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[Birthday cake for KPZ, Workshop “New approaches to non-equilibrium and random systems: KPZ integrability, univer-
sality, applications and experiments”, Kavli Institute for Theoretical Physics, March 3rd 2016]



The Kardar-Parisi—-Zhang equation 3/15

KPZ is the following SPDE

0:h(t,x)=Ah(t,x) + y(Dh(t,x))? — co + £(¢, x), t20,xeR,T

diffusion growth noise

with £ space—time white noise.

> KPZ introduced (30 years ago!) the equation in order to capture the universal
macroscopic behaviour of the fluctuations /~ of growing interfaces.

> KPZ fixpoint: the KPZ equation is just an element of a wider universality class:
elh(te™3, xe72) — @(t,x)] = I6(t,x)

as € — 0. Difficult problem. Only known for fixed ¢ and special A(0, -)
[Amir—Corwin—Quastel 2011, Sasamoto—Spohn 2010, Borodin and Corwin 2014]
Talk based on joint work with: N. Perkowski and J. Diehl.



The weak KPZ conjecture 4/15

> The KPZ equation describes also these fluctuations in a certain asymptotic regime
where the non-linear effects are weak in the microscopic scale.

Basic ingredients:
e One conservation law for a quantity u,

e Tunable asymmetry of order ¢

Universal limit:

e_l(ug(t£_4,x£_2) - (P(t) x)) E— LL(t, x)
where u solves the Stochastic Burgers equation
osu(t,x) = Au(t,x) + ou(t,x)* + £(t,x)

Equivalent to KPZ with u =0,A: u, represent height gradient for an interface.



Some models 5/15

> Weakly asymmetric simple exclusion process. Particles jumps with Poisson
clocks on sites of the lattice Z, no two particles at the same site. Leftward with rate
1/2 + o and rightward with rate 1/2 — . Number of particle is locally conserved.

> Ginzburg-Landau V¢ model. Interacting Brownian motions on Z%:
dX'=((1/2+ )V X*1 - X)—(1/2- )V X' = X'"1)d¢t +dB., i€Z
> Hairer-Quastel model. SPDE
0:2(t,x)=Ag(t,x)+ aF (d,g(t,x)) +n(t,x) xeER

where 7 is a short range/short memory gaussian process.

a =0 = convergence to Gaussian fluctuations

a =€ = convergence to KPZ

[Bertini—-Giacomin 1996 (WASEP), Hairer—Quastel 2015]



Proofs of weak universality in stationarity 6/15

Energy solutions: a good notion of martingale solutions to SBE which allows to
prove the weak KPZ universality conjecture for a large class of stationary models.
> [Goncalves—Jara 2010/2014] Initial notion of energy solutions

> [Jara—G. 2013] Refined notion of energy solutions

> [G.—Perkowski 2015] Uniqueness for the refined notion

Proofs of weak universality from energy solutions:

> General exclusion processes. [Goncalves—Jara 2014, Goncalves—Jara—Simon 2016,
Franco-Goncalves-Simon ( 2016]

> Zero-range processes and many other particle systems. [Goncalves-Jara-Sethu-
raman 2015]

> Ginzburg-Landau V ¢ model. [Diehl-Gubinelli-P. 20167]
> Hairer—Quastel model. [Gubinelli-P. 2016]



What really is KPZ? 7115

> [Bertini—Giacomin 1996]: existence of random function /& describing the scaling
limit of the fluctuation of WASEP for which ¢ = e’ satisfies the Stochastic Heat
Equation (SHE)

Lolt,x)= gp(t,0)EEx),  t20,xER.

> Cole-Hopf: transformation (£, a regularisation of £) , ¢, =e"*

L (t,x)=@(t,x)E(t,x) — Cop(t,x)

8
Lhe(t,x)=Dh(t,x))? — Ce + £t x)

No equation!
> Intrinsic notions of solution:

e Energy solutions [Gonc¢alves—Jara 10/14] : weak notion, global in time solu-
tions. Uniqueness established only recently [G.—Perkowski 2015].

e Rough paths [Hairer 2013] : strong notion, local solutions, uniqueness / sta-
bility.



Different notions of solutions 8/15

> Cole-Hopf: Not a general approach to universality, needs a specific structure,
especially at the microscopic level. Only OK for specific models. [Bertini-Giacomin
1997, Dembo-Tsai 2013, Corwin-Tsai 2015, Corwin—Shen—Tsai 2016].

> Rough-paths: (but also Regularity structures or Paracontrolled distributions)
need control of regularity, universality so far only for semilinear SPDEs (and on the
torus). Hairer—Quastel (2015), Hairer—Shen (2015), G.—Perkowski (2015).

> Energy solutions: requires precise knowledge of the invariant measure but oth-
erwise quite flexible and powerful (and works easily on R).

Approach to weak universality:
e tightness of fluctuations
e martingale characterization of limit points;

e uniqueness = convergence.



Energy solutions 9/15

Definition 1 u is an energy solution of SBE if

M) =ulp) — uo(p) — [ us(Ap)ds — By(p)
is a martingale with bracket [M(p)];= tIIDgpII%Z and if
E|Bs (¢)— %’ﬁ,t(@lz <Ce¢lt— s|||D<p||%2 (energy condition)

where BS (@)= [ ZD( Pe * us)(@)ds and p.(x)=¢e""p(e'x).

> An energy solution is given by a pair (uz, 93). Very little information about 9. As
a consequence, energy solutions are too weak to be compared meaningfully.



A refined notion of energy solutions 10/15

Jara—G. introduced another notion of energy solution

(u, ) is a controlled process if
1. (Dirichlet) u/¢) is a Dirichlet process with

MU @)=ul ) — uo(p) — [ u(Ap)ds — A ()

s a martingale with bracket [M(p)];= t”D(P”%z and [ A(@)]=0.

2. (Stationarity) u; is a white noise for all t;

-
3. (Time-reversal) <L7t=uT_t satisfies 1. with A @)= A7p(p)— Ar_[(p).

> Key property: For controlled processes we can define and control functionals of
the form

fgf(us)ds.



The Ito trick, forward and then backward 11/15

Assume that F' solves the Poisson equation . guF =f where Z oy is the generator of
the OU process X given by X =D& . Then by the Ito formula for Dirichlet processes
[Russo—Vallois]

F(u)=F(uo)+ [(VFu)dM; + [ (VF(u)d A+ [ L ouF (us)ds
and, backward,
Fitp)=F (ito) + [TVF (i) dMy+ [TVF (it)d g + [T LouF (iz,)ds.
Summing and using BDG inequalities :
t T —\ a7 t
2 [ ZLouF (u)ds=— [ VF(u,)dM, — [ VF(u,)dM,
E| [ f(u)ds |’ <, TP? E[Eou(F)"?]

Result: powerful control of additive functionals of controlled processes.

[1t6 trick, Kipnis—Varadhan 1986, Chang—Landim—Olla 2001].



Energy solutions, the controlled way 12/15

If (u, A) is controlled then

B(p): =lirré B ()

with good estimates on space—time regularity (e.g. zero quadratic variation).

Definition 4 A controlled process (u, ) is a stationary solution
to SBE if
Ao =B.

> Existence is proved via stationary Galerkin approximations ©”. The It6 trick gives
tightness for the approximate drift %" .

> Not difficult to show that particle systems converge to limits satisfying this notion
too.

> This notion of solution is more powerful since brings along all the information
about estimations of additive functionals, not only of 3.



Uniqueness of controlled energy solutions 13/15

There exists only one controlled energy solu-

tions are unique, in particular it coincides with the Cole—Hopf solution.

The proof uses a key estimate from [Funaki—Quastel 2014].

Let (u, /) be an energy solution and let u°= p, «u. Then u® satisfies
dus(x) = Aui(x)dt + (pe = d A (x) + (pe = dM)(x)
Consider ¢f(x)=e"“ where Dh{(x)=uf(x). Then
dgy(x) = ehf(X)(Ahf(x)dt +c dt + D_l(pg xd Ay (x) + D_l(pg x dM ;) (x))
=A@; (x)dt + @f ()(Qf + K “)dt + ¢ (x)(pe + dW)(x) + dRF ()

Ri(9) = ['(9f@D p, # dA)x) — @ETp(ui)?ds — K°ds), Qf = [ (wi@)? —
c.)dx.

If we show that R;(¢) — 0 then ¢°— ¢ solution to a tilted SHE which is unique.



Control of the remainder 14/15

We approximate R° as

Ry (@)= [ ((—K.ds + ¢5(x)D~ Y p, # d B)(x) — pE(x)us(x))?ds)

= [o(—Ke+€ O p s (ps o uel — (pe # u) D)) de = [ fe sus)ds
So we use the forward—backward Ité trick to get an L? estimate

EIRS ()2 S tlIf v ol

where 967! is the Sobolev space associated to the OU generator.

Following the strategy in Funaki—Quastel a detailed computation shows that there
exists a choiche for K, —» K =—1/2 for which

Ife 51341 = sup [2E(f s®) — |®]1%,.] - 0.
P

It is enough to show that |E(f. s®)| < o(1)[|P[l 41
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