local picture to the global structure via sto-
chastic differential equation (SDE)

dXt=a(Xt)dWt+b(Xt)dt



x these are the basic building blocks of stochastic analysis

x like in analysis, the fact that we can consider infinitesimal changes sim-
plify the analysis and make appear universal underlying objects:
• polynomials → calculus, Taylor expansion
• Brownian motion and its functionals → Ito calculus, stochastic Taylor
expansion

to have an analysis we need:
• a change parameter along which consider “change” (time for diffu-
sions)

• a suitable building block for the infinitesimal changes (Brownian
motion for diffusion)



Newton's calculus Ito's calculus

planet orbit object Markov diffusion

(x,y) B−−−𝒪 B−−−R
2

global description Pt(x, dy)

α(x− x0)2+β(y −y0)2=γ ⋅ Pt+s(x, dy)=∫Ps(x, dz)Pt(z, dy)
t change parameter t

x(t+δt)≈ x(t)+aδt+o(δt) local description Pδt(x, dy)≈e−
(y−x−b(x)δt)a(x)−1(y−x−b(x)δt)

2δt
dy

Zx(δt)d/2

at+bt2+ ⋅ ⋅ ⋅ building block (Wt)t
(ẍ(t), ÿ(t))=F(x(t),y(t)) local/global link dXt=a(Xt)dWt+b(Xt)dt



Ito's calculus stoch. quantisation

Markov diffusion object EQF

Pt(x, dy) global description ν B−−− Prob(𝒮ʹ(Rd))

Pt+s(x, dy)=∫Ps(x, dz)Pt(z, dy) ⋅
1
Z∫𝒮ʹ(Rd)O(φ)e−S(φ)dφ

t change parameter t

Pδt(x,dy)≈e−
(y−x−b(x)δt)a(x)−1(y−x−b(x)δt)

2δt
dy

Zx(δt)d/2
, local description ϕ(t+δt)≈αϕ(t)+βδX(t)+ ⋅ ⋅ ⋅

(Wt)t building block
(X(t))t

∂tX =
1
2[(Δx−m

2)X]+21/2ξ

dXt=a(Xt)dWt+b(Xt)dt local/global link ∂tϕ=
1
2[(Δx−m

2)ϕ−pʹ(ϕ)]+21/2ξ
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varieties of stochastic quantisation

• parabolic stochastic quantisation. the parameter is an additional
“fictious” coordinate t B−−−R, playing the röle of a simulation time. The
EQF is viewed as the invariant measure of a Markov process (SDE).
Building block is a space-time white noise. [Parisi/Wu, Nelson, Jona-Lasinio/Mitter,

Albeverio/Röckner, Da Prato/Debbusche, Hairer, Catellier/Chouk, Mourrat/Weber, G./Hofmanova, Albeverio/Kusuoka,

Chandra/Moinat/Weber, Shen, Garban, many others. . .]

∂tϕ=
1
2[(Δx−m2)ϕ−pʹ(ϕ)]+21/2ξ

• canonical stochastic quantisation. same as for parabolic, but the evo-
lution takes place in “phase space” and the SDE is second order in time,
giving rise to a stochastic wave equation. [G./Koch/Oh, Tolomeo, Oh/Robert/Wang]

∂t2ϕ+∂tϕ=
1
2[(Δx−m2)ϕ−pʹ(ϕ)]+21/2ξ



• elliptic stochastic quantisation. the parameter is a coordinate z B−−−R2.
Building block is a white noise in Rd+2. An elliptic stochastic partial dif-
ferential equation describes the EQF as a function of the white noise.
Link with supersymmetry. [Parisi/Sourlas, Klein/Landau/Perez, Albeverio/De Vecchi/G., Barashkov/De
Vecchi]

−Δzϕ(z, x)= 12[(Δx−m2)ϕ(z, x)−pʹ(ϕ(z, x))]+21/2ξ(z, x)

• variational method. the parameter t�0 is a energy scale. Building block
is the Gaussian free field decomposed along t. The EQF is described as
the solution of a stochastic optimal control problem. [Barashkov/G.]

• rg method. the parameter t �0 is a energy scale. Building block is the
Gaussian free field decomposed along t. The effective action of the
EQF satisfies an Hamilton–Jacobi–Bellmann equation. [Wilson, Wegner, Polchinski,
Salmhofer, Brydges/Kennedy, Mitter, Gawedzki/Kupiainen, Brydges/Bauerschmidt/Slade, Bauerschmidt/Bodineau,

Bauerschmidt/Hofstetter, also many others.. . ]



features of stochastic quantisation

the interacting field ϕ is expressed as a function of the Gaussian free field
X:

ϕ(t)=F(X), ν =Law(ϕ(t))=F*Law(X)=F*GFF

• estimates on ϕ obtained via two ingredients:
J pathwise PDE estimates for the map F (in weighted Besov spaces)
J probabilistic estimates for the GFF X

• coupling (φ, X)

ϕ= X +ψ

where ψ is a random field which is more regular (i.e. smaller at small
scale) than X (link with asymptotic freedom/perturbation theory)
note that

ν =Law(φ)<<Law(X(t))=GFF



estimates

x decomposition: ϕ= X +ψ

∂tψ=
1
2[(Δx−m2)ψ−pʹ(X +ψ)]

x PDE estimates:

‖ψ(t)‖�H(‖X‖)

x tightness:

�‖φ‖pν(dφ)=E‖ψ(t)‖p
�E[H(‖X‖)p]<∞

x tail-estimates:

�ec‖φ‖αν(dφ)<∞

[Moinat/Weber, Hofmanova/G., Hairer/Steele]



properties of the stochastically quantized EQF

Φ3
4 measure. p(φ)=λφ4−cφ2, d=3. [Detailed construction in Hofmanova/G. - CMP 2020]

x non-gaussianity:

//φφφφ//c= //XXXX//c+4 //XXXψ//c+12 //XXψψ//c+4 //Xψψψ//c+ //ψψψψ//c

=4 //XXXψ//c+ ⋅ ⋅ ⋅ ≠0
x renormalized cube:

⟦φ3⟧= lim
ε→0

[(ρε *φ)3−cε(ρε *φ)]= ⟦X3⟧+�(⟦X2⟧ *rψ)+ Xψ2+ψ3�

result: ⟦φ3⟧ is not a random variable but a distribution on Cyl(𝒮ʹ(R3)).
x Dyson–Schwinger equation (IBP formula for ν):

�DφF(φ)ν(φ)=�F(φ)�(Δ−m2)φ−λ⟦φ3⟧�ν(φ)



outlook

Goal: develop a stochastic analysis of EQFs
(at least for superrenormalizable models)

• identify “building blocks” and describe EQFs (non-perturbatively) in
terms of these simpler objects.

• small scales behaviour/renormalization: well understood in most
models in some of the approaches (see e.g. recent results of Hairer
et al. on Yang-Mills fields).

• coercivity (large fields problem) plays a key role for global control and
infinite volume limit. So far, not understood at all for YM.

• uniqueness (high or low temp)? still open in most models, especially
Φ2,3
4 .

• some results on phase transition by Chandra/Gunaratnam/Weber.



open problems

• How to apply these ideas to gauge theories/geometric models? Higgs
model, Yang-Mills? [Hairer/Zambotti/Chandra/Chevyrev/Shen/ . . . ] Coercivity not well
understood.

• Grassmann fields? [partial progress in Albeverio/Borasi/De Vecchi/G., no renorm yet]

• Small coupling regime? (proof of Borel-summability?)
• Decay of correlations at high temperature? [some results Rana/Hofmanova/G.]

• Dyson-Schwinger eq. determine the measure?
• Use the approach for lattice unbounded spin systems?
• What about mass-less models on the lattice: ∇φ models?
• Weak-universality and models above the critical dimension?
• . . .
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