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Euclidean quantum fields (EQFs)

are particular class of probability measures on .#’(RY):
~S(tp)
[ 0@vd0)=3] . o@e sy,

S(@)= [ 21900 |2 +2m? | ()| >+ p(p()dx

for some non-linear function p:R = R, e.g. a polynomial bounded below,
exponentials, trig funcs.

Introduced in the '70-'80 as a tool to constructs models of (bosonic) quantum field theories
in the sense of Wightman via the reconstruction theorem of Osterwalder-Schrader.

ill-defined representation:

- large scale problems: the integral in S(¢) extends over all the space,
sample paths not expected to decay at infinity in any way.

- small scale problems: sample paths are not expected to be function,
but only distributions, the quantity p(¢(x)) does not make sense.



stochastic quantisation

> introduced in the '80 by Parisi/Wu (and similar methods by Nelson)

Idea: build the measure v as invariant law to a stochastic partial differ-
ential equation

1 ,
3 (t,x) = 5[ (Bx-m*)$(t, x) - p'((t, x))] + 2'2¢(t, x)
teR fictious “simulation time”, x¢RY ¢ space-time white noise,

Law(¢(t,")) =V

why is this a good idea?

stochastic quantisation is a stochastic analysis of EQFs




stochastic analysis

> [to & Deeblin introduced a variety of analysis adapted to the sample paths
of a stochastic process.

> consider a family of kernels (P,):s on RY satisfying Chapman-Kolmogorov
equation

Pes(x,4Y) = | Po(x, d2)Pi(z, dy)

which defines a probability P on C(Rso, R%): the law of a continuous Markov
process.

>sample paths have a “tangent” process. Ito identified it as a particular
Lévy process: the Brownian motion ().

> stochastic calculus: from the local picture to the global structure via sto-
chastic differential equation (SDE)

dXt = a(Xt)d Wt + b(Xt)dt



>these are the basic building blocks of stochastic analysis

> like in analysis, the fact that we can consider infinitesimal changes sim-
plify the analysis and make appear universal underlying objects:

- polynomials = calculus, Taylor expansion

- Brownian motion and its functionals - Ito calculus, stochastic Taylor
expansion

to have an analysis we need:

- a change parameter along which consider “change” (time for diffu-
sions)

- a suitable building block for the infinitesimal changes (Brownian
motion for diffusion)




Newton's calculus

Ito's calculus

planet orbit
(%)< O <R

a(x-Xo)*+B(Y -VYo)* =Y
t

x(t+5t) = x(t) + adt + o(6t)

at+bt*+---

(x(t), y(1)) = F(x(t), y (1))

Markov diffusion
Pt(Xr dy)

Pt+s(Xr dy) = fPs(Xr dZ)Pt(Z, dy)
t

(v-x-b(x)6t)a(x)” 1 (y-x-b(x)8t) dy
~ 26t ——
Pﬁt(Xr dy) e Z,(6t)972

(W)t
dXt = a(Xt)d Wt + b(Xt)dt




Ito's calculus

stoch. quantisation

Markov diffusion
Pt(Xr dy)
Pt+s(X; dy) = f Ps(Xr dZ)Pt(Z, dy)
t

(v-x-b(x)8t)a(0) " (v-x-b(x)6t)

Pst(x,dy)=~e ot 2

Z,(61)772"

(Wo):

dXt = a(Xt)d Wt + b(Xt)dt

EQF
veProb(#'(RY)
7/ w0 0(@)e*Pdop
t
d(t+6t) =ag(t) + BEX(t) +---
(X(®)

1
dX =5[(A-m*)X]+2"%¢

3.0 =5[(B - m?)p-p'(d)]+2"%€
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varieties of stochastic quantisation

- parabolic stochastic quantisation. the parameter is an additional
“fictious” coordinate t¢ R, playing the role of a simulation time. The
EQF is viewed as the invariant measure of a Markov process (SDE).
BUlldlng block is a Space-time white noise. [Parisi/Wu, Nelson, Jona-Lasinio/Mitter,

Albeverio/Rockner, Da Prato/Debbusche, Hairer, Catellier/Chouk, Mourrat/Weber, G./Hofmanova, Albeverio/Kusuoka,

Chandra/Moinat/Weber, Shen, Garban, many others...]

29 =5 1(- M) - p($)] +2'1%€

- canonical stochastic quantisation. same as for parabolic, but the evo-
lution takes place in “phase space” and the SDE is second order in time,
giving rise to a stochastic wave equation. [c./koch/oh, Tolomeo, Oh/Robert/Wang]

02+ 0= (- )b~ p'(§)] +2'1%€



- elliptic stochastic quantisation. the parameter is a coordinate z¢R®.

Building block is a white noise in R?*2. An elliptic stochastic partial dif-
ferential equation describes the EQF as a function of the white noise.
Link with su persym metry. [Parisi/Sourlas, Klein/Landau/Perez, Albeverio/De Vecchi/G., Barashkov/De
Vecchi]

-0,z %) =51 (8- (2, ) - (B2, X))] 226 (2,%)

- variational method. the parameter t=0 is a energy scale. Building block
is the Gaussian free field decomposed along t. The EQF is described as
the solution of a stochastic optimal control problem. (sarashkov/c.i

- rg method. the parameter t20 is a energy scale. Building block is the
Gaussian free field decomposed along t. The effective action of the
EQF satisfies an Hamilton—Jacobi-Bellmann equation. (wiison, wegner, polchinski,
Salmhofer, Brydges/Kennedy, Mitter, Gawedzki/Kupiainen, Brydges/Bauerschmidt/Slade, Bauerschmidt/Bodineau,

Bauerschmidt/Hofstetter, also many others...]



features of stochastic quantisation

the interacting field ¢ is expressed as a function of the Gaussian free field
X:

¢(t)=F(X), v=Law(¢(t))=F.Law(X)=F.GFF

- estimates on ¢ obtained via two ingredients:
- pathwise PDE estimates for the map F (in weighted Besov spaces)
o probabilistic estimates for the GFF X
- coupling (¢, X)
$p=X+y

where g is a random field which is more regular (i.e. smaller at small
scale) than X (link with asymptotic freedom/perturbation theory)

note that
v=Law(p) % Law(X(t)) = GFF



estimates

> decomposition: ¢ =X+

o= (B-m)p-p'(X+ )]

> PDE estimates:

lw@® | sHCXT)
> tightness:

f [ @1Pv(de)=E | w(t) [ "< E[H(]| X])?] <o

> tail-estimates:
fecucpuav(d(p)m

[Moinat/Weber, Hofmanova/G., Hairer/Steele]



properties of the stochastically quantized EQF

CDg measure. p((P) =A(p4 - C(pz, d = 3. [Detailed construction in Hofmanova/G. - CMP 2020]
> non-gaussianity:

(@OE @)= (XXXX)c+ 4{(XXXW)+12{XXpy)+ {Xpypy) +{Ypypy).

=4 { XXX )+ 20

> renormalized cube;
[9°]=lim [(pc * @)’ - celpe* )1 = [X°] + {(IX°]* w) + Xy + 3}

result: [¢’] is not a random variable but a distribution on Cyl(#'(R?)).
> Dyson-Schwinger equation (IBP formula for v):

| DuFv(e)= [ Flo){(B-m2p- N T}v(e)



outlook

Goal: develop a stochastic analysis of EQFs
(at least for superrenormalizable models)

- identify “building blocks” and describe EQFs (non-perturbatively) in
terms of these simpler objects.

- small scales behaviour/renormalization: well understood in most
models in some of the approaches (see e.g. recent results of Hairer

et al. on Yang-Mills fields).

- coercivity (large fields problem) plays a key role for global control and
infinite volume limit. So far, not understood at all for YM.

- uniqueness (high or low temp)? still open in most models, especially
3 .
- some results on phase transition by Chandra/Gunaratnam/Weber.



open problems

- How to apply these ideas to gauge theories/geometric models? Higgs
mOdel, Yang-MillS? [Hairer/Zambotti/Chandra/Chevyrev/Shen/...] CoerCiVity not well
understood.

« Grassmann fields? [partial progress in Albeverio/Borasi/De Vecchi/G., no renorm yet]

- Small coupling regime? (proof of Borel-summability?)

- Decay of correlations at high temperature? (some results Rana/Hofmanova/G]
- Dyson-Schwinger eq. determine the measure?

- Use the approach for lattice unbounded spin systems?

- What about mass-less models on the lattice: Vo models?

- Weak-universality and models above the critical dimension?
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