\bullet \bullet \bullet \bullet \bullet

Weak universality of the stationary Kardar-Parisi-Zhang equation

 \bullet \bullet \bullet \bullet \bullet

Massimiliano Gubinelli $-$ University of Bonn.

SPDEs and Applications - Levico Terme, May 31st 2016.

[Birthday cake for KPZ, Workshop "New approaches to non-equilibrium and random systems: KPZ integrability, universality, applications and experiments", Kavli Institute for Theoretical Physics, March 3rd 2016]

KPZ is the following SPDE

with ξ space-time white noise.

 \triangleright KPZ introduced (30 years ago!) the equation in order to capture the universal macroscopic behaviour of the fluctuations h of growing interfaces.

 \triangleright KPZ fixpoint: the KPZ equation is just an element of a wider universality class:

$$
\varepsilon^1[h(t\varepsilon^{-3}, x\varepsilon^{-2}) - \varphi(t, x)] \to \mathcal{H}(t, x)
$$

as $\varepsilon \rightarrow 0$. Difficult problem. Only known for fixed t and special $h(0, \cdot)$ [Amir-Corwin-Quastel 2011, Sasamoto-Spohn 2010, Borodin-Corwin 2014] *Talk based on joint work with: M. Jara, N. Perkowski and J. Diehl.*

 \triangleright The KPZ equation describes also fluctuations in a certain asymptotic regime where the non-linear effects are weak in the microscopic scale.

Basic ingredients:

- One conservation law for a quantity u_{ε}
- Tunable asymmetry of order ε

Universal limit: $\varepsilon^{-1}(u_{\varepsilon}(t\varepsilon^{-4}, x\varepsilon^{-2}) - \varphi(t, x)) \longrightarrow u(t, x)$ where *u* solves the Stochastic Burgers equation (SBE) $\partial_t u(t, x) = \Delta u(t, x) + \chi \partial_x u(t, x)^2 + \partial_x \xi(t, x)$

Equivalent to KPZ with $u = \partial_x h$: u_ε represent height gradient for an interface.

 \triangleright Weakly asymmetric simple exclusion process. Particles jumps with Poisson clocks on sites of the lattice $\mathbb Z$, no two particles at the same site. Leftward with rate $1/2 + \alpha$ and rightward with rate $1/2 - \alpha$. Number of particle is locally conserved.

 \triangleright Ginzburg-Landau $\nabla \varphi$ model. Interacting Brownian motions on \mathbb{Z} :

$$
dX^{i} = ((1/2 + \alpha)V'(X^{i+1} - X^{i}) - (1/2 - \alpha)V'(X^{i} - X^{i-1}))dt + dB^{i}_{t}, \qquad i \in \mathbb{Z}
$$

 \triangleright Hairer-Quastel model. SPDE:

$$
\partial_t g(t, x) = \Delta g(t, x) + \alpha F(\partial_x g(t, x)) + \eta(t, x) \qquad x \in \mathbb{R}
$$

where η is a short range/short memory gaussian process.

 $\alpha = 0 \Rightarrow$ convergence to Gaussian fluctuations

 $\alpha = \varepsilon \Rightarrow$ convergence to KPZ

[Bertini-Giacomin 1996 (WASEP), Hairer-Quastel 2015]

Energy solutions: a good notion of martingale solutions to SBE which allows to prove the weak KPZ universality conjecture for a large class of **stationary** models.

- \triangleright [Gonçalves-Jara 2010/2014] Initial notion of energy solutions
- \triangleright [Jara-G. 2013] Refined notion of energy solutions
- \triangleright [G.-Perkowski 2015] Uniqueness for the refined notion

Proofs of weak universality from energy solutions:

 \triangleright General exclusion processes. [Gonçalves-Jara 2014, Gonçalves-Jara-Simon 2016, Franco-Gonçalves-Simon 2016]

- \triangleright Zero-range processes and many other particle systems. [Gonçalves-Jara-Sethuraman 2015]
- \triangleright Ginzburg-Landau $\nabla\varphi$ model. [Diehl-G.-Perkowski 2016?]
- \triangleright Hairer-Quastel model. [G.-Perkowski 2016]

 \triangleright [Bertini-Giacomin 1996]: existence of random function *h* describing the scaling limit of the fluctuation of WASEP for which $\varphi\!=\!e^h$ satisfies the Stochastic Heat Equation (SHE)

$$
\mathscr{L}\varphi(t,x) = \varphi(t,x)\xi(t,x), \qquad t \geqslant 0, x \in \mathbb{R}.
$$

 \triangleright Cole–Hopf: transformation (ξ_{ε} a regularisation of ξ), $\varphi_{\varepsilon} = e^{h_{\varepsilon}}$

$$
\mathcal{L}\varphi_{\varepsilon}(t,x) = \varphi_{\varepsilon}(t,x)\xi_{\varepsilon}(t,x) - C_{\varepsilon}\varphi_{\varepsilon}(t,x)
$$

$$
\updownarrow
$$

$$
\mathcal{L}h_{\varepsilon}(t,x) = (\partial_x h_{\varepsilon}(t,x))^2 - C_{\varepsilon} + \xi_{\varepsilon}(t,x)
$$

No equation!

 \triangleright Intrinsic notions of solution:

- Energy solutions $[Goncalves-Jara 10/14]$: weak notion, global in time solutions. Uniqueness established only recently $[G.-Perkowski 2015]$.
- Rough paths [Hairer 2013] : strong notion, local solutions, uniqueness / stability.
- Regularity structures [Hairer 2014], paracontrolled distributions [G.-Perkowski 2015].

 \triangleright Cole-Hopf: Not a general approach to universality, needs a specific structure, especially at the microscopic level. Only OK for specific models. [Bertini-Giacomin 1997, Dembo-Tsai 2013, Corwin-Tsai 2015, Corwin-Shen-Tsai 2016].

 \triangleright Rough-paths: (but also Regularity structures or Paracontrolled distributions) need control of regularity, universality so far only for semilinear SPDEs (and on the torus). [Hairer-Quastel 2015, Hairer-Shen 2015, G.-Perkowski 2015]

 \triangleright Energy solutions: requires precise knowledge of the invariant measure but otherwise quite flexible and powerful (and works easily on \mathbb{R}).

Approach to weak universality:

- tightness of fluctuations
- martingale characterization of limit points;
- uniqueness \Rightarrow convergence.

Definition 1 (Jara-Gonçalves, 2010) *u is* an energy solution of SBE if

$$
M_t(\varphi) = u_t(\varphi) - u_0(\varphi) - \int_0^t u_s(\Delta \varphi) ds - \mathcal{B}_t(\varphi)
$$

is a martingale with bracket $[M(\varphi)]_t \!=\! t\|\partial_x\varphi\|_{L^2}^2$ and if

 $\mathbb{E}|\mathcal{B}_{s,t}(\varphi) - \mathcal{B}_{s,t}^{\varepsilon}(\varphi)|^2 \leqslant C\varepsilon|t-s|\|\partial_x\varphi\|_{L^2}^2$ (energy condition)

where

$$
\mathcal{B}_{s,t}^{\varepsilon}(\varphi) = \int_{s}^{t} \partial_{x}(\rho_{\varepsilon} * u_{s})^{2}(\varphi) \mathrm{d}s
$$

and $\rho_{\varepsilon}(x) = \varepsilon^{-1} \rho(\varepsilon^{-1}x)$.

 \triangleright An energy solution is given by a **pair** (u, B) . Very little information about *B*. As a consequence, energy solutions are too weak to be compared meaningfully.

JaraG. introduced another notion of energy solution

Definition 2 (Jara–G. 2013) (u, \mathcal{A}) *is a controlled process if*

1. (Dirichlet) ut(*'*) *is a Dirichlet process with*

$$
M_t(\varphi) = u_t(\varphi) - u_0(\varphi) - \int_0^t u_s(\Delta \varphi) ds - A_t(\varphi)
$$

is a martingale with bracket $[M(\varphi)]_t \!=\! t \|\partial_x \varphi\|_{L^2}^2$ and $[\mathcal{A}(\varphi)] \!=\! 0.$

- *2. (Stationarity) u^t is a white noise for all t;*
- 3. (Time–reversal) $\overleftarrow{u}_t = u_{T-t}$ satisfies 1. with $\mathcal{A}_t(\varphi) = \mathcal{A}_T(\varphi) \mathcal{A}_{T-t}(\varphi)$.

 \triangleright Key property: For controlled processes we can define and estimate efficiently additive functionals of the form

$$
\int_0^t f(u_s) \mathrm{d} s.
$$

Let \mathcal{L}_{OU} be the generator of the OU process X given by $\mathcal{L}X = D\xi$. Itô formula for Dirichlet processes $[Russo–Vallois]$, forward first:

$$
F(u_T) = F(u_0) + \int_0^T \nabla F(u_s) \, dM_s + \int_0^T \nabla F(u_s) \, dA_s + \int_0^T \mathcal{L}_{\text{OU}} F(u_s) \, ds
$$

and then backward:

$$
F(\overleftarrow{u}_T) = F(\overleftarrow{u}_0) + \int_0^T \nabla F(\overleftarrow{u}_s) d\overleftarrow{M}_s + \int_0^T \nabla F(\overleftarrow{u}_s) d\overleftarrow{A}_s + \int_0^T \mathcal{L}_{\text{OU}} F(\overleftarrow{u}_s) ds.
$$

Summing and using BDG inequalities :

$$
2\int_0^T \mathcal{L}_{\text{OU}} F(u_s) \, \mathrm{d}s = -\int_0^T \nabla F(\overleftarrow{u}_s) \, \mathrm{d}\overleftarrow{M}_s - \int_0^T \nabla F(u_s) \, \mathrm{d}\overrightarrow{M}_s
$$
\n
$$
\mathbb{E} \left| \int_0^T \mathcal{L}_{\text{OU}} F(u_s) \, \mathrm{d}s \right|^p \lesssim_p T^{p/2} \mathbb{E} [\mathcal{E}_{\text{OU}} (F)^{p/2}]
$$

Result: powerful control of additive functionals of controlled processes.

[forward-backward Itô trick, Kipnis-Varadhan 1986, Chang-Landim-Olla 2001].

Lemma 3 *If* (*u; A*) *is controlled then*

$$
\mathcal{B}_t(\varphi) := \lim_{\varepsilon \to 0} \mathcal{B}_t^{\varepsilon}(\varphi) = \lim_{\varepsilon \to 0} \int_s^t \partial_x (\rho_{\varepsilon} * u_s)^2(\varphi) ds
$$

with good estimates on space-time regularity (e.g. zero quadratic variation).

Definition 4 (Jara-G. 2013) *A* controlled process (u, \mathcal{A}) is a stationary solution to SBE if $A = B$.

 \triangleright Existence is proved via stationary Galerkin approximations u^N . The forward-backward Itô trick gives tightness for the approximate drift $\mathcal{B}^N.$

 \triangleright Not difficult to show that particle systems converge to limits satisfying this alternative notion.

 \triangleright This notion of solution is more powerful since brings along all the information about estimations of additive functionals, not only of*B*.

Theorem 5 (G.Perkowski, 2015) *There exists only one controlled energy solution, in particular it coincides with the ColeHopf solution.*

The proof uses a key estimate from [Funaki-Quastel 2014].

Let (u, \mathcal{A}) be an energy solution and let $u^{\varepsilon} = \rho_{\varepsilon} * u$. Then u^{ε} satisfies

$$
\mathrm{d}u_t^{\varepsilon}(x) = \Delta u_t^{\varepsilon}(x) \mathrm{d}t + (\rho_{\varepsilon} * \mathrm{d}\mathcal{A}_t)(x) + (\rho_{\varepsilon} * \mathrm{d}M_t)(x)
$$

Consider $\varphi_t^\varepsilon(x) = e^{h_t^\varepsilon(x)}$ where $\partial_x h_t^\varepsilon(x) = u_t^\varepsilon(x)$. Then

$$
d\varphi_t^{\varepsilon}(x) = e^{h_t^{\varepsilon}(x)} (\Delta h_t^{\varepsilon}(x) dt + c_{\varepsilon} dt + \partial_x^{-1} (\rho_{\varepsilon} * d\mathcal{A}_t)(x) + \partial_x^{-1} (\rho_{\varepsilon} * dM_t)(x))
$$

$$
=\Delta\varphi_t^{\varepsilon}(x)\mathrm{d}t+\varphi_t^{\varepsilon}(x)(Q_t^{\varepsilon}+K^{\varepsilon})\mathrm{d}t+\varphi_t^{\varepsilon}(x)(\rho_{\varepsilon}*{\rm d}W_t)(x)+{\rm d}R_t^{\varepsilon}(\varphi)
$$

$$
R_t^{\varepsilon}(\varphi) = \int_0^t (\varphi_s^{\varepsilon}(x)\partial_x^{-1}(\rho_{\varepsilon} * d\mathcal{A}_s)(x) - \varphi_s^{\varepsilon}(x)\Pi_0(u_s^{\varepsilon}(x))^2 ds - K^{\varepsilon}ds), \quad Q_t^{\varepsilon} = \int_{\mathbb{T}} ((u_s^{\varepsilon}(x))^2 - c_{\varepsilon})dx.
$$

If we show that $R_t^\varepsilon(\varphi) \to 0$ then $\varphi^\varepsilon \to \varphi$ solution to a tilted SHE which is unique.

We approximate R^{ε} as

$$
R_t^{\varepsilon,\delta}(\varphi) = \int_0^t \left(-K_{\varepsilon} ds + \varphi_s^{\varepsilon}(x) \partial_x^{-1} (\rho_{\varepsilon} * d\mathcal{B}_s^{\delta})(x) - \varphi_s^{\varepsilon}(x) (u_s^{\varepsilon}(x))^2 ds \right)
$$

=
$$
\int_0^t \left\{ -K_{\varepsilon} + e^{\partial_x^{-1} u_s^{\varepsilon}(x)} [\rho_{\varepsilon} * (\rho_{\delta} * u_s)^2 - (\rho_{\varepsilon} * u_s)^2](x) \right\} dt = \int_0^t f_{\varepsilon,\delta}(u_s) ds
$$

So we use the forward—backward Itô trick to get an L^2 estimate

$$
\mathbb{E}|R_t^{\varepsilon,\delta}(\varphi)|^2\lesssim t\,\|f_{\varepsilon,\delta}\|_{\mathcal{H}^{-1}}^2
$$

where \mathcal{H}^{-1} is the Sobolev space associated to the OU generator.

Following the strategy in Funaki-Quastel a detailed computation shows that there exists a choice for $K_{\varepsilon} \to K = -1/2$ for which

$$
||f_{\varepsilon,\delta}||_{\mathcal{H}^{-1}}^2 = \sup_{\Phi} [2\mathbb{E}(f_{\varepsilon,\delta}\Phi) - ||\Phi||_{\mathcal{H}^1}^2] \to 0.
$$

It is enough to show that $|\mathbb{E}(f_{\varepsilon,\delta}\Phi)| \leqslant o(1) \|\Phi\|_{\mathcal{H}^1}$.

Consider the stochastic PDE

$$
\partial_t v = \Delta v + \varepsilon^{1/2} \partial_x F(v) + \partial_x \chi^{\varepsilon}
$$

on $[0,\infty)\times\mathbb{T}_\varepsilon$ with $\mathbb{T}_\varepsilon\!=\!\mathbb{R}/(2\,\pi\,\varepsilon^{-1}\,\mathbb{Z})$, where χ^ε is a Gaussian noise that is white in time and spatially smooth. We modify the equation such that after rescaling $\tilde u_t^\varepsilon(x)\!=\!\varepsilon^{-1/2}\,v_{t\varepsilon^{-2}}(x\,\varepsilon^{-1})$ we have

$$
\partial_t \tilde{u}^{\varepsilon} = \Delta \tilde{u}^{\varepsilon} + \varepsilon^{-1} \partial_x \Pi_0^N F \left(\varepsilon^{1/2} \tilde{u}^{\varepsilon} \right) + \partial_x \Pi_0^N \tilde{\xi}, \qquad \tilde{u}_0^{\varepsilon} = \Pi_0^N \eta,
$$
\n(1)

where $\tilde{\xi}$ is a space-time white noise on $[0,\infty)\times\mathbb{T}$ (where $\mathbb{T} \! = \! \mathbb{T}_1$) with variance 2, η is a space white noise which is independent of $\tilde{\xi},\;\Pi_0^N$ denotes the projection onto the Fourier modes $0 < |k| \le N$, and $N = \pi/\varepsilon$.

Theorem Assume that $F, F' \in L^2(\nu)$ where ν is the standard normal distribution. Then $u^\varepsilon_t(x):=\tilde u^\varepsilon_t\,(x-\varepsilon^{-1/2}\,c_1(F)\,t),\,(t,x)\in[0,T]\times\mathbb{T}$, converges in distribution to the unique *stationary energy solution u of*

$$
\partial_t u = \Delta u + c_2(F) \partial_x u^2 + \partial_x \xi,
$$

where ξ is a space-time white noise and for $U \sim \nu$ and $c_k(F) = \frac{1}{k!} \mathbb{E}[F(U) \ H_k(U)].$

Galileian transformation. Performing the change of variables $u_t^{\varepsilon}(x) = \tilde{u}_t^{\varepsilon}(x - \varepsilon^{-1/2} c_1(F) t)$ Itô formula shows that u^ε solves

$$
\partial_t u^{\varepsilon} = \Delta u^{\varepsilon} + \varepsilon^{-1} \partial_x \Pi_0^N \left(F \left(\varepsilon^{1/2} u^{\varepsilon} \right) - c_1(F) \varepsilon^{1/2} u^{\varepsilon} \right) + \partial_x \Pi_0^N \xi, \qquad u_0^{\varepsilon} = \Pi_0^N \eta, \tag{2}
$$

so we replaced the function *F* by $\tilde{F}(x) = F(x) - c_1(F) x$.

Proposition (Boltzmann-Gibbs principle) Let $G, G' \in L^2(\nu)$ Then for all $\ell \in \mathbb{Z}$ and $0 \leqslant s < t \leqslant s+1$ and all $\kappa > 0$

$$
\mathbb{E}\bigg[\bigg|\int_{s}^{t} \langle \varepsilon^{-1} \partial_{x} \Pi_{0}^{N} G(\varepsilon^{1/2} u_{r}^{\varepsilon}) - \varepsilon^{-1/2} c_{1}(G) \partial_{x} \Pi_{0}^{N} u_{r}^{\varepsilon}, e_{-\ell} \rangle d r \bigg|^{2}\bigg]
$$

$$
\lesssim |t-s|^{3/2-\kappa} \ell^{2} \int_{\mathbb{R}} |G'(x)|^{2} \nu(dx)
$$

uniformly in $N \in \mathbb{N}$, and for all $M \le N/2$

$$
\mathbb{E}\bigg[\bigg|\int_{s}^{t} \langle \varepsilon^{-1} \partial_{x} \Pi_{0}^{N} G(\varepsilon^{1/2} u_{r}^{\varepsilon}) - \varepsilon^{-1/2} c_{1}(G) \partial_{x} \Pi_{0}^{N} u_{r}^{\varepsilon} - c_{2}(G) \partial_{x} (\Pi_{0}^{M} u_{r}^{\varepsilon})^{2}, e_{-\ell} \rangle d\eta \bigg|^{2}\bigg]
$$

$$
\lesssim |t-s| \ell^{2} (M^{-1} + \varepsilon \log^{2} N) \int_{\mathbb{R}} |G'(x)|^{2} \nu(dx).
$$

Thanks!

