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The Kardar-Parisi—-Zhang equation

KPZ [Kardar-Parisi-Zhang ’86] is the following SPDE

0:h(t,x)=Ah(t,x) + y (0,.h(t,x))?+ £(¢,x), t>0,x<IR, T

diffusion growth noise

with £ space—time white noise.
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> KPZ introduced the equation in order to capture the universal macroscopic behav-

iour of the fluctuations % of growing interfaces.

Talk based on joint work with: M. Jara, N. Perkowski and oJ. Diehl.



The strong and weak KPZ conjecture 3/16

> Strong conjecture: the KPZ equation is just an element of a wider universality class:
elfh(te3,xe7?) - @(t,x)] > I6(t,x) (KPZ fixpoint)

as € - 0. Difficult problem. Only known for fixed ¢ and special ~(0, -)
[Borodin, Corwin, Ferrari, Quastel, Sasamoto, Spohn and many others]

> Gaussian fluctuations: when asymmetric non—linear effects are “small”

elh (te™*,xe7?) — Gaussian random field

[Spohn ’86, Kipnis-Olla-Varadhan ’89, Zhu 92, Chang-Yau ’92,...]

> Weak conjecture: the KPZ equation itself describes height fluctuations for interface
models where the asymmetric non—linear effects are of order e¢:

el(h (te™* xe72) - ¢(t,x)) = h(t,x)



Some models with tunable asymmetry 4/16

> Weakly asymmetric simple exclusion process. Particles jumps with Poisson
clocks on sites of the lattice Z, no two particles at the same site. Leftward with rate
1/2 + o and rightward with rate 1/2 - «. Number of particle is locally conserved.

> Ginzburg-Landau V¢ model. Interacting Brownian motions on Z:
dAX'=((1/2+ )V X*1-X)-(1/2- )V X -X"V)dt +dBi,  i<Z
> Hairer-Quastel model.
0:8(t,x)=Ag(t,x)+ aF(d,g(t,x))+n(t,x) x<IR

where 7 is a short range/short memory gaussian process.

a =0 = convergence to Gaussian fluctuations

o = € = convergence to KPZ

[Bertini—Giacomin '96 (WASEP), Hairer—Quastel ’15]



Proofs of weak universality in stationarity

Stochastic Burgers equation (SBE)

u=09,h Ot =Au + 0, u’+ 0,.&

Energy solutions: a good notion of martingale solutions to SBE which allows to
prove the weak KPZ universality conjecture for a large class of stationary models.

> [Assing '02] Generalized martingale problem for SBE («=9,h)

> [Goncalves—Jara '10/14] Initial notion of energy solutions (also [Assing ’11])

> [Jara—G. ’13] Refined notion of energy solutions (forward—backward trick)

> [G.—Perkowski ’15] Uniqueness for the refined notion

Proofs of weak universality from energy solutions:

> General exclusion processes. [Goncalves-Jara 14, Goncalves—Jara-Simon 16, Franco-Gongalves-Simon *16]
> Zero—range processes and many other particle systems. [Goncalves-Jara-Sethuraman 15]
> Ginzburg—Landau V ¢ model. ichl-G.-Perkowski ‘16]

> Hairer—Quastel model. (6. -Perkowski16]



What really is KPZ? 6/16

> [Bertini—Giacomin ’96]: existence of random function A describing the scaling limit of
the fluctuation of WASEP for which ¢ = e’ satisfies the Stochastic Heat Equation
(SHE)

Zo(t,x)=@(t,x)E(,x), t20,x<1IR.

> Cole-Hopf: transformation (£, = p, * £ a regularisation of £) , ¢, =e”

L@ (t,x)=@(t,x)E(t,x) — Cop(t,x)
)
Zh(t,x)=(0,h(t,x))? - C.+ &(,x)

No equation!

> Intrinsic notions of solution:

e Martingale/Energy solutions [Assing '04, Goncalves—Jara ’10] : weak notion, global in
time solutions. Uniqueness established only recently [G.—Perkowski ’15].

e Rough paths [Hairer ’13] : strong notion, local solutions, uniqueness / stability.

e Regularity structures [Hairer °’14], paracontrolled distributions
[G.—ImKkeller—Perkowski ’14, G.—Perkowski ’15].



Different notions of solutions 7/16

> Cole-Hopf: Not a general approach to universality, needs a specific structure,
especially at the microscopic level. Only OK for specific models.

[Bertini-Giacomin ’97, Dembo-Tsai ’13, Corwin-Tsai ’'15, Corwin—Shen—Tsai '16].

> Rough-paths: (but also Regularity structures or Paracontrolled distributions)
need control of regularity, universality so far only for semilinear SPDEs (and on the
torus).

[Hairer—Quastel ’15, Hairer—Shen ’15, G.—Perkowski '15]

> Energy solutions: requires precise knowledge of the invariant measure but oth-
erwise quite flexible and powerful (and works easily on IR).

Approach to weak universality:
e tightness of fluctuations
e martingale characterization of limit points;

e uniqueness = convergence.



Energy solutions 8/16

Ot =Au + 0, u’+ 0,.&

u is an energy solution of SBE if
M) =ui @)~ uo(@) - [ us(Ap)ds - B )
is a martingale with bracket [M(p)l;= t||ax¢||§2 and if

IE | Bs(p)- BEdp)|?°<Celt-s| 10|12 (energy condition)
where

BE (@)= [0 pe  usy(p)ds

and p.(x)=¢e1p(e ).

> An energy solution is given by a pair (u, 3B). Very little information about 9. As
a consequence, energy solutions are too weak to be compared meaningfully.



A refined notion of energy solutions 9/16

Jara—G. introduced another notion of energy solution

(u, ) is a controlled process if
1. (Dirichlet) u/¢) is a Dirichlet process with

M) =ulp) - uo(p) = [ us(Ap)ds = A ()

s a martingale with bracket [M(p)l;= t||8x<p||%2 and [ A(p)]=0.

2. (Stationarity) u; is a white noise for all t;

e
3. (Time-reversal) <L7t=uT_t satisfies 1. with A ()= Ap(p)— Ar_(@).

> Key property: For controlled processes we can define and estimate efficiently
additive functionals of the form

[ of (us)ds.



The Ito trick, forward and then backward 10/16

Let .5 be the generator of the OU process X given by .#,X = D&, 1t6 formula for
Dirichlet processes [Russo—Vallois], forward first:

F(ur)=F(uo)+ [ VF(u)dM,+ [{ VF(u)d As+ [ ZoF (us)ds

and then backward:
F(iir)=F (o) + [TVF (i )dMy+ [TVF (it g)d Ao+ [T ZoF (i )ds.

Summing and using BDG inequalities :
2T #F (u)ds=- [T VF(i)dM, - [T VF(u)dM,
E| [7 4F (u)ds | P <, TPRIEE(F) (o)

IE| [ Gu)ds |2ST G2 Gl ge-1 = sup [2IE[F (o) Gluo)] - IE[% o(F ) uo)]]
F

Result: control of additive functionals of controlled processes.

[Forward—backward It6 trick, Kipnis—Varadhan ’86, Chang—Landim—Olla ’01]



Energy solutions, the controlled way 11/16

If (u, A) is controlled then
B p): =lim B (p) =lim J:0:(pe # u)(g)ds
E E

with good estimates on space—time regularity (e.g. zero quadratic variation).

A controlled process (v, /) is a stationary solution to SBE
if
H=3%B.

> Existence is proved via stationary Galerkin approximations v . The forward—back-
ward It6 trick gives tightness for the approximate drift %% .

> Not difficult to show that particle systems converge to limits satisfying this alter-
native notion.

> This notion of solution is more powerful since brings along all the information
about estimations of additive functionals, not only of 3.



Uniqueness of controlled energy solutions 12/16

There exists only one controlled energy solution, in par-
ticular it coincides with the Cole—Hopf solution.

The proof uses a key estimate from [Funaki-Quastel '14]. Works on IR, TI".

Let (u, /) be an energy solution and let u®=p, «u. Then u*® satisfies
duj(x) =Auj(x)dt + (p, = d Ay (x) + (o = dM;)(x)
Consider <pf(x)=eht5 ) where 9.hf(x)=uf(x). Then
di(x) = M OARE(x)dE + ¢ dE + 0: (e # dA)(x) + 0: 1 (p, = AM,)(x))
=A@f (x)dt + @f ()(Qf + K ©)dt + o (x)(pg = AW,)(x) + dRf (¢p)

Ri(9) = [H(pf@)7 (pe % dA)(x) - 9f0Towi@)2ds - Keds),  QF = [ (ui(x))2 - c,)dx.

If we show that R;(¢) - 0 then ¢° - ¢ solution to a tilted SHE which is unique.



Control of the remainder 13/16

We approximate R° as

Ry (@) = [ ((-K.ds + ¢£(x)05 (pe = dIBE)(x) = () (ul(x))?ds)

- fg{—Kg +e% U o w (ps # ug)? = (g % us)21(x)}dt = ff)fg, s(u,)ds
So we use the forward—backward Itd trick to get an L? estimate
IE | R{%(9) | 2t IIfe, 536

where 9! is the Sobolev space associated to the OU generator.

Following the strategy in Funaki—Quastel a detailed computation shows that there
exists a choice for K, > K =-1/12 for which

If: %1 = sup [2IE(f s@) = |®]12,.] = 0.
b

It 1s enough to show that [IE(f, s@)| <o(1)||P] 4.



The Hairer—Quastel model 14/16

Consider the stochastic PDE

0, v=Av+ €20, (p*2xF(v))+ 0, (p* &)
on [0, c0) x T, with T, = ¢ 'I'. Rescaling u*(¢,x)=¢ Y?v(t e72,x 1) solves

ruf=Aut+e 10, [p2+F (e2u®)]+ 0. (pe &)

Theorem Assume that F,F <« L%(v) where vis the standard
normal distribution. Then

afx)=uf (x— e V2cy(F)),
converges in distribution to the unique stationary energy solution u of
iu=Au+co(F) 0 u’+0, &,

where ck(F)=%E[F(U)Hk(U)] for U ~ v.



The Boltzmann—Gibbs principle

Galileian transformation. It6 formula shows that (x) =uf (x — e V2 ¢1(F)¢) solves
0, U =AGf+ £ 10, pi% s (F (eY20%) - cy(F) €Y218) + 0, po % £

so we replaced the function F by F(x) =F(x) - ¢1(F)x.

Let G, G <L%v). For £>0
IE[| [1(e 0, pi2 =[G ("% uf) - c1(G) €2 1], ) dr | ]
Salt=s|3277) ¢
uniformly in €>0, and for all 6> ¢

B[ | [1(e0:p22 G ("% uf) - c1(G) €V uf - co(@) (eV2ps = uf)?, g)dr|?]
<glt-slllg?(8 +elog?(1/e))

Easy proof based on It6 trick and chaos expansion. For other models the proof goes
via a multiscale strategy developed by Jara and Goncalves ('14).
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