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The Kardar�Parisi�Zhang equation 3/17

KPZ is the following SPDE
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; t> 0; x2R;T

with � space�time white noise.

B KPZ introduced (30 years ago!) the equation in order to capture the universal macroscopic
behaviour of the �uctuations h of growing interfaces.

B KPZ �xpoint: the KPZ equation is just an element of a wider universality class:

"1[h(t"¡3; x"¡2)¡ '(t; x)]!H(t; x)

as "! 0. Di�cult problem. Only known for �xed t and special h(0; �)

[Amir�Corwin�Quastel 2011, Sasamoto�Spohn 2010, Borodin�Corwin 2014]

Talk based on joint work with: M. Jara, N. Perkowski and J. Diehl.



The weak KPZ conjecture 4/17

B The KPZ equation describes also �uctuations in a certain asymptotic regime where the
non�linear e�ects are weak in the microscopic scale.

Basic ingredients:

� One conservation law for a quantity u"

� Tunable asymmetry of order "

Universal limit:

"¡1(u"(t"
¡4; x"¡2)¡ '(t; x))¡!u(t; x)

where u solves the Stochastic Burgers equation
(SBE)

@tu(t; x)=�u(t; x)+ �@xu(t; x)
2+ @x�(t; x)

Equivalent to KPZ with u= @xh: u" represent height gradient for an interface.
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BWeakly asymmetric simple exclusion process. Particles jumps with Poisson clocks on sites
of the lattice Z, no two particles at the same site. Leftward with rate 1/2 + � and rightward
with rate 1/2¡�. Number of particle is locally conserved.

B Ginzburg�Landau r' model. Interacting Brownian motions on Z:

dXi=((1/2+�)V 0(Xi+1¡Xi)¡ (1/2¡�)V 0(Xi¡Xi¡1))dt+dBt
i; i2Z

B Hairer�Quastel model. SPDE:

@tg(t; x)=�g(t; x)+�F (@xg(t; x))+ �(t; x) x2R

where � is a short range/short memory gaussian process.

�=0 ) convergence to Gaussian �uctuations

�= " ) convergence to KPZ

[Bertini�Giacomin 1996 (WASEP), Hairer�Quastel 2015]
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Energy solutions: a good notion of martingale solutions to SBE which allows to prove the
weak KPZ universality conjecture for a large class of stationary models.

B [Gonçalves�Jara 2010/2014] Initial notion of energy solutions

B [Jara�G. 2013] Re�ned notion of energy solutions

B [G.�Perkowski 2015] Uniqueness for the re�ned notion

Proofs of weak universality from energy solutions:

B General exclusion processes. [Gonçalves�Jara 2014, Gonçalves�Jara�Simon 2016, Franco-
Gonçalves-Simon 2016]

B Zero�range processes and many other particle systems. [Gonçalves-Jara-Sethuraman 2015]

B Ginzburg�Landau r' model. [Diehl-G.-Perkowski 2016?]

B Hairer�Quastel model. [G.-Perkowski 2016]



What really is KPZ? 7/17

B [Bertini�Giacomin 1996]: existence of random function h describing the scaling limit of the
�uctuation of WASEP for which '= eh satis�es the Stochastic Heat Equation (SHE)

L'(t; x)= '(t; x)�(t; x); t> 0; x2R:

B Cole�Hopf: transformation (�" a regularisation of �) , '"= eh"

L '"(t; x)= '"(t; x)�"(t; x)¡C"'"(t; x)
m

L h"(t; x)= (@xh"(t; x))
2¡C"+ �"(t; x)

No equation!

B Intrinsic notions of solution:

� Energy solutions [Gonçalves�Jara 10/14] : weak notion, global in time solutions. Unique-
ness established only recently [G.�Perkowski 2015].

� Rough paths [Hairer 2013] : strong notion, local solutions, uniqueness / stability.

� Regularity structures [Hairer 2014], paracontrolled distributions [G.�Perkowski 2015].



Di�erent notions of solutions 8/17

B Cole�Hopf: Not a general approach to universality, needs a speci�c structure, especially at
the microscopic level. Only OK for speci�c models. [Bertini-Giacomin 1997, Dembo-Tsai 2013,
Corwin-Tsai 2015, Corwin�Shen�Tsai 2016].

B Rough�paths: (but also Regularity structures or Paracontrolled distributions) need control
of regularity, universality so far only for semilinear SPDEs (and on the torus). [Hairer�Quastel
2015, Hairer�Shen 2015, G.�Perkowski 2015]

B Energy solutions: requires precise knowledge of the invariant measure but otherwise quite
�exible and powerful (and works easily on R).

Approach to weak universality:

� tightness of �uctuations

� martingale characterization of limit points;

� uniqueness ) convergence.



Energy solutions 9/17

De�nition 1 (Jara�Gonçalves, 2010) u is an energy solution of SBE if

Mt(')=ut(')¡u0(')¡
Z
0

t

us(�')ds¡Bt(')

is a martingale with bracket [M(')]t= tk@x'kL22 and if

EjBs;t(')¡Bs;t" (')j26C"jt¡ sjk@x'kL22 (energy condition)

where

Bs;t" (')=

Z
s

t

@x(�" �us)2(')ds

and �"(x)= "¡1�("¡1x).

B An energy solution is given by a pair (u;B). Very little information about B. As a consequence,
energy solutions are too weak to be compared meaningfully.



A re�ned notion of energy solutions 10/17

Jara�G. introduced another notion of energy solution

De�nition 2 (Jara�G. 2013) (u;A) is a controlled process if

1. (Dirichlet) ut(') is a Dirichlet process with

Mt(')=ut(')¡u0(')¡
Z
0

t

us(�')ds¡At(')

is a martingale with bracket [M(')]t= tk@x'kL22 and [A(')] = 0.

2. (Stationarity) ut is a white noise for all t;

3. (Time�reversal) u��t=uT¡t satis�es 1: with A
��
t(')=AT(')¡AT¡t(').

B Key property: For controlled processes we can de�ne and estimate e�ciently additive func-
tionals of the form Z

0

t

f(us)ds:



The Itô trick, forward and then backward 11/17

Let LOU be the generator of the OU process X given by LX =D�. Itô formula for Dirichlet
processes [Russo�Vallois], forward �rst:

F (uT)=F (u0)+

Z
0

T

rF (us)dMs+

Z
0

T

rF (us)dAs+
Z
0

T

LOUF (us)ds

and then backward:

F (u
��
T)=F (u

��
0)+

Z
0

T

rF (u��s)dM
�����
s+

Z
0

T

rF (u��s)dA
��
s+

Z
0

T

LOUF (u
��
s)ds:

Summing and using BDG inequalities :

2

Z
0

T

LOUF (us)ds=¡
Z
0

T

rF (u��s)dM
�����
s¡

Z
0

T

rF (us)dMs

E

����Z
0

T

LOUF (us)ds

����p.pT
p/2E[EOU(F )

p/2]

Result: powerful control of additive functionals of controlled processes.

[forward�backward Itô trick, Kipnis�Varadhan 1986, Chang�Landim�Olla 2001].



Energy solutions, the controlled way 12/17

Lemma 3 If (u;A) is controlled then

Bt('): = lim
"!0

Bt"(')= lim
"!0

Z
s

t

@x(�" �us)2(')ds

with good estimates on space�time regularity (e.g. zero quadratic variation).

De�nition 4 (Jara�G. 2013) A controlled process (u;A) is a stationary solution to SBE if

A=B:

B Existence is proved via stationary Galerkin approximations uN. The forward�backward Itô
trick gives tightness for the approximate drift BN.

B Not di�cult to show that particle systems converge to limits satisfying this alternative notion.

B This notion of solution is more powerful since brings along all the information about estima-
tions of additive functionals, not only of B.



Uniqueness of controlled energy solutions 13/17

Theorem 5 (G.�Perkowski, 2015) There exists only one controlled energy solution, in
particular it coincides with the Cole�Hopf solution.

The proof uses a key estimate from [Funaki�Quastel 2014].

Let (u;A) be an energy solution and let u"= �" �u. Then u" satis�es

dut
"(x)=�ut

"(x)dt+(�" � dAt)(x)+ (�" � dMt)(x)

Consider 't
"(x)= eht

"(x) where @xht
"(x)=ut

"(x). Then

d't
"(x)= eht

"(x)(�ht
"(x)dt+ c"dt+ @x

¡1(�" � dAt)(x)+ @x
¡1(�" � dMt)(x))

=�'t
"(x)dt+ 't

"(x)(Qt
"+K")dt+ 't

"(x)(�" � dWt)(x)+dRt
"(')

Rt
"(')=

Z
0

t

('s
"(x)@x

¡1(�" �dAs)(x)¡ 's
"(x)�0(us

"(x))2ds¡K"ds); Qt
"=

Z
T
((us

"(x))2¡ c")dx:

If we show that Rt
"(')! 0 then '"! ' solution to a tilted SHE which is unique.



Control of the remainder 14/17

We approximate R" as

Rt
";�(')=

Z
0

t

(¡K"ds+ 's
"(x)@x

¡1(�" �dBs�)(x)¡ 's
"(x)(us

"(x))2ds)

=

Z
0

t�
¡K"+ e@x

¡1us
"(x)[�" � (�� �us)2¡ (�" �us)2](x)

	
dt=

Z
0

t

f";�(us)ds

So we use the forward�backward Itô trick to get an L2 estimate

EjRt
";�(')j2. t kf";�kH¡12

where H¡1 is the Sobolev space associated to the OU generator.

Following the strategy in Funaki�Quastel a detailed computation shows that there exists a choice
for K"!K =¡1/2 for which

kf";�kH¡12 = sup
�

[2E(f";��)¡k�kH1
2 ]! 0:

It is enough to show that jE(f";��)j6 o(1)k�kH1.



The Hairer�Quastel model 15/17

Consider the stochastic PDE

@t v=� v+ "1/2 @xF (v)+ @x�
"

on [0;1)�T" with T"=R/(2 � "¡1Z), where �" is a Gaussian noise that is white in time and
spatially smooth. We modify the equation such that after rescaling u~t"(x)= "¡1/2 vt"¡2 (x "

¡1)
we have

@tu~
"=�u~"+ "¡1 @x�0

NF ("1/2u~")+ @x�0
N �~; u~0

"=�0
N �; (1)

where �~ is a space-time white noise on [0;1)�T (where T=T1) with variance 2, � is a space
white noise which is independent of �~, �0

N denotes the projection onto the Fourier modes
0< jk j6N , and N =�/".

Theorem Assume that F ; F 0 2 L2(�) where � is the standard normal distribution. Then
ut
"(x) := u~t

" (x ¡ "¡1/2 c1(F ) t), (t; x) 2 [0; T ]� T, converges in distribution to the unique
stationary energy solution u of

@tu=�u+ c2(F ) @xu
2+ @x �;

where � is a space-time white noise and for U � � and ck(F )=
1

k!
E[F (U)Hk(U)].



The Boltzmann�Gibbs principle 16/17

Galileian transformation. Performing the change of variables ut
"(x) = u~t

" (x¡ "¡1/2 c1(F ) t)
Itô formula shows that u" solves

@tu
"=�u"+ "¡1 @x�0

N (F ("1/2 u")¡ c1(F ) "1/2u")+ @x�0
N �; u0

"=�0
N �; (2)

so we replaced the function F by F~(x)=F (x)¡ c1(F )x.

Proposition (Boltzmann�Gibbs principle) Let G; G0 2 L2(�) Then for all ` 2 Z and
06 s< t6 s+1 and all �> 0

E
�����Z

s

t

h"¡1 @x�0NG ("1/2ur
")¡ "¡1/2 c1(G) @x�0Nur"; e¡`i d r

����2�
.jt¡ sj3/2¡� `2

Z
R
jG0(x)j2 �(dx)

uniformly in N 2N, and for all M 6N /2

E
�����Z

s

t

h"¡1 @x�0NG ("1/2ur
")¡ "¡1/2 c1(G) @x�0N ur"¡ c2(G) @x (�0Mur

")2; e¡`id r
����2�

.jt¡ sj `2 (M¡1+ " log2N)
Z
R
jG0(x)j2 �(dx):
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