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KPZ is the following SPDE
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, t⩾0,x∈ ℝ,𝕋

with ξ space�time white noise.

⊳ KPZ introduced (30 years ago!) the equation in order to capture the universal
macroscopic behaviour of the fluctuations h of growing interfaces.

⊳ KPZ fixpoint: the KPZ equation is just an element of a wider universality class:

ε1[h(tε−3,xε−2)− φ(t,x)]→ ℋ(t,x)

as ε →0. Difficult problem. Only known for fixed t and special h(0, ⋅)

[Amir�Corwin�Quastel 2011, Sasamoto�Spohn 2010, Borodin and Corwin 2014]

Talk based on joint work with: N. Perkowski and J. Diehl.
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⊳ The KPZ equation describes also these fluctuations in a certain asymptotic regime
where the non�linear effects are weak in the microscopic scale.

Basic ingredients:

• One conservation law for a quantity uε

• Tunable asymmetry of order ε

Universal limit:

ε−1(uε(tε−4,xε−2)− φ(t,x))−→u(t,x)

where u solves the Stochastic Burgers equation

∂tu(t,x)=Δu(t,x)+∂xu(t,x)2+ξ (t,x)

Equivalent to KPZ with u=∂xh: uε represent height gradient for an interface.
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⊳ Weakly asymmetric simple exclusion process. Particles jumps with Poisson
clocks on sites of the lattice ℤ, no two particles at the same site. Leftward with rate
1/2+α and rightward with rate 1/2−α. Number of particle is locally conserved.

⊳ Ginzburg�Landau ∇φ model. Interacting Brownian motions on ℤ:

dX i= ((1/2+α)V ′(X i+1 −X i)− (1/2− α)V ′(X i −X i−1))dt+dBt
i, i∈ ℤ

⊳ Hairer�Quastel model. SPDE

∂tg(t,x)=Δg(t,x)+αF(∂xg(t,x))+η(t,x) x∈ ℝ

where η is a short range/short memory gaussian process.

α =0 ⇒ convergence to Gaussian fluctuations

α =ε ⇒ convergence to KPZ

[Bertini�Giacomin 1996 (WASEP), Hairer�Quastel 2015]
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Energy solutions: a good notion of martingale solutions to SBE which allows to
prove the weak KPZ universality conjecture for a large class of stationary models.

⊳ [Gonçalves�Jara 2010/2014] Initial notion of energy solutions

⊳ [Jara�G. 2013] Refined notion of energy solutions

⊳ [G.�Perkowski 2015] Uniqueness for the refined notion

Proofs of weak universality from energy solutions:

⊳ General exclusion processes. [Gonçalves�Jara 2014, Gonçalves�Jara�Simon 2016,
Franco-Gonçalves-Simon ( 2016]

⊳ Zero�range processes and many other particle systems. [Gonçalves-Jara-Sethu-
raman 2015]

⊳ Ginzburg�Landau ∇φ model. [Diehl-Gubinelli-P. 2016?]

⊳ Hairer�Quastel model. [Gubinelli-P. 2016]
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⊳ [Bertini�Giacomin 1996]: existence of random function h describing the scaling
limit of the fluctuation of WASEP for which φ = eh satisfies the Stochastic Heat
Equation (SHE)

Lφ(t,x)=φ(t,x)ξ (t,x), t⩾0,x∈ ℝ.

⊳ Cole�Hopf: transformation (ξε a regularisation of ξ ) , φε = ehε

Lφε(t,x)=φε(t,x)ξε(t,x)−Cεφε(t,x)
⇕

Lhε(t,x)= (Dhε(t,x))2 −Cε +ξε(t,x)

No equation!

⊳ Intrinsic notions of solution:

• Energy solutions [Gonçalves�Jara 10/14] : weak notion, global in time solu-
tions. Uniqueness established only recently [G.�Perkowski 2015].

• Rough paths [Hairer 2013] : strong notion, local solutions, uniqueness / sta-
bility.
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⊳ Cole�Hopf: Not a general approach to universality, needs a specific structure,
especially at the microscopic level. Only OK for specific models. [Bertini-Giacomin
1997, Dembo-Tsai 2013, Corwin-Tsai 2015, Corwin�Shen�Tsai 2016].

⊳ Rough�paths: (but also Regularity structures or Paracontrolled distributions)
need control of regularity, universality so far only for semilinear SPDEs (and on the
torus). Hairer�Quastel (2015), Hairer�Shen (2015), G.�Perkowski (2015).

⊳ Energy solutions: requires precise knowledge of the invariant measure but oth-
erwise quite flexible and powerful (and works easily on ℝ).

Approach to weak universality:

• tightness of fluctuations

• martingale characterization of limit points;

• uniqueness ⇒ convergence.
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Definition 1 (Jara�Gonçalves, 2010) u is an energy solution of SBE if

Mt(φ)=ut(φ)−u0(φ)− ∫0
t us(Δφ)ds−ℬt(φ)

is a martingale with bracket [M(φ)]t = t‖Dφ‖L2
2 and if

𝔼∣ℬs,t(φ)−ℬs,t
ε (φ)∣2 ⩽Cε∣t− s∣‖Dφ‖L2

2 (energy condition)

where ℬs,t
ε (φ)=∫s

t D(ρε ∗us)2(φ)ds and ρε(x)=ε−1ρ(ε−1x).

⊳ An energy solution is given by a pair (u,ℬ). Very little information about ℬ. As
a consequence, energy solutions are too weak to be compared meaningfully.
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Jara�G. introduced another notion of energy solution

Definition 2 (Jara�G. 2013) (u,𝒜) is a controlled process if

1. (Dirichlet) ut(φ) is a Dirichlet process with

Mt(φ)=ut(φ)−u0(φ)−∫0
t us(Δφ)ds−𝒜t(φ)

is a martingale with bracket [M(φ)]t= t‖Dφ‖L2
2 and [𝒜(φ)]=0.

2. (Stationarity) ut is a white noise for all t;

3. (Time�reversal) u��t=uT−t satisfies 1. with 𝒜
��������

t(φ)=𝒜T(φ)−𝒜T−t(φ).

⊳ Key property: For controlled processes we can define and control functionals of
the form

∫0
t f (us)ds.
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Assume that F solves the Poisson equation L OUF = f where L OU is the generator of
the OU process X given by LX =Dξ . Then by the Itô formula for Dirichlet processes
[Russo�Vallois]

F(ut)=F(u0)+∫0
t ∇F(us)dMs+∫0

t ∇F(us)d𝒜s+∫0
t
L OUF(us)ds

and, backward,

F(u��T)=F(u��0)+∫0
T∇F(u��s)dM

��
s+∫0

T∇F(u��s)d𝒜
��������

s+∫0
T
L OUF(u��s)ds.

Summing and using BDG inequalities :

2∫0
t
L OUF(us)ds=−∫0

T∇F(u��s)dM
��

s − ∫0
t ∇F(us)dMs

𝔼j∫0
Tf (us)dsjp ≲p T p/2 𝔼[ℰOU(F)p/2]

Result: powerful control of additive functionals of controlled processes.

[Itô trick, Kipnis�Varadhan 1986, Chang�Landim�Olla 2001].
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Lemma 3 If (u,𝒜) is controlled then

ℬt(φ): =lim
ε→0

ℬt
ε(φ)

with good estimates on space�time regularity (e.g. zero quadratic variation).

Definition 4 (Jara�G. 2013) A controlled process (u, 𝒜) is a stationary solution
to SBE if

𝒜=ℬ.

⊳ Existence is proved via stationary Galerkin approximations uN. The Itô trick gives
tightness for the approximate drift ℬN.

⊳ Not difficult to show that particle systems converge to limits satisfying this notion
too.

⊳ This notion of solution is more powerful since brings along all the information
about estimations of additive functionals, not only of ℬ.
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Theorem 5 (G.�Perkowski, 2015) There exists only one controlled energy solu-
tions are unique, in particular it coincides with the Cole�Hopf solution.

The proof uses a key estimate from [Funaki�Quastel 2014].

Let (u,𝒜) be an energy solution and let uε = ρε ∗u. Then uε satisfies

dut
ε(x)=Δut

ε(x)dt+ (ρε ∗ d𝒜t)(x)+ (ρε ∗dMt)(x)

Consider φt
ε(x)= eht

ε(x) where Dht
ε(x)=ut

ε(x). Then

dφt
ε(x)= eht

ε(x)(Δht
ε(x)dt+ cεdt+D−1(ρε ∗d𝒜t)(x)+D−1(ρε ∗ dMt)(x))

=Δφt
ε(x)dt+φt

ε(x)(Qt
ε +K ε)dt+φt

ε(x)(ρε ∗ dWt)(x)+dRt
ε(φ)

Rt
ε(φ) = ∫0

t (φs
ε(x)D−1(ρε ∗ d𝒜s)(x) − φs

ε(x)Π0(us
ε(x))2ds − K εds), Qt

ε = ∫𝕋((us
ε(x))2 −

cε)dx.

If we show that Rt
ε(φ)→0 then φε → φ solution to a tilted SHE which is unique.
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We approximate Rε as

Rt
ε,δ(φ)=∫0

t (−Kεds+φs
ε(x)D−1(ρε ∗dℬs

δ)(x)−φs
ε(x)(us

ε(x))2ds)

=∫0
t
(−Kε + eD−1us

ε(x)(ρε ∗ (ρδ ∗us)2 − (ρε ∗us)2)(x))dt=∫0
t fε,δ(us)ds

So we use the forward�backward Itô trick to get an L2 estimate

𝔼∣Rt
ε,δ(φ)∣2 ≲ t ‖fε,δ‖ℋ−1

2

where ℋ−1 is the Sobolev space associated to the OU generator.

Following the strategy in Funaki�Quastel a detailed computation shows that there
exists a choiche for Kε →K =−1/2 for which

‖fε,δ‖ℋ−1
2 =sup

Φ
[2𝔼(fε,δΦ)−‖Φ‖ℋ1

2 ]→0.

It is enough to show that ∣𝔼(fε,δΦ)∣⩽ o(1)‖Φ‖ℋ1.
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