Energy solutions and weak KPZ universality

Massimiliano Gubinelli – University of Bonn.

MFO Workshop "Large Scale Stochastic Dynamics" – Oberwolfach, November 13-19, 2016

KPZ [Kardar-Parisi-Zhang '86] is the following SPDE

$$\partial_t h(t,x) = \underbrace{\Delta h(t,x)}_{\text{diffusion}} + \underbrace{\chi(\partial_x h(t,x))^2}_{\text{growth}} + \underbrace{\xi(t,x)}_{\text{noise}}, \qquad t \ge 0, x \in \mathbb{R}, \mathbb{T}$$

with ξ space–time white noise.

 \triangleright KPZ introduced the equation in order to capture the universal macroscopic behaviour of the fluctuations h of growing interfaces.

Talk based on joint work with: M. Jara, N. Perkowski and J. Diehl.

> *Strong conjecture*: the KPZ equation is just an element of a wider universality class:

 $\varepsilon^{1}[h(t\varepsilon^{-3}, x\varepsilon^{-2}) - \varphi(t, x)] \rightarrow \mathcal{H}(t, x)$ (**KPZ fixpoint**)

as *ε* → 0. Difficult problem. Only known for fixed *t* and special *h*(0, ·)
[Borodin, Corwin, Ferrari, Quastel, Sasamoto, Spohn and *many* others]
> *Gaussian fluctuations:* when asymmetric non–linear effects are "small"

 $\varepsilon^{1}h_{\varepsilon}(t\varepsilon^{-4}, x\varepsilon^{-2}) \rightarrow \text{Gaussian random field}$

[Spohn '86, Kipnis-Olla-Varadhan '89, Zhu '92, Chang-Yau '92,...]

 \triangleright *Weak conjecture:* the KPZ equation itself describes height fluctuations for interface models where the asymmetric non–linear effects are of order ε :

 $\varepsilon^{1}(h_{\varepsilon}(t\varepsilon^{-4}, x\varepsilon^{-2}) - \varphi(t, x)) \longrightarrow h(t, x)$

▷ Weakly asymmetric simple exclusion process. Particles jumps with Poisson clocks on sites of the lattice \mathbb{Z} , no two particles at the same site. Leftward with rate $1/2 + \alpha$ and rightward with rate $1/2 - \alpha$. Number of particle is locally conserved.

 \triangleright Ginzburg-Landau $\nabla \varphi$ model. Interacting Brownian motions on \mathbb{Z} :

$$dX^{i} = ((1/2 + \alpha)V'(X^{i+1} - X^{i}) - (1/2 - \alpha)V'(X^{i} - X^{i-1}))dt + dB_{t}^{i}, \qquad i \in \mathbb{Z}$$

▷ Hairer-Quastel model.

$$\partial_t g(t,x) = \Delta g(t,x) + \alpha F(\partial_x g(t,x)) + \eta(t,x)$$
 $x \in \mathbb{R}$

where η is a short range/short memory gaussian process.

 $\alpha = 0 \Rightarrow$ convergence to Gaussian fluctuations

 $\alpha = \varepsilon \Rightarrow$ convergence to KPZ

[Bertini–Giacomin '96 (WASEP), Hairer–Quastel '15]

Stochastic Burgers equation (SBE)

$$u = \partial_x h \qquad \partial_t u = \Delta u + \partial_x u^2 + \partial_x \xi$$

Energy solutions: a good notion of martingale solutions to SBE which allows to prove the weak KPZ universality conjecture for a large class of **stationary** models.

- ▷ [Assing '02] *Generalized* martingale problem for SBE $(u = \partial_x h)$
- ▷ [Gonçalves–Jara '10/'14] Initial notion of energy solutions (also [Assing '11])
- ▷ [Jara–G. '13] Refined notion of energy solutions (forward–backward trick)
- ▷ [G.–Perkowski '15] Uniqueness for the refined notion

Proofs of weak universality from energy solutions:

- ▷ General exclusion processes. [Gonçalves–Jara '14, Gonçalves–Jara–Simon '16, Franco-Gonçalves-Simon '16]
- ▷ Zero-range processes and many other particle systems. [Gonçalves-Jara-Sethuraman '15]
- \triangleright Ginzburg–Landau $\nabla \varphi$ model. [Diehl-G.-Perkowski '16]
- ▷ Hairer–Quastel model. [G.-Perkowski '16]

▷ [Bertini–Giacomin '96]: existence of random function h describing the scaling limit of the fluctuation of WASEP for which $\varphi = e^h$ satisfies the Stochastic Heat Equation (SHE)

 $\mathscr{L}\varphi(t,x) = \varphi(t,x)\xi(t,x), \qquad t \ge 0, x \in \mathbb{R}.$

▷ **Cole–Hopf:** transformation ($\xi_{\varepsilon} = \rho_{\varepsilon} * \xi$ a regularisation of ξ), $\varphi_{\varepsilon} = e^{h_{\varepsilon}}$

$$\mathscr{L}\varphi_{\varepsilon}(t,x) = \varphi_{\varepsilon}(t,x)\xi_{\varepsilon}(t,x) - C_{\varepsilon}\varphi_{\varepsilon}(t,x)$$
$$\textcircled{P}$$
$$\mathscr{L}h_{\varepsilon}(t,x) = (\partial_{x}h_{\varepsilon}(t,x))^{2} - C_{\varepsilon} + \xi_{\varepsilon}(t,x)$$

No equation!

▷ Intrinsic notions of solution:

- Martingale/Energy solutions [Assing '04, Gonçalves–Jara '10] : weak notion, global in time solutions. Uniqueness established only recently [G.–Perkowski '15].
- Rough paths [Hairer '13] : strong notion, local solutions, uniqueness / stability.
- Regularity structures [Hairer '14], paracontrolled distributions [G.–Imkeller–Perkowski '14, G.–Perkowski '15].

▷ **Cole–Hopf:** Not a general approach to universality, needs a specific structure, especially at the microscopic level. Only OK for specific models.

[Bertini-Giacomin '97, Dembo-Tsai '13, Corwin-Tsai '15, Corwin-Shen-Tsai '16].

▷ **Rough-paths:** (but also Regularity structures or Paracontrolled distributions) need control of regularity, universality so far only for semilinear SPDEs (and on the torus).

[Hairer–Quastel '15, Hairer–Shen '15, G.–Perkowski '15]

Energy solutions: requires precise knowledge of the invariant measure but otherwise quite flexible and powerful (and works easily on **R**).

Approach to weak universality:

- tightness of fluctuations
- martingale characterization of limit points;
- uniqueness \Rightarrow convergence.

$$\partial_t u = \Delta u + \partial_x u^2 + \partial_x \xi$$

Definition (Jara-Gonçalves, '10) *u* is an *energy solution* of SBE if

$$M_t(\varphi) = u_t(\varphi) - u_0(\varphi) - \int_0^t u_s(\Delta \varphi) ds - \mathcal{B}_t(\varphi)$$

is a martingale with bracket $[M(\varphi)]_t = t \|\partial_x \varphi\|_{L^2}^2$ and if

 $\mathbb{E} | \mathscr{B}_{s,t}(\varphi) - \mathscr{B}_{s,t}^{\varepsilon}(\varphi) |^{2} \leq C \varepsilon | t - s | \|\partial_{x}\varphi\|_{L^{2}}^{2} \qquad (energy \ condition)$

where

$$\mathcal{B}_{s,t}^{\varepsilon}(\varphi) = \int_{s}^{t} \partial_{x}(\rho_{\varepsilon} * u_{s})^{2}(\varphi) \mathrm{d}s$$

and $\rho_{\varepsilon}(x) = \varepsilon^{-1} \rho(\varepsilon^{-1} x)$.

▷ An energy solution is given by a **pair** (u, \mathcal{B}) . Very little information about \mathcal{B} . As a consequence, energy solutions are too weak to be compared meaningfully.

Jara–G. introduced another notion of energy solution

Definition (Jara-G. '13) (u, \mathcal{A}) is a controlled process if

1. (Dirichlet) $u_t(\varphi)$ is a Dirichlet process with

 $M_t(\varphi) = u_t(\varphi) - u_0(\varphi) - \int_0^t u_s(\Delta \varphi) ds - \mathcal{A}_t(\varphi)$

is a martingale with bracket $[M(\varphi)]_t = t \|\partial_x \varphi\|_{L^2}^2$ and $[\mathcal{A}(\varphi)] = 0$.

2. (Stationarity) u_t is a white noise for all t;

3. (Time-reversal) $\overleftarrow{u}_t = u_{T-t}$ satisfies 1. with $\overleftarrow{\mathcal{A}}_t(\varphi) = \mathcal{A}_T(\varphi) - \mathcal{A}_{T-t}(\varphi)$.

Key property: For controlled processes we can define and estimate efficiently additive functionals of the form

 $\int_0^t f(u_s) \mathrm{d}s.$

Let \mathscr{L}_0 be the generator of the OU process *X* given by $\mathscr{L}_0 X = D\xi$. Itô formula for Dirichlet processes [Russo–Vallois], forward first:

$$F(u_T) = F(u_0) + \int_0^T \nabla F(u_s) dM_s + \int_0^T \nabla F(u_s) d\mathcal{A}_s + \int_0^T \mathcal{L}_0 F(u_s) ds$$

and then backward:

$$F(\overleftarrow{u}_T) = F(\overleftarrow{u}_0) + \int_0^T \nabla F(\overleftarrow{u}_s) d\overleftarrow{M}_s + \int_0^T \nabla F(\overleftarrow{u}_s) d\overleftarrow{\mathcal{A}}_s + \int_0^T \mathcal{L}_0 F(\overleftarrow{u}_s) ds.$$

Summing and using BDG inequalities :

$$2\int_{0}^{T} \mathscr{L}_{0}F(u_{s})ds = -\int_{0}^{T} \nabla F(\overleftarrow{u}_{s})d\overleftarrow{M}_{s} - \int_{0}^{T} \nabla F(u_{s})dM_{s}$$
$$\mathbb{E}\left[\int_{0}^{T} \mathscr{L}_{0}F(u_{s})ds\right]^{p} \lesssim_{p} T^{p/2}\mathbb{E}[\mathscr{C}_{0}(F)(u_{0})^{p/2}]$$

 $\mathbb{E} \left| \int_{0}^{T} G(u_{s}) ds \right|^{2} \lesssim T \|G\|_{\mathcal{H}^{-1}}^{2} \qquad \|G\|_{\mathcal{H}^{-1}} = \sup_{F} \left[2\mathbb{E} [F(u_{0}) G(u_{0})] - \mathbb{E} [\mathcal{E}_{0}(F)(u_{0})] \right]$

Result: control of additive functionals of controlled processes.

[Forward-backward Itô trick, Kipnis-Varadhan '86, Chang-Landim-Olla '01]

Lemma If (u, \mathcal{A}) is controlled then

$$\mathcal{B}_{t}(\varphi) := \lim_{\varepsilon \to 0} \mathcal{B}_{t}^{\varepsilon}(\varphi) = \lim_{\varepsilon \to 0} \int_{s}^{t} \partial_{x}(\rho_{\varepsilon} * u_{s})^{2}(\varphi) ds$$

with good estimates on space-time regularity (e.g. zero quadratic variation).

Definition (Jara-G. 2013) A controlled process (u, \mathcal{A}) is a stationary solution to SBE if $\mathcal{A} = \mathcal{B}$.

▷ Existence is proved via stationary Galerkin approximations u^N . The forward–backward Itô trick gives tightness for the approximate drift \mathscr{B}^N .

▷ Not difficult to show that particle systems converge to limits satisfying this alternative notion.

 \triangleright This notion of solution is more powerful since brings along all the information about estimations of additive functionals, not only of \mathcal{B} .

Theorem (G.-Perkowski, '15) *There exists only one controlled energy solution, in particular it coincides with the Cole–Hopf solution.*

The proof uses a key estimate from [Funaki–Quastel '14]. Works on \mathbb{R}, \mathbb{T} . Let (u, \mathcal{A}) be an energy solution and let $u^{\varepsilon} = \rho_{\varepsilon} * u$. Then u^{ε} satisfies

$$du_t^{\varepsilon}(x) = \Delta u_t^{\varepsilon}(x)dt + (\rho_{\varepsilon} * d\mathcal{A}_t)(x) + (\rho_{\varepsilon} * dM_t)(x)$$

Consider $\varphi_t^{\varepsilon}(x) = e^{h_t^{\varepsilon}(x)}$ where $\partial_x h_t^{\varepsilon}(x) = u_t^{\varepsilon}(x)$. Then

$$\mathrm{d}\varphi_t^{\varepsilon}(x) = e^{h_t^{\varepsilon}(x)} (\Delta h_t^{\varepsilon}(x) \mathrm{d}t + c_{\varepsilon} \mathrm{d}t + \partial_x^{-1} (\rho_{\varepsilon} * \mathrm{d}\mathcal{A}_t)(x) + \partial_x^{-1} (\rho_{\varepsilon} * \mathrm{d}M_t)(x))$$

 $=\Delta \varphi_t^{\varepsilon}(x) \mathrm{d}t + \varphi_t^{\varepsilon}(x) (Q_t^{\varepsilon} + K^{\varepsilon}) \mathrm{d}t + \varphi_t^{\varepsilon}(x) (\rho_{\varepsilon} * \mathrm{d}W_t)(x) + \mathrm{d}R_t^{\varepsilon}(\varphi)$

$$R_t^{\varepsilon}(\varphi) = \int_0^t (\varphi_s^{\varepsilon}(x) \partial_x^{-1}(\rho_{\varepsilon} * \mathrm{d}\mathcal{A}_s)(x) - \varphi_s^{\varepsilon}(x) \Pi_0(u_s^{\varepsilon}(x))^2 \mathrm{d}s - K^{\varepsilon} \mathrm{d}s), \quad Q_t^{\varepsilon} = \int_{\mathrm{TT}} ((u_s^{\varepsilon}(x))^2 - c_{\varepsilon}) \mathrm{d}x.$$

If we show that $R_t^{\varepsilon}(\varphi) \to 0$ then $\varphi^{\varepsilon} \to \varphi$ solution to a tilted SHE which is unique.

We approximate R^{ε} as

$$R_t^{\varepsilon,\delta}(\varphi) = \int_0^t (-K_\varepsilon \mathrm{d}s + \varphi_s^\varepsilon(x)\partial_x^{-1}(\rho_\varepsilon * \mathrm{d}\mathcal{B}_s^\delta)(x) - \varphi_s^\varepsilon(x)(u_s^\varepsilon(x))^2 \mathrm{d}s)$$

$$= \int_0^t \{-K_{\varepsilon} + e^{\partial_x^{-1} u_s^{\varepsilon}(x)} [\rho_{\varepsilon} * (\rho_{\delta} * u_s)^2 - (\rho_{\varepsilon} * u_s)^2](x)\} dt = \int_0^t f_{\varepsilon,\delta}(u_s) ds$$

So we use the forward–backward Itô trick to get an L^2 estimate

 $\mathbb{E} | R_t^{\varepsilon,\delta}(\varphi) |^2 \lesssim t || f_{\varepsilon,\delta} ||_{\mathcal{H}^{-1}}^2$

where \mathcal{H}^{-1} is the Sobolev space associated to the OU generator.

Following the strategy in Funaki–Quastel a detailed computation shows that there exists a choice for $K_{\varepsilon} \rightarrow K = -1/12$ for which

$$\|f_{\varepsilon,\delta}\|_{\mathcal{H}^{-1}}^2 = \sup_{\Phi} \left[2\mathbb{E}(f_{\varepsilon,\delta}\Phi) - \|\Phi\|_{\mathcal{H}^{1}}^2\right] \to 0.$$

It is enough to show that $|\mathbb{E}(f_{\varepsilon,\delta}\Phi)| \leq o(1) \|\Phi\|_{\mathscr{H}^1}$.

Consider the stochastic PDE

$$\partial_t v = \Delta v + \varepsilon^{1/2} \partial_x (\rho^{*2} * F(v)) + \partial_x (\rho * \xi)$$

on $[0, \infty) \times \mathbb{T}_{\varepsilon}$ with $\mathbb{T}_{\varepsilon} = \varepsilon^{-1} \mathbb{T}$. Rescaling $u^{\varepsilon}(t, x) = \varepsilon^{-1/2} v(t \varepsilon^{-2}, x \varepsilon^{-1})$ solves

$$\partial_t u^{\varepsilon} = \Delta u^{\varepsilon} + \varepsilon^{-1} \partial_x [\rho_{\varepsilon}^{*2} * F(\varepsilon^{1/2} u^{\varepsilon})] + \partial_x (\rho_{\varepsilon} * \xi)$$

Theorem (G.-Perkowski 2015) Assume that $F, F' \in L^2(v)$ where v is the standard normal distribution. Then

$$\tilde{u}_t^{\varepsilon}(x) = u_t^{\varepsilon}(x - \varepsilon^{-1/2}c_1(F)t),$$

converges in distribution to the unique stationary energy solution u of

$$\partial_t u = \Delta u + c_2(F) \partial_x u^2 + \partial_x \xi,$$

where $c_k(F) = \frac{1}{k!} E[F(U)H_k(U)]$ for $U \sim v$.

Galileian transformation. Itô formula shows that $\tilde{u}_t^{\epsilon}(x) = u_t^{\epsilon}(x - \epsilon^{-1/2}c_1(F)t)$ solves

$$\partial_t \tilde{u}^{\varepsilon} = \Delta \tilde{u}^{\varepsilon} + \varepsilon^{-1} \partial_x \rho_{\varepsilon}^{*2} * (F(\varepsilon^{1/2} \tilde{u}^{\varepsilon}) - c_1(F) \varepsilon^{1/2} \tilde{u}^{\varepsilon}) + \partial_x \rho_{\varepsilon} * \xi$$

so we replaced the function *F* by $\tilde{F}(x) = F(x) - c_1(F)x$.

Proposition (Boltzmann-Gibbs principle) Let $G, G' \in L^2(v)$. For $\kappa > 0$

 $\mathbb{E}\left[\left|\int_{\varepsilon}^{t} \langle \varepsilon^{-1} \partial_{x} \rho_{\varepsilon}^{*2} * \left[G(\varepsilon^{1/2} u_{r}^{\varepsilon}) - c_{1}(G) \varepsilon^{1/2} \tilde{u}_{r}^{\varepsilon}\right], \varphi \rangle dr\right|^{2}\right]$

$$\leq_{G} |t-s|^{3/2-\kappa} ||\varphi'||^{2}$$

uniformly in $\varepsilon > 0$, and for all $\delta > \varepsilon$

$$\mathbb{E}\left[\left|\int_{s}^{t} \langle \varepsilon^{-1} \partial_{x} \rho_{\varepsilon}^{*2} * [G(\varepsilon^{1/2} u_{r}^{\varepsilon}) - c_{1}(G) \varepsilon^{1/2} u_{r}^{\varepsilon} - c_{2}(G)(\varepsilon^{1/2} \rho_{\delta} * u_{r}^{\varepsilon})^{2}], \varphi \rangle \mathrm{d}r \right|^{2}\right]$$

$$\lesssim_{G} |t - s| \|\varphi'\|^{2} (\delta + \varepsilon \log^{2}(1/\varepsilon))$$

Easy proof based on Itô trick and chaos expansion. For other models the proof goes via a multiscale strategy developed by Jara and Gonçalves ('14).

Thanks!

