Weak universality of the stationary Kardar–Parisi–Zhang equation

• • • • •

Massimiliano Gubinelli – University of Bonn.

[Birthday cake for KPZ, Workshop "New approaches to non-equilibrium and random systems: KPZ integrability, universality, applications and experiments", Kavli Institute for Theoretical Physics, March 3rd 2016]

KPZ is the following SPDE

$$\partial_t h(t,x) = \underbrace{\Delta h(t,x)}_{\text{diffusion}} + \underbrace{\chi(\partial_x h(t,x))^2}_{\text{growth}} + \underbrace{\xi(t,x)}_{\text{noise}}, \qquad t \geqslant 0, x \in \mathbb{R}, \mathbb{T}$$

with ξ space—time white noise.

 \triangleright KPZ introduced (30 years ago!) the equation in order to capture the universal macroscopic behaviour of the fluctuations h of growing interfaces.

> **KPZ fixpoint:** the KPZ equation is just an element of a wider universality class:

$$\varepsilon^{1}[h(t\varepsilon^{-3}, x\varepsilon^{-2}) - \varphi(t, x)] \to \mathcal{H}(t, x)$$

as $\varepsilon \to 0$. Difficult problem. Only known for fixed t and special $h(0,\cdot)$

[Amir-Corwin-Quastel 2011, Sasamoto-Spohn 2010, Borodin-Corwin 2014]

Talk based on joint work with: M. Jara, N. Perkowski and J. Diehl.

▷ The KPZ equation describes also fluctuations in a certain asymptotic regime where the non–linear effects are weak in the microscopic scale.

Basic ingredients:

- One conservation law for a quantity u_{ε}
- Tunable asymmetry of order ε

Universal limit:

$$\varepsilon^{-1}(u_{\varepsilon}(t\varepsilon^{-4}, x\varepsilon^{-2}) - \varphi(t, x)) \longrightarrow u(t, x)$$

where \boldsymbol{u} solves the Stochastic Burgers equation (SBE)

$$\partial_t u(t,x) = \Delta u(t,x) + \chi \partial_x u(t,x)^2 + \partial_x \xi(t,x)$$

Equivalent to KPZ with $u = \partial_x h$: u_{ε} represent height gradient for an interface.

- \triangleright Weakly asymmetric simple exclusion process. Particles jumps with Poisson clocks on sites of the lattice \mathbb{Z} , no two particles at the same site. Leftward with rate $1/2 + \alpha$ and rightward with rate $1/2 \alpha$. Number of particle is locally conserved.
- ightharpoonup Ginzburg-Landau $\nabla \varphi$ model. Interacting Brownian motions on \mathbb{Z} :

$$dX^{i} = ((1/2 + \alpha) V'(X^{i+1} - X^{i}) - (1/2 - \alpha) V'(X^{i} - X^{i-1}))dt + dB_{t}^{i}, \qquad i \in \mathbb{Z}$$

$$\partial_t g(t,x) = \Delta g(t,x) + \alpha F(\partial_x g(t,x)) + \eta(t,x) \qquad x \in \mathbb{R}$$

where η is a short range/short memory gaussian process.

$$\alpha = 0 \Rightarrow$$
 convergence to Gaussian fluctuations

$$\alpha = \varepsilon \Rightarrow$$
 convergence to KPZ

[Bertini-Giacomin 1996 (WASEP), Hairer-Quastel 2015]

Energy solutions: a good notion of martingale solutions to SBE which allows to prove the weak KPZ universality conjecture for a large class of **stationary** models.

- ⊳ [Gonçalves–Jara 2010/2014] Initial notion of energy solutions
- □ [Jara-G. 2013] Refined notion of energy solutions
- ⊳ [G.–Perkowski 2015] Uniqueness for the refined notion

Proofs of weak universality from energy solutions:

- □ General exclusion processes. [Gonçalves–Jara 2014, Gonçalves–Jara–Simon 2016, Franco-Gonçalves–Simon 2016]
- \triangleright Ginzburg-Landau $\nabla \varphi$ model. [Diehl-G.-Perkowski 2016?]

 \triangleright [Bertini–Giacomin 1996]: existence of random function h describing the scaling limit of the fluctuation of WASEP for which $\varphi = e^h$ satisfies the Stochastic Heat Equation (SHE)

$$\mathscr{L}\varphi(t,x) = \varphi(t,x)\xi(t,x), \qquad t \geqslant 0, x \in \mathbb{R}.$$

hickspace > Cole–Hopf: transformation ($\xi_{arepsilon}$ a regularisation of ξ) , $\varphi_{arepsilon} = e^{h_{arepsilon}}$

$$\mathscr{L}\varphi_{\varepsilon}(t,x) = \varphi_{\varepsilon}(t,x)\xi_{\varepsilon}(t,x) - C_{\varepsilon}\varphi_{\varepsilon}(t,x)$$

$$\updownarrow$$

$$\mathscr{L}h_{\varepsilon}(t,x) = (\partial_x h_{\varepsilon}(t,x))^2 - C_{\varepsilon} + \xi_{\varepsilon}(t,x)$$

No equation!

- > Intrinsic notions of solution:
 - Energy solutions [Gonçalves–Jara 10/14]: weak notion, global in time solutions. Uniqueness established only recently [G.–Perkowski 2015].
 - Rough paths [Hairer 2013]: strong notion, local solutions, uniqueness / stability.
 - Regularity structures [Hairer 2014], paracontrolled distributions [G.-Perkowski 2015].

- Description Not a general approach to universality, needs a specific structure, especially at the microscopic level. Only OK for specific models. [Bertini-Giacomin 1997, Dembo-Tsai 2013, Corwin-Tsai 2015, Corwin-Tsai 2016].
- ⊳ Rough–paths: (but also Regularity structures or Paracontrolled distributions) need control of regularity, universality so far only for semilinear SPDEs (and on the torus). [Hairer–Quastel 2015, Hairer–Shen 2015, G.–Perkowski 2015]
- \triangleright **Energy solutions:** requires precise knowledge of the invariant measure but otherwise quite flexible and powerful (and works easily on \mathbb{R}).

Approach to weak universality:

- tightness of fluctuations
- martingale characterization of limit points;
- uniqueness ⇒ convergence.

Definition 1 (Jara–Gonçalves, 2010) u is an **energy solution** of SBE if

$$M_t(\varphi) = u_t(\varphi) - u_0(\varphi) - \int_0^t u_s(\Delta \varphi) ds - \mathcal{B}_t(\varphi)$$

is a martingale with bracket $[M(\varphi)]_t = t \|\partial_x \varphi\|_{L^2}^2$ and if

$$\mathbb{E}|\mathcal{B}_{s,t}(\varphi) - \mathcal{B}_{s,t}^{\varepsilon}(\varphi)|^2 \leqslant C\varepsilon|t - s|\|\partial_x \varphi\|_{L^2}^2 \qquad (energy\ condition)$$

where

$$\mathcal{B}_{s,t}^{\varepsilon}(\varphi) = \int_{s}^{t} \partial_{x} (\rho_{\varepsilon} * u_{s})^{2}(\varphi) ds$$

and
$$\rho_{\varepsilon}(x) = \varepsilon^{-1} \rho(\varepsilon^{-1}x)$$
.

 \triangleright An energy solution is given by a **pair** (u, \mathcal{B}) . Very little information about \mathcal{B} . As a consequence, energy solutions are too weak to be compared meaningfully.

Jara-G. introduced another notion of energy solution

Definition 2 (Jara–G. 2013) (u, A) is a **controlled process** if

1. (Dirichlet) $u_t(\varphi)$ is a Dirichlet process with

$$M_t(\varphi) = u_t(\varphi) - u_0(\varphi) - \int_0^t u_s(\Delta \varphi) ds - \mathcal{A}_t(\varphi)$$

is a martingale with bracket $[M(\varphi)]_t = t \|\partial_x \varphi\|_{L^2}^2$ and $[\mathcal{A}(\varphi)] = 0$.

- 2. (Stationarity) u_t is a white noise for all t;
- 3. (Time-reversal) $\overset{\leftarrow}{u}_t = u_{T-t}$ satisfies 1. with $\overset{\leftarrow}{\mathcal{A}}_t(\varphi) = \mathcal{A}_T(\varphi) \mathcal{A}_{T-t}(\varphi)$.

$$\int_0^t f(u_s) ds.$$

Let \mathscr{L}_{OU} be the generator of the OU process X given by $\mathscr{L}X = D\xi$. Itô formula for Dirichlet processes [Russo-Vallois], forward first:

$$F(u_T) = F(u_0) + \int_0^T \nabla F(u_s) dM_s + \int_0^T \nabla F(u_s) dA_s + \int_0^T \mathcal{L}_{OU} F(u_s) ds$$

and then backward:

$$F(\overleftarrow{u}_T) = F(\overleftarrow{u}_0) + \int_0^T \nabla F(\overleftarrow{u}_s) d\overrightarrow{M}_s + \int_0^T \nabla F(\overleftarrow{u}_s) d\overrightarrow{A}_s + \int_0^T \mathcal{L}_{\mathrm{OU}} F(\overleftarrow{u}_s) ds.$$

Summing and using BDG inequalities:

$$2\int_{0}^{T} \mathcal{L}_{OU}F(u_s)ds = -\int_{0}^{T} \nabla F(\overleftarrow{u}_s)d\overleftarrow{M}_s - \int_{0}^{T} \nabla F(u_s)dM_s$$

$$\mathbb{E} \left| \int_0^T \mathcal{L}_{\text{OU}} F(u_s) ds \right|^p \lesssim_p T^{p/2} \mathbb{E} [\mathcal{E}_{\text{OU}}(F)^{p/2}]$$

Result: powerful control of additive functionals of controlled processes.

[forward-backward Itô trick, Kipnis-Varadhan 1986, Chang-Landim-Olla 2001].

Lemma 3 If (u, A) is controlled then

$$\mathcal{B}_t(\varphi) := \lim_{\varepsilon \to 0} \mathcal{B}_t^{\varepsilon}(\varphi) = \lim_{\varepsilon \to 0} \int_s^t \partial_x (\rho_{\varepsilon} * u_s)^2(\varphi) ds$$

with good estimates on space-time regularity (e.g. zero quadratic variation).

Definition 4 (Jara–G. 2013) A controlled process (u, A) is a stationary solution to SBE if

$$A = B$$
.

- \triangleright Existence is proved via stationary Galerkin approximations u^N . The forward–backward Itô trick gives tightness for the approximate drift \mathcal{B}^N .
- ▷ Not difficult to show that particle systems converge to limits satisfying this alternative notion.
- \triangleright This notion of solution is more powerful since brings along all the information about estimations of additive functionals, not only of \mathcal{B} .

Theorem 5 (G.-Perkowski, 2015) There exists only one controlled energy solution, in particular it coincides with the Cole-Hopf solution.

The proof uses a key estimate from [Funaki-Quastel 2014].

Let (u, A) be an energy solution and let $u^{\varepsilon} = \rho_{\varepsilon} * u$. Then u^{ε} satisfies

$$du_t^{\varepsilon}(x) = \Delta u_t^{\varepsilon}(x)dt + (\rho_{\varepsilon} * d\mathcal{A}_t)(x) + (\rho_{\varepsilon} * dM_t)(x)$$

Consider $\varphi_t^{\varepsilon}(x) = e^{h_t^{\varepsilon}(x)}$ where $\partial_x h_t^{\varepsilon}(x) = u_t^{\varepsilon}(x)$. Then

$$d\varphi_t^{\varepsilon}(x) = e^{h_t^{\varepsilon}(x)} (\Delta h_t^{\varepsilon}(x) dt + c_{\varepsilon} dt + \partial_x^{-1} (\rho_{\varepsilon} * d\mathcal{A}_t)(x) + \partial_x^{-1} (\rho_{\varepsilon} * dM_t)(x))$$
$$= \Delta \varphi_t^{\varepsilon}(x) dt + \varphi_t^{\varepsilon}(x) (Q_t^{\varepsilon} + K^{\varepsilon}) dt + \varphi_t^{\varepsilon}(x) (\rho_{\varepsilon} * dW_t)(x) + dR_t^{\varepsilon}(\varphi)$$

$$R_t^{\varepsilon}(\varphi) = \int_0^t (\varphi_s^{\varepsilon}(x)\partial_x^{-1}(\rho_{\varepsilon} * d\mathcal{A}_s)(x) - \varphi_s^{\varepsilon}(x)\Pi_0(u_s^{\varepsilon}(x))^2 ds - K^{\varepsilon}ds), \quad Q_t^{\varepsilon} = \int_{\mathbb{T}} ((u_s^{\varepsilon}(x))^2 - c_{\varepsilon}) dx.$$

If we show that $R_t^{\varepsilon}(\varphi) \to 0$ then $\varphi^{\varepsilon} \to \varphi$ solution to a tilted SHE which is unique.

We approximate R^{ε} as

$$R_t^{\varepsilon,\delta}(\varphi) = \int_0^t (-K_\varepsilon ds + \varphi_s^{\varepsilon}(x)\partial_x^{-1}(\rho_\varepsilon * d\mathcal{B}_s^{\delta})(x) - \varphi_s^{\varepsilon}(x)(u_s^{\varepsilon}(x))^2 ds)$$

$$= \int_0^t \left\{ -K_{\varepsilon} + e^{\partial_x^{-1} u_s^{\varepsilon}(x)} [\rho_{\varepsilon} * (\rho_{\delta} * u_s)^2 - (\rho_{\varepsilon} * u_s)^2](x) \right\} dt = \int_0^t f_{\varepsilon,\delta}(u_s) ds$$

So we use the forward-backward Itô trick to get an L^2 estimate

$$\mathbb{E}|R_t^{\varepsilon,\delta}(\varphi)|^2 \lesssim t \|f_{\varepsilon,\delta}\|_{\mathcal{H}^{-1}}^2$$

where \mathcal{H}^{-1} is the Sobolev space associated to the OU generator.

Following the strategy in Funaki–Quastel a detailed computation shows that there exists a choice for $K_\varepsilon \to K = -1/2$ for which

$$||f_{\varepsilon,\delta}||_{\mathcal{H}^{-1}}^2 = \sup_{\Phi} \left[2\mathbb{E}(f_{\varepsilon,\delta}\Phi) - ||\Phi||_{\mathcal{H}^1}^2 \right] \to 0.$$

It is enough to show that $|\mathbb{E}(f_{\varepsilon,\delta}\Phi)| \leq o(1) \|\Phi\|_{\mathcal{H}^1}$.

Consider the stochastic PDE

$$\partial_t v = \Delta v + \varepsilon^{1/2} \partial_x F(v) + \partial_x \chi^{\varepsilon}$$

on $[0,\infty) \times \mathbb{T}_{\varepsilon}$ with $\mathbb{T}_{\varepsilon} = \mathbb{R}/(2\pi\varepsilon^{-1}\mathbb{Z})$, where χ^{ε} is a Gaussian noise that is white in time and spatially smooth. We modify the equation such that after rescaling $\tilde{u}_{t}^{\varepsilon}(x) = \varepsilon^{-1/2} \, v_{t\varepsilon^{-2}} \, (x \, \varepsilon^{-1})$ we have

$$\partial_t \tilde{u}^{\varepsilon} = \Delta \tilde{u}^{\varepsilon} + \varepsilon^{-1} \partial_x \Pi_0^N F(\varepsilon^{1/2} \tilde{u}^{\varepsilon}) + \partial_x \Pi_0^N \tilde{\xi}, \qquad \tilde{u}_0^{\varepsilon} = \Pi_0^N \eta, \tag{1}$$

where $\tilde{\xi}$ is a space-time white noise on $[0,\infty)\times\mathbb{T}$ (where $\mathbb{T}=\mathbb{T}_1$) with variance 2, η is a space white noise which is independent of $\tilde{\xi}$, Π_0^N denotes the projection onto the Fourier modes $0<|k|\leqslant N$, and $N=\pi/\varepsilon$.

Theorem Assume that $F, F' \in L^2(\nu)$ where ν is the standard normal distribution. Then $u_t^{\varepsilon}(x) := \tilde{u}_t^{\varepsilon} \left(x - \varepsilon^{-1/2} \, c_1(F) \, t\right)$, $(t, x) \in [0, T] \times \mathbb{T}$, converges in distribution to the unique stationary energy solution u of

$$\partial_t u = \Delta u + c_2(F) \partial_x u^2 + \partial_x \xi,$$

where ξ is a space-time white noise and for $U \sim \nu$ and $c_k(F) = \frac{1}{k!} \mathbb{E}[F(U) H_k(U)]$.

Galileian transformation. Performing the change of variables $u_t^{\varepsilon}(x) = \tilde{u}_t^{\varepsilon}(x - \varepsilon^{-1/2} c_1(F) t)$ Itô formula shows that u^{ε} solves

$$\partial_t u^{\varepsilon} = \Delta u^{\varepsilon} + \varepsilon^{-1} \partial_x \Pi_0^N \left(F\left(\varepsilon^{1/2} u^{\varepsilon}\right) - c_1(F) \varepsilon^{1/2} u^{\varepsilon} \right) + \partial_x \Pi_0^N \xi, \qquad u_0^{\varepsilon} = \Pi_0^N \eta, \tag{2}$$

so we replaced the function F by $\tilde{F}(x) = F(x) - c_1(F) x$.

Proposition (Boltzmann-Gibbs principle) Let $G,~G'\in L^2(\nu)$ Then for all $\ell\in\mathbb{Z}$ and $0\leqslant s< t\leqslant s+1$ and all $\kappa>0$

$$\mathbb{E}\left[\left|\int_{s}^{t} \langle \varepsilon^{-1} \, \partial_{x} \, \Pi_{0}^{N} G\left(\varepsilon^{1/2} \, u_{r}^{\varepsilon}\right) - \varepsilon^{-1/2} \, c_{1}(G) \, \partial_{x} \, \Pi_{0}^{N} \, u_{r}^{\varepsilon}, e_{-\ell} \rangle \, \mathrm{d} \, r\right|^{2}\right]$$

$$\lesssim |t - s|^{3/2 - \kappa} \, \ell^{2} \int_{\mathbb{R}} |G'(x)|^{2} \, \nu(\mathrm{d} x)$$

uniformly in $N \in \mathbb{N}$, and for all $M \leqslant N/2$

$$\mathbb{E}\left[\left|\int_{s}^{t} \langle \varepsilon^{-1} \, \partial_{x} \, \Pi_{0}^{N} G\left(\varepsilon^{1/2} \, u_{r}^{\varepsilon}\right) - \varepsilon^{-1/2} \, c_{1}(G) \, \partial_{x} \, \Pi_{0}^{N} \, u_{r}^{\varepsilon} - c_{2}(G) \, \partial_{x} \, (\Pi_{0}^{M} \, u_{r}^{\varepsilon})^{2}, e_{-\ell} \rangle \, \mathrm{d} \, r\right|^{2}\right]$$

$$\lesssim |t - s| \, \ell^{2} \left(M^{-1} + \varepsilon \log^{2} N\right) \int_{\mathbb{R}} |G'(x)|^{2} \, \nu(\mathrm{d} x).$$

Thanks!