10th ICSAA - Kyoto/online - September 7th 2021

A variational method for

Euclidean quantum fields

Massimiliano Gubinelli - University of Bonn (IAM & HCM) [made with TeXmacs]



Euclidean quantum fields (EQFs)

a particular class of probability measures on .#'(R"):

EQF = regularity + Euclidean invariance + reflection positivity

Introduced in the '70-'80 as a tool to constructs models of (bosonic) quantum field theories in
the sense of Wightman via the reconstruction theorem of Osterwalder-Schrader.
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for some non-linear function V:R - R, e.g. a polynomial bounded below, expo-
nentials, trig funcs. ill-defined representation:

* large scale (IR) problems: the integral in S(¢) extends over all the space, sample
paths not expected to decay at infinity in any way.

» small scale (UV) problems: sample paths are not expected to be function, but
only distributions, the quantity V(¢(x)) does not make sense.



EQFs - history

> Construct rigorously QM models which are compatible with special relativity,
(finite speed of signals and Poincaré covariance of Minkowski space R"*),

> Quantum field theory (QM with co many degrees of freedom)

> Wightman axioms ('60-'70): Hilbert space, representation of the Poincaré group,
fields operators (to construct local observables).

> Constructive QFT program: Hard to find models of such axioms. Examples in
R+ were found in the '60.

> Euclidean rotation: t — it = x, (imaginary time). R"™" - R? Minkowski — Euclidean

> Osterwalder-Schrader theorem : gives precise condition to perform the passage
to/from Euclidean space (OS axioms for Euclidean correlation function).

I> Surprise: in some cases the Euclidean theory is a probability measure on .#'(RY).

> High point of CQFT: construction of ®3 (Euclidean version of a scalar field in R**!
Minkowski space).



Gaussian free field (GFF)

> simplest example of EQFT. We take a Gaussian measure 11 on .#°'(R) with covari-
ance

1k(x—y) dk
[ oW =Cl-y)=[ i =t N a—y),  xyER!

and zero mean. Reflection positive, Eucl. covariant and regular. This is the GFF with
mass m > 0.

> this measure can be used to construct a QFT in Minkowski space but unfortu-
nately this theory is free, i.e. there is no interaction.

> note that G(0) = +oo if d >2, this implies that the GFF is not a function.

> in particular GFF is a distribution of regulariy (2—d)/2 —« for any small k>0, e.g.
locally in the sense of the scale of Besov-Holder spaces (B, .)uer-



non-Gaussian EQFT

> heuristically we want

o IV (@()dx
v(d@) =————n(dg).

@ go on a lattice: R? - Z4 = (¢ Z)? with spacing £ >0 and make it periodic Z{— Z? | =
(Z./27LNY-.

3%, 1Ve00) 1490+ V(o)
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CF(g)e | 20 do
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e is an UV regularisation and L the IR one.

@ choose V, appropriately so that v*— v to some limitas ¢ » 0 and L — co. E.g. take
V. polynomial bounded below (otherwise integrab. problems). d=2,3.

Ve(©) =A(E" - a.L?)

The limit measure will depend on A >0 and on (a.). which has to be s.t. 4. — +o0 as
e —0. Itis called the ®; measure.



® study the possible limit points (uniqueness? non-uniqueness? correlations?
description?)

> for d =2 other choices are possible:

21-1

V@ =AT+ ) a8, Vi(®) =accos(pE)
k=0

Ve(§) =accosh(BE),  Ve(C) =a.exp(BQ)

> for d=3 "only” 4th order (6th order is critical).

> for d =4 all the possible limits are Gaussian (see recent work of Aizenmann-Duminil
Copin, arXiv:1912.07973)



stochastic analysis of EFQs

> Ito introduced stochastic analysis to study the law of diffusion processes via Brow-
nian motion and the related stochastic calculus.

[> various (equivalent?) stochastic analysis of EFQs are provided by stochastic quan-
tisations

parabolic, elliptic, hyperbolic,...?

See e.g.

¢ M. Gubinelli and M. Hofmanova, ‘A PDE Construction of the Euclidean ®5 Quantum Field
Theory', ArXiv:1810.01700 [Math-Ph], 3 October 2018, http://arxiv.org/abs/1810.01700.

* S. Albeverio, F. C. De Vecchi, and M. Gubinelli, “Elliptic Stochastic Quantization', Annals
of Probability 48, no. 4 (July 2020): 1693-1741, https://doi.org/10.1214/19-AOP1404.

* S. Albeverio et al., "Grassmannian Stochastic Analysis and the Stochastic Quan-
tization of Euclidean Fermions', ArXiv:2004.09637 [Math-Ph], 25 May 2020,
http://arxiv.org/abs/2004.09637.

« M. Gubinelli, H. Koch, and T. Oh, ‘Renormalization of the Two-Dimensional Stochastic
Nonlinear Wave Equations', Transactions of the American Mathematical Society, 2018, 1,
https://doi.org/10.1090/tran/7452.



the variational method

another approach to the stochastic analysis of EQF

N. Barashkov and M. Gubinelli, A Variational Method for ®5 ', Duke
Mathematical Journal 169, no. 17 (November 2020): 3339-3415,
https://doi.org/10.1215/00127094-2020-0029.

N. Barashkov and M. Gubinelli, " The ®% Measure via Girsanov's Theorem', E.J.P
2021 (arXiv:2004.01513).

N. Barashkov's PhD thesis, University of Bonn, 2021.

N. Barashkov and M. Gubinelli, *On the variational description of Euclidean
quantum fields in infinite volume' (in preparation)

based on a variational formula for Brownian functionals proved by Boué and Dupuis.



Boué-Dupuis formula

Theorem. (Let (B;);>o be a Brownian motion on R", then for any bounded F:
C(R;;R") - R we have

log E[ef(®9)] = sup]E[F(B. +1(u),) — %fooo | s | 2ds]

ueH,

with u: (O x R, — R" adapted to B and with

I(u);:= fot uds.

% f O°° | us | *ds ~ H(Law (B, + I(u).) | Law(B.)).

M. Boué and P. Dupuis, “A Variational Representation for Certain Functionals of Brownian
Motion', The Annals of Probability 26, no. 4: 1641-59 https:/doi.org/10.1214/a0p/1022855876




Boué—Dupuis for the =2 GFF

E[W, )W)l =t As)(m*—8) 7 (x—y),  ts€[0,1].
The BD formula gives
—logfe_F(q’)u(dcp):—log E[e F™)] = inf ]E[F(W +Z )+lf1 | us szs]
veH, 1 1 2 0 sl L /

where

t .
Zi=(m>—N)"1? Jo uds, u=m*-N)>"?7,

—log E[e~F"] = zml—fz E[F(W1+Z1) + €(Z.)],
e a
with

1 1 : 1 1 : :
E(Z) =5 [ 1m0 Z)kds =5 | (VZE+mAZJE)ds



®3 in a bounded domain A

Fix a compact region A € R* and consider the ®3 measure 0, on .#'(R?) with inter-
action in A and given by

e M y(dp)

! 2
feroudg P 0

Oa(d¢):=

with interaction potential Vx(¢):= [, ¢*—c [, ¢*. Forany f: #'(R”) > R (non neces-
sarily linear) let

e~ VNS .= f e f(®) 0A(d).

We have the variational representation, Z=21, Z.=(Z)e(0,1}:
Wi(f)= inf F/*NZ,)— inf FONZ,)
ZeHs ZEHs
where

FINZ) =E[fW+Z)+AVA(W+2Z)+ E(ZJ)].




renormalized potential

VAW +2)= | {w4—cw2+4[w3—% W]z +6[w2- <] Z2+4WZ3+Z4}
W N ~ v T

take c =12E[W?(x)] = +o0
VAW +2) = | {4WZ+6W2Z2 4+ 4WZ2 + 24} 4
W"e € "™(A)=BJS(A)

Here BZ*.(A) is an Holder-Besov space. A distribution f € .'(T*) belongs to B% .(A)
iff forany n>0

I A< @) 7N f B )

where A,f =% Y¢.(-)Ff) and @, is a function supported on an annulus of size ~2".
We have =) _ Af. If >0 B% (T is a space of functions otherwise they are

only distributions.



Euler-Lagrange equation for minimizers

Lemma. There exists a minimizer Z =7/" of F/*, Any minimizer satisfies the
Euler-Lagrange equations

E(4A[ 22K+ fol [ (Zm*~ 1) K)ds)
- ]E(fAf’(W+Z)K+7fo(W3+W2Z+12WZ2)K>

for any K adapted to the Brownian filtration and such that K € L*(y, H).

> technically one really needs a relaxation to discuss minimizers, we ignore this all
along this talk. the actualy object of study is the law of the pair (W, Z) and not the
process Z. (similar as what happens in the ®3 paper)



apriori estimates

we use polynomial weights p(x)=(1+¢|x|)™" for large n>0 and small ¢ > 0.

Theorem. There exists a constant C independent of | A| such that, for any min-
imizer Z of F/*(11) and any spatial weight p: A —[0,1] with |Vp| <ep for some
e >0 small enough, we have

E (4 A fA 0Z4+ fol fRZ (m2—A)1/2 pl/ZZS)zds> <C.

Proof. test the Euler-Lagrange equations with K= pZ and then estimate the bad
terms with the good terms and objects only depending on W, e.g.

[ oW Z| <Gl W23y + 81 Z oy

[ W22 <Cillp S W2t +8(Ip A Z1E+ 10" 2 Z N3, -+




tightness and bounds

W) =inf F/N(Z) —inf FY () = FPAZI %) = FOYZ0%)
Therefore

FINZIN) — FONZIN S A SFINZO = P20
and since, for any g,

FINZ3™ —FONZS ™M = E[f(W 4+ Z8™) + A VAW + Z8%) + € (28]

—E[A VAW +Z8 + E(Z8M] = E[f(W + Z8M)]

E[f(W+Z/ M<K WA(F) SELFW +ZOM)]

Consequence: tightness of (04), in .#'(R?) and optimal exponential bounds (cfr.
Hairer/Steele)

sup [ exp(8 1 ¢ I4-+4p)0a(dp) < co.
A




Euler-Lagrange equation in infinite volume

The family (Z/*), is also converging (provided we look at the relaxed problem) and
any limit point Z = Z/ satisfies a EL equation:

E{ [ FON+2DK+ar[ IW+2PIK+ [ [ Z.m* - 5K ds}=0

for any test process K (adapted to W and to Z).

a new kind of stochastic “elliptic” problem

Open questions
e Uniqueness??
 T'-convergence of the variational description of %/,(f)?

not clear. We lack sufficient knowledge of the dependence on f of the solutions
to the EL equations above.




Large deviations in infinite volume

For any f: #'(R%) — R (non necessarily linear) let %"(f) be defined by:

e—-% (f). f _f(¢)6h(dq))
where

a0 (@) =exp ~VA®) )an' (@) =exp(~ [, [0'1)ar' )

and 11", is the Gaussian measure with covariance fi(m*—A)~.,

Theorem. Any accumulation point 0" of 0 satisfies a Laplace principle with rate
function

J@)=A[_ pidx+ [ o0m®—M)pdx,
That is

}aiir(}Wh(f) = iﬂ}f W) +IW))-




Exponential interaction

we can study similarly the model with
Vi(@)= [, Elexp(Bo)ldx

for B2 <8 and &: R*— [0, 1] a spatial cutoff function.

VAW +2)= [ E@exp(BZ()exp(BW(x)ldx

M@Eﬂ

:JRZ &(x)exp(BZ(x))MP(dx),  [Gaussian multiplicative chaos]

BD formula

WER(f) = —log [ exp(—f(¢))dvf
_ inf]E[ FW+2) + f gexp(L%Z)dMM% jol j (m? = A)727,)2dt

ZE$N,

> the function Z— V(W + Z) is convex!



variational description of the infinite volume limit

> thanks to convexity the EL equations have a unique limit Z in the oo volume limit

> moreover we have the I'-convergence of the variational description:

Wief) = lim | ~log [ exp(—f(@)dv*

= lim [9;,(f) - W4, (0)] = inf G/ ~*(K)

n—-o0

with functional

GFroexp(K) = ]E[ FW+Z+K)+ f exp(BZ)(exp(BK) — 1)dMP +5(1<)]

5

which depends via Z on the infinite volume measure for the exp interaction.
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(additional slides)



varieties of stochastic quantisation

» parabolic stochastic quantisation. the parameter is an additional “fictious”
coordinate t € R, playing the role of a simulation time. The EQF is viewed as
the invariant measure of a Markov process (SDE). Building block is a space-
time white noise. (parisi/wu, Nelson, Jona Lasinio/Mitter, Albeverio/Réckner, Da Prato/Debbusche, Hairer, Catellier/Chouk,

Mourrat/Weber, G./Hofmanova, Albeverio/Kusuoka, Chandra/Moinat/Weber, Shen, Garban, many others...]

1 /
3y =5 1(A— 1) —p'(§)] +21/%C
* canonical stochastic quantisation. same as for parabolic, but the evolution takes

place in “phase space” and the SDE is second order in time, giving rise to a
stochastic wave equation. [G./Koch/Oh, Tolomeo, Oh/Robert/Wang]

0 +31p = (A —m)p —p'(¢)] +217C



« elliptic stochastic quantisation. the parameter is a coordinate z& R”. Building
block is a white noise in R™2. An elliptic stochastic partial differential equation
describes the EQF as a function of the white noise. Link with supersymmetry.

[Parisi/Sourlas, Klein/Landau/Perez, Albeverio/De Vecchi/G., Barashkov/De Vecchi]

(2, %) = 4 (A~ )z, 1) —p (9, )] +22E(z )

* variational method. the parameter t >0 is a energy scale. Building block is the
Gaussian free field decomposed along . The EQF is described as the solution
of a stochastic optimal control problem. (earashkovs )

* rg method. the parameter >0 is a energy scale. Building block is the Gaus-
sian free field decomposed along t. The effective action of the EQF satisfies
an Hamilton—JaCObi—Be”mann equation. [Wilson, Wegner, Polchinski, Salmhofer, Brydges/Kennedy, Mitter,

Gawedzki/Kupiainen, Brydges/Bauerschmidt/Slade, Bauerschmidt/Bodineau, Bauerschmidt/Hofstetter, also many others...]



