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The Kardar�Parisi�Zhang equation 2/16

KPZ [Kardar�Parisi�Zhang '86] is the following SPDE
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noise

, t�0,x B---R,T

with ξ space�time white noise.

x KPZ introduced the equation in order to capture the universal macroscopic behav-
iour of the fluctuations h of growing interfaces.

Talk based on joint work with: M. Jara, N. Perkowski and J. Diehl.



The strong and weak KPZ conjecture 3/16

xStrong conjecture: the KPZ equation is just an element of a wider universality class:

ε1[h(tε-3,xε-2)-φ(t,x)]-> ℋ(t,x) (KPZ fixpoint)

as ε-> 0. Difficult problem. Only known for fixed t and special h(0, .)

[Borodin, Corwin, Ferrari, Quastel, Sasamoto, Spohn and many others]

x Gaussian fluctuations: when asymmetric non�linear effects are �small�

ε1hε(tε-4,xε-2)--> Gaussian random field

[Spohn '86, Kipnis-Olla-Varadhan '89, Zhu '92, Chang-Yau '92,...]

xWeak conjecture: the KPZ equation itself describes height fluctuations for interface
models where the asymmetric non�linear effects are of order ε:

ε1(hε(tε-4,xε-2)-φ(t,x))--> h(t,x)



Some models with tunable asymmetry 4/16

x Weakly asymmetric simple exclusion process. Particles jumps with Poisson
clocks on sites of the latticeZ, no two particles at the same site. Leftward with rate
1/2+α and rightward with rate 1/2-α. Number of particle is locally conserved.

x Ginzburg�Landau ∇φ model. Interacting Brownian motions on Z:

dX i= ((1/2+α)V ′(X i+1-X i)- (1/2-α)V ′(X i-X i-1))dt+dBt
i, i B---Z

x Hairer�Quastel model.

∂tg(t,x)=<g(t,x)+αF(∂xg(t,x))+η(t,x) x B---R

where η is a short range/short memory gaussian process.

α =0 => convergence to Gaussian fluctuations

α =ε => convergence to KPZ

[Bertini�Giacomin '96 (WASEP), Hairer�Quastel '15]



Proofs of weak universality in stationarity 5/16

Stochastic Burgers equation (SBE)

u=∂xh ∂tu=<u+∂xu2+∂xξ

Energy solutions: a good notion of martingale solutions to SBE which allows to
prove the weak KPZ universality conjecture for a large class of stationary models.

x [Assing '02] Generalized martingale problem for SBE (u=∂xh)

x [Gonçalves�Jara '10/'14] Initial notion of energy solutions (also [Assing '11])

x [Jara�G. '13] Refined notion of energy solutions (forward�backward trick)

x [G.�Perkowski '15] Uniqueness for the refined notion

Proofs of weak universality from energy solutions:

x General exclusion processes. [Gonçalves�Jara '14, Gonçalves�Jara�Simon '16, Franco-Gonçalves-Simon '16]

x Zero�range processes and many other particle systems. [Gonçalves-Jara-Sethuraman '15]

x Ginzburg�Landau ∇φ model. [Diehl-G.-Perkowski '16]

x Hairer�Quastel model. [G.-Perkowski '16]



What really is KPZ? 6/16

x [Bertini�Giacomin '96]: existence of random function h describing the scaling limit of
the fluctuation of WASEP for which φ = eh satisfies the Stochastic Heat Equation
(SHE)

Lφ(t,x)=φ(t,x)ξ (t,x), t�0,x B---R.

x Cole�Hopf: transformation (ξε = ρε ∗ξ a regularisation of ξ ) , φε = ehε

L φε(t,x)=φε(t,x)ξε(t,x)-Cεφε(t,x)
=< =>

L hε(t,x)= (∂xhε(t,x))2-Cε +ξε(t,x)
No equation!

x Intrinsic notions of solution:

� Martingale/Energy solutions [Assing '04, Gonçalves�Jara '10] : weak notion, global in
time solutions. Uniqueness established only recently [G.�Perkowski '15].

� Rough paths [Hairer '13] : strong notion, local solutions, uniqueness / stability.

� Regularity structures [Hairer '14], paracontrolled distributions
[G.�Imkeller�Perkowski '14, G.�Perkowski '15].



Different notions of solutions 7/16

x Cole�Hopf: Not a general approach to universality, needs a specific structure,
especially at the microscopic level. Only OK for specific models.

[Bertini-Giacomin '97, Dembo-Tsai '13, Corwin-Tsai '15, Corwin�Shen�Tsai '16].

x Rough�paths: (but also Regularity structures or Paracontrolled distributions)
need control of regularity, universality so far only for semilinear SPDEs (and on the
torus).

[Hairer�Quastel '15, Hairer�Shen '15, G.�Perkowski '15]

x Energy solutions: requires precise knowledge of the invariant measure but oth-
erwise quite flexible and powerful (and works easily onR).

Approach to weak universality:

� tightness of fluctuations

� martingale characterization of limit points;

� uniqueness => convergence.



Energy solutions 8/16

∂tu=<u+∂xu2+∂xξ

Definition (Jara�Gonçalves, '10) u is an energy solution of SBE if

Mt(φ)=ut(φ)-u0(φ)-∫0
t us(<φ)ds-ℬt(φ)

is a martingale with bracket [M(φ)]t = t‖∂xφ‖L2
2 and if

E|ℬs,t(φ)-ℬs,t
ε (φ)|2�Cε|t- s|‖∂xφ‖L2

2 (energy condition)

where

ℬs,t
ε (φ)=∫s

t∂x(ρε ∗us)2(φ)ds

and ρε(x)=ε-1ρ(ε-1x).

x An energy solution is given by a pair (u, ℬ). Very little information about ℬ. As
a consequence, energy solutions are too weak to be compared meaningfully.



A refined notion of energy solutions 9/16

Jara�G. introduced another notion of energy solution

Definition (Jara�G. '13) (u,𝒜) is a controlled process if

1. (Dirichlet) ut(φ) is a Dirichlet process with

Mt(φ)=ut(φ)-u0(φ)-∫0
t us(<φ)ds-𝒜t(φ)

is a martingale with bracket [M(φ)]t = t‖∂xφ‖L2
2 and [𝒜(φ)]=0.

2. (Stationarity) ut is a white noise for all t;

3. (Time�reversal) u��t=uT-t satisfies 1. with 𝒜
��������

t(φ)=𝒜T(φ)-𝒜T-t(φ).

x Key property: For controlled processes we can define and estimate efficiently
additive functionals of the form

∫0
t f (us)ds.



The Itô trick, forward and then backward 10/16

Let L 0 be the generator of the OU process X given by L 0X = Dξ . Itô formula for
Dirichlet processes [Russo�Vallois], forward first:

F(uT)=F (u0)+∫0
T∇F(us)dMs+∫0

T∇F (us)d𝒜s+∫0
TL 0F(us)ds

and then backward:

F(u��T)=F(u��0)+∫0
T∇F(u��s)dM

��
s+∫0

T∇F(u��s)d𝒜
�������

s+∫0
TL 0F(u��s)ds.

Summing and using BDG inequalities :

2∫0
T
L 0F(us)ds=-∫0

T∇F(u��s)dM
��

s-∫0
T∇F(us)dMs

E|∫0
T
L 0F(us)ds|p <~pT p/2

E[ℰ0(F)(u0)p/2]

E|∫0
TG(us)ds|2<~T ‖G‖ℋ-1

2 ‖G‖ℋ-1 =sup
F

[2E[F(u0)G(u0)]-E[ℰ0(F)(u0)]]

Result: control of additive functionals of controlled processes.

[Forward�backward Itô trick, Kipnis�Varadhan '86, Chang�Landim�Olla '01]



Energy solutions, the controlled way 11/16

Lemma If (u,𝒜) is controlled then

ℬt(φ): =lim
ε->0

ℬt
ε(φ)=lim

ε->0
∫s

t∂x(ρε ∗us)2(φ)ds

with good estimates on space�time regularity (e.g. zero quadratic variation).

Definition (Jara�G. 2013) A controlled process (u,𝒜) is a stationary solution to SBE
if

𝒜=ℬ.

xExistence is proved via stationary Galerkin approximations uN. The forward�back-
ward Itô trick gives tightness for the approximate drift ℬN.

x Not difficult to show that particle systems converge to limits satisfying this alter-
native notion.

x This notion of solution is more powerful since brings along all the information
about estimations of additive functionals, not only of ℬ.



Uniqueness of controlled energy solutions 12/16

Theorem (G.�Perkowski, '15) There exists only one controlled energy solution, in par-
ticular it coincides with the Cole�Hopf solution.

The proof uses a key estimate from [Funaki�Quastel '14]. Works onR,T.

Let (u,𝒜) be an energy solution and let uε = ρε ∗u. Then uε satisfies

dut
ε(x)=<ut

ε(x)dt+ (ρε ∗d𝒜t)(x)+ (ρε ∗dMt)(x)

Consider φt
ε(x)= eht

ε(x) where ∂xht
ε(x)=ut

ε(x). Then

dφt
ε(x)= eht

ε(x)(<ht
ε(x)dt+ cεdt+∂x

-1(ρε ∗d𝒜t)(x)+∂x
-1(ρε ∗dMt)(x))

=<φt
ε(x)dt+φt

ε(x)(Qt
ε +K ε)dt+φt

ε(x)(ρε ∗dWt)(x)+dRt
ε(φ)

Rt
ε(φ)=∫0

t (φs
ε(x)∂x

-1(ρε ∗d𝒜s)(x)-φs
ε(x)HHHHHH0(us

ε(x))2ds-K εds), Qt
ε =∫

T
((us

ε(x))2- cε)dx.

If we show that Rt
ε(φ)-> 0 then φε-> φ solution to a tilted SHE which is unique.



Control of the remainder 13/16

We approximate Rε as

Rt
ε,δ(φ)=∫0

t (-Kεds+φs
ε(x)∂x

-1(ρε ∗ dℬs
δ)(x)-φs

ε(x)(us
ε(x))2ds)

=∫0
t {-Kε + e∂x

-1us
ε(x)[ρε ∗ (ρδ ∗us)2- (ρε ∗us)2](x)}dt=∫0

t fε,δ(us)ds

So we use the forward�backward Itô trick to get an L2 estimate

E|Rt
ε,δ(φ)|2<~ t ‖fε,δ‖ℋ-1

2

where ℋ-1 is the Sobolev space associated to the OU generator.

Following the strategy in Funaki�Quastel a detailed computation shows that there
exists a choice for Kε-> K =-1/12 for which

‖fε,δ‖ℋ-1
2 =sup

�

[2E(fε,δ�)- ‖�‖ℋ1
2 ]-> 0.

It is enough to show that |E(fε,δ�)|�o(1)‖�‖ℋ1.



The Hairer�Quastel model 14/16

Consider the stochastic PDE

∂t v=<v+ε1/2 ∂x (ρ∗2 ∗F(v))+∂x (ρ ∗ ξ )

on [0,∞) -- Tε with Tε =ε-1
T. Rescaling uε(t,x)=ε-1/2v(tε-2,xε-1) solves

∂tuε =<uε +ε-1 ∂x [ρε
∗2 ∗F (ε1/2uε)]+∂x (ρε ∗ξ )

Theorem (G.-Perkowski 2015) Assume that F , F ′
B---L2(ν) where ν is the standard

normal distribution. Then

ũt
ε(x)=ut

ε (x- ε-1/2 c1(F) t),

converges in distribution to the unique stationary energy solution u of

∂t u=<u+ c2(F)∂xu2+∂x ξ ,

where ck(F)= 1
k! E[F(U )Hk(U )] for U ~ν.



The Boltzmann�Gibbs principle 15/16

Galileian transformation. Itô formula shows that ũt
ε(x)=ut

ε (x-ε-1/2 c1(F) t) solves

∂t ũε =<ũε +ε-1 ∂x ρε
∗2 ∗ (F (ε1/2 ũε)- c1(F)ε1/2 ũε)+∂x ρε ∗ ξ

so we replaced the function F by F̃(x)=F(x)- c1(F)x.

Proposition (Boltzmann�Gibbs principle) Let G,G′
B---L2(ν). For κ >0

E[|∫s
t⟨ε-1 ∂x ρε

∗2 ∗ [G (ε1/2 ur
ε)- c1(G)ε1/2 ũr

ε],φ⟩dr|2]

<~G|t- s|3/2-κ ‖φ ′‖2

uniformly in ε >0, and for all δ >ε

E[|∫s
t⟨ε-1 ∂xρε

∗2 ∗ [G (ε1/2ur
ε)- c1(G) ε1/2ur

ε - c2(G) (ε1/2ρδ ∗ur
ε)2],φ⟩dr|2]

<~G|t- s| ‖φ ′‖2 (δ +ε log2 (1/ε))

Easy proof based on Itô trick and chaos expansion. For other models the proof goes
via a multiscale strategy developed by Jara and Gonçalves ('14).
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