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[Birthday cake for KPZ, Workshop “New approaches to non-equilibrium and random systems: KPZ integrability, universality,
applications and experiments”, Kavli Institute for Theoretical Physics, March 3rd 2016]



The Kardar-Parisi—-Zhang equation

KPZ is the following SPDE

Oih(t,x) = Ah(t,z) + x (Oh(t,x))? +£(t, ), t>0,reR,T
N , T P ,

. Vo Vv /
diffusion growth noise

with & space—time white noise.

> KPZ introduced (30 years ago!) the equation in order to capture the universal macroscopic
behaviour of the fluctuations h of growing interfaces.

> KPZ fixpoint: the KPZ equation is just an element of a wider universality class:
ellh(te 3, 2e™?) — o(t,x)] = H(t, x)

as £ — 0. Difficult problem. Only known for fixed ¢ and special A (0, )
[Amir—Corwin—Quastel 2011, Sasamoto—Spohn 2010, Borodin—Corwin 2014]
Talk based on joint work with: M. Jara, N. Perkowski and J. Diehl.



The weak KPZ conjecture

> The KPZ equation describes also fluctuations in a certain asymptotic regime where the
non—linear effects are weak in the microscopic scale.

Basic ingredients:
e One conservation law for a quantity u.

e Tunable asymmetry of order ¢

Universal limit:
8_1(u€(t8_47 338_2) - Sp(ta .CC)) — U’(ta .CC)

where u solves the Stochastic Burgers equation
(SBE)

Owu(t,x) = Au(t, ) + xOpu(t, )? + 0.£(t, 7)

Equivalent to KPZ with uw = 0,h: u. represent height gradient for an interface.



Some models

> Weakly asymmetric simple exclusion process. Particles jumps with Poisson clocks on sites
of the lattice Z, no two particles at the same site. Leftward with rate 1 /2 + « and rightward

with rate 1 /2 — «. Number of particle is locally conserved.

> Ginzburg—Landau V ¢ model. Interacting Brownian motions on Z:
dX'=((1/2+a) V(X' - X)) —(1/2—a)V'(X! - X'=1))dt + d B}, i €7
> Hairer—Quastel model. SPDE:
Og(t,x) =Ag(t,x) +aF(0.9(t,z)) + n(t,x) reR

where 1) is a short range/short memory gaussian process.

a =0 = convergence to Gaussian fluctuations

a =€ = convergence to KPZ

[Bertini-Giacomin 1996 (WASEP), Hairer—Quastel 2015]



Proofs of weak universality in stationarity

Energy solutions: a good notion of martingale solutions to SBE which allows to prove the
weak KPZ universality conjecture for a large class of stationary models.

> [Gongalves—Jara 2010/2014] Initial notion of energy solutions
> [Jara—G. 2013] Refined notion of energy solutions

> [G.—Perkowski 2015] Uniqueness for the refined notion

Proofs of weak universality from energy solutions:

> General exclusion processes. [Gongalves—Jara 2014, Gongalves—Jara—Simon 2016, Franco-
Gongalves-Simon 2016]

> Zero—range processes and many other particle systems. [Gongalves-Jara-Sethuraman 2015]
> Ginzburg-Landau V¢ model. [Diehl-G.-Perkowski 20167]
> Hairer—Quastel model. [G.-Perkowski 2016]



What really is KPZ?

> [Bertini-Giacomin 1996]: existence of random function h describing the scaling limit of the
fluctuation of WASEP for which ¢ = e satisfies the Stochastic Heat Equation (SHE)

Zo(t,2) = plt,2)E(t,x),  t>0,2€R,

> Cole—Hopf: transformation (. a regularisation of &), . = ¢/*=

fgpe(t, :IZ) - Spe(ta x)fa(ta :C) - Ce@s(tv :IZ)

0
Zhe(t,x) = (0zh:(t,z))? — C.+ &(t, x)

No equation!

> Intrinsic notions of solution:

e Energy solutions [Gongalves—Jara 10/14] : weak notion, global in time solutions. Unique-
ness established only recently [G.—Perkowski 2015].

e Rough paths [Hairer 2013] : strong notion, local solutions, uniqueness / stability.

e Regularity structures [Hairer 2014], paracontrolled distributions [G.—Perkowski 2015].



Different notions of solutions

> Cole—Hopf: Not a general approach to universality, needs a specific structure, especially at
the microscopic level. Only OK for specific models. [Bertini-Giacomin 1997, Dembo-Tsai 2013,

Corwin-Tsai 2015, Corwin—Shen—Tsai 2016].

> Rough—paths: (but also Regularity structures or Paracontrolled distributions) need control
of regularity, universality so far only for semilinear SPDEs (and on the torus). [Hairer—-Quastel
2015, Hairer-Shen 2015, G.—Perkowski 2015]

> Energy solutions: requires precise knowledge of the invariant measure but otherwise quite
flexible and powerful (and works easily on R).

Approach to weak universality:
e tightness of fluctuations
e martingale characterization of limit points;

° uniqueness => convergence.



Energy solutions 9/17

u Iis an energy solution of SBE if

t

Mi(p) = us(p) — uo(w) — /O us(Ap)ds — Bi(yp)

is a martingale with bracket [M ()] =t||0.]|72 and if

E|Bs () — BS «(0)|2 < Celt — s| |03 2 (energy condition)

where

g,t(‘p) — /taﬂc(pe x us)2((70)d3

and pe(z)=e1p(e~tx).

> An energy solution is given by a pair (u, B). Very little information about 5. As a consequence,
energy solutions are too weak to be compared meaningfully.



A refined notion of energy solutions 10/17

Jara—G. introduced another notion of energy solution

(u,.A) is a controlled process if

1. (Dirichlet) u.() is a Dirichlet process with
t

Mi(0) = ue(0) — o) — / ua(Ag)ds — A(p)

is a martingale with bracket [M(¢)]; =t||0.0]|72 and [A(p)] =0.

2. (Stationarity) u; is a white noise for all t;

3. (Time—reversal) w;=up_, satisfies 1. with :th(go) =Ar(p) — Ar_+(9).

> Key property: For controlled processes we can define and estimate efficiently additive func-

tionals of the form
t
/ f(us)ds.
0



The Ito trick, forward and then backward

Let £ou be the generator of the OU process X given by X = D¢&. 1té formula for Dirichlet
processes [Russo—Vallois|, forward first:

Flur) = Fuo) + /0 'O P (ug)dM, + /0 O P (ug)d A, + /0 ! U F(us)ds

and then backward:
— — T — = T — ~ T —
F(uT):F(uo)—l—/ VF(us)dMS+/ VF(uS)dAS+/ LouF(i)ds.
0 0 0

Summing and using BDG inequalities :

T T - T
2 / ZouF (us)ds = — / VF(us)dM, — / V F(us)d M,
0 0 0

p

T
E/ ZouF (us)ds| <, TP E[Eou(F)P/?]
0

Result: powerful control of additive functionals of controlled processes.

[forward—backward It6 trick, Kipnis—Varadhan 1986, Chang—Landim—Olla 2001].



Energy solutions, the controlled way 12/17
If (u,.A) is controlled then

¢
Bi(p):=lim Bi () =lim [ 0.(pe*us)*(p)ds

e—0 e—>0 Jg

with good estimates on space—time regularity (e.g. zero quadratic variation).

Definition 4 A controlled process (u,.A) is a stationary solution to SBE if

A=B.

> Existence is proved via stationary Galerkin approximations uY. The forward—backward 1t6
trick gives tightness for the approximate drift B .

> Not difficult to show that particle systems converge to limits satisfying this alternative notion.

> This notion of solution is more powerful since brings along all the information about estima-
tions of additive functionals, not only of 5.



Uniqueness of controlled energy solutions

Theorem 5 There exists only one controlled energy solution, in
particular it coincides with the Cole—Hopf solution.

The proof uses a key estimate from [Funaki—Quastel 2014].

Let (u,.A) be an energy solution and let u® = p.*u. Then u® satisfies
dug () = Aug(x)dt + (pe x dAy) (z) + (pe * dMy)(x)
Consider f(z) =€) where 0,h5(z) =ui(z). Then
dps(z) =@ (ARS (z)dt + codt + 0, M pe ¥ dAL) () + 0, H(pex dM,) (x))
=Api(z)dt + i (2)(Qf + K°)dt + i (x) (pe x AW) (2) + dRi ()
¢ 1
Ri(e) = [ (¢5@)07 (per dA) (@) = wS(@)To(us(@)ds — K°ds), QF = [ ((u5(@))? = co)d.
0 T

If we show that R7(y)— 0 then ¢©° — ¢ solution to a tilted SHE which is unique.



Control of the remainder

We approximate R° as
t
RE9(p) = / (—Kods+ 9=(2)0  (po * dB%) () — o=(a) (us(x))ds)

/{ K.+ e = (x)[ * (pskus)® — (pe ) }dt_/fséus

So we use the forward—backward Itd trick to get an L? estimate
,0
EIR;(9)? St (| fe,sll7

where ! is the Sobolev space associated to the OU generator.

Following the strategy in Funaki—Quastel a detailed computation shows that there exists a choice
for K. — K =—1/2 for which

1 f.6ll3— = sup 2E(f-,6®) — [|®]3] =

It is enough to show that |[E( f. sP)| < o(1)]|®|4:.



The Hairer—Quastel model 15/17

Consider the stochastic PDE

8tU:A’U+€1/28mF(’U)+axX€

on [0,00) x T. with T.=R /(27 ' 7Z), where x° is a Gaussian noise that is white in time and
spatially smooth. We modify the equation such that after rescaling 4§ () =c /% v,. 2 (z 1)
we have

QW =AU +e O, IIYF (/2 0%) + 0, I €, a5 =1, (1)

where ¢ is a space-time white noise on [0, 00) x T (where T =T}) with variance 2, 7 is a space

white noise which is independent of &, II{Y denotes the projection onto the Fourier modes
0<|k|<N,and N=n1/¢.

ULENIE) Assume that F', F/ € L?(v) where v is the standard normal distribution. Then
ui(x) =05 (x — e V2 (F)t), (t,z) €[0,T] x T, converges in distribution to the unique
stationary energy solution u of

Oru=Au+co(F) Dy u®+ 9, &,

where £ is a space-time white noise and for U ~ v and ci(F') = %E[F(U) Hi(U)].



The Boltzmann—Gibbs principle

Galileian transformation. Performing the change of variables u(z) = (x — e~ /2 ¢ (F) t)
1t6 formula shows that u° solves

Oruf =Auf+e71 9, II) (F (2 uf) —er(F) e Puf) + 0, TS, wf=T10'n,  (2)

so we replaced the function F' by F(z) = F(z) — c1(F) x.

Let G, G' € L*(v) Then for all [ € 7. and

0<s<t<s+1andall k>0
|

|

¢
/ (e 1O, IIY G (/2 us) —e ™12 ¢1(G) 0, TT uS, e_g) dr

<|t—s[3/2n g2 / G'()2v(da)
R
uniformly in N € N, and for all M < N /2

q

¢
/ (e71 0, Y G (e/2us) — e~ Y2¢1 (@) 0, TIY us — ¢2(G) B, (MY )2, e_p) dr

|

<|t— 5|2 (M‘1+5log2N)/|G’(x)\zy(da:).
R
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