• • • •

Energy solutions and weak universality for the KPZ equation

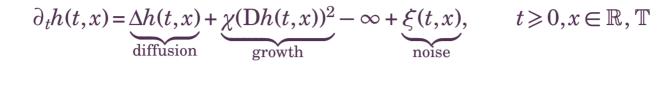
• • • • •

Massimiliano Gubinelli – University of Bonn.

Workshop "Stochastic PDE's, Large Scale Interacting Systems and Applications to Biology" Orsay–ENSTA, March 9–11 2016.

[Birthday cake for KPZ, Workshop "New approaches to non-equilibrium and random systems: KPZ integrability, universality, applications and experiments", Kavli Institute for Theoretical Physics, March 3rd 2016]

KPZ is the following SPDE



with ξ space–time white noise.

 \triangleright KPZ introduced (30 years ago!) the equation in order to capture the universal macroscopic behaviour of the fluctuations *h* of growing interfaces.

▷ **KPZ fixpoint:** the KPZ equation is just an element of a wider universality class:

$$\varepsilon^{1}[h(t \varepsilon^{-3}, x \varepsilon^{-2}) - \varphi(t, x)] \to \mathcal{H}(t, x)$$

as $\varepsilon \to 0$. Difficult problem. Only known for fixed *t* and special $h(0, \cdot)$ [Amir–Corwin–Quastel 2011, Sasamoto–Spohn 2010, Borodin and Corwin 2014] *Talk based on joint work with: N. Perkowski and J. Diehl.* \triangleright The KPZ equation describes also these fluctuations in a certain asymptotic regime where the non-linear effects are weak in the microscopic scale.

Basic ingredients:

- One conservation law for a quantity u_{ε}
- Tunable asymmetry of order ε

Universal limit:

$$\varepsilon^{-1}(u_{\varepsilon}(t\varepsilon^{-4}, x\varepsilon^{-2}) - \varphi(t, x)) \longrightarrow u(t, x)$$

where u solves the Stochastic Burgers equation

$$\partial_t u(t,x) = \Delta u(t,x) + \partial_x u(t,x)^2 + \xi(t,x)$$

Equivalent to KPZ with $u = \partial_x h$: u_{ε} represent height gradient for an interface.

Some models

 \triangleright Weakly asymmetric simple exclusion process. Particles jumps with Poisson clocks on sites of the lattice \mathbb{Z} , no two particles at the same site. Leftward with rate $1/2 + \alpha$ and rightward with rate $1/2 - \alpha$. Number of particle is locally conserved.

 \triangleright Ginzburg-Landau $\nabla \varphi$ model. Interacting Brownian motions on \mathbb{Z} :

$$dX^{i} = ((1/2 + \alpha)V'(X^{i+1} - X^{i}) - (1/2 - \alpha)V'(X^{i} - X^{i-1}))dt + dB_{t}^{i}, \qquad i \in \mathbb{Z}$$

▷ Hairer-Quastel model. SPDE

$$\partial_t g(t,x) = \Delta g(t,x) + \alpha F(\partial_x g(t,x)) + \eta(t,x) \qquad x \in \mathbb{R}$$

where η is a short range/short memory gaussian process.

 $\alpha = 0 \Rightarrow$ convergence to Gaussian fluctuations

 $\alpha = \epsilon \Rightarrow$ convergence to KPZ

[Bertini–Giacomin 1996 (WASEP), Hairer–Quastel 2015]

Energy solutions: a good notion of martingale solutions to SBE which allows to prove the weak KPZ universality conjecture for a large class of **stationary** models.

- ▷ [Gonçalves–Jara 2010/2014] Initial notion of energy solutions
- ▷ [Jara–G. 2013] Refined notion of energy solutions
- ▷ [G.–Perkowski 2015] Uniqueness for the refined notion

Proofs of weak universality from energy solutions:

▷ General exclusion processes. [Gonçalves–Jara 2014, Gonçalves–Jara–Simon 2016, Franco-Gonçalves-Simon (2016]

 \triangleright Zero–range processes and many other particle systems. [Gonçalves-Jara-Sethuraman 2015]

 \triangleright Ginzburg–Landau $\nabla \varphi$ model. [Diehl-Gubinelli-P. 2016?]

⊳ Hairer–Quastel model. [Gubinelli-P. 2016]

 \triangleright [Bertini–Giacomin 1996]: existence of random function *h* describing the scaling limit of the fluctuation of WASEP for which $\varphi = e^h$ satisfies the Stochastic Heat Equation (SHE)

$$\mathscr{L}\varphi(t,x) = \varphi(t,x)\xi(t,x), \qquad t \ge 0, x \in \mathbb{R}.$$

 \triangleright **Cole–Hopf:** transformation (ξ_{ε} a regularisation of ξ), $\varphi_{\varepsilon} = e^{h_{\varepsilon}}$

No equation!

- ▷ Intrinsic notions of solution:
 - Energy solutions [Gonçalves–Jara 10/14] : weak notion, global in time solutions. Uniqueness established only recently [G.–Perkowski 2015].
 - Rough paths [Hairer 2013] : strong notion, local solutions, uniqueness / stability.

▷ **Cole-Hopf:** Not a general approach to universality, needs a specific structure, especially at the microscopic level. Only OK for specific models. [Bertini-Giacomin 1997, Dembo-Tsai 2013, Corwin-Tsai 2015, Corwin-Shen-Tsai 2016].

▷ **Rough-paths:** (but also Regularity structures or Paracontrolled distributions) need control of regularity, universality so far only for semilinear SPDEs (and on the torus). Hairer–Quastel (2015), Hairer–Shen (2015), G.–Perkowski (2015).

 \triangleright **Energy solutions:** requires precise knowledge of the invariant measure but otherwise quite flexible and powerful (and works easily on \mathbb{R}).

Approach to weak universality:

- tightness of fluctuations
- martingale characterization of limit points;
- uniqueness \Rightarrow convergence.

Definition 1 (Jara-Gonçalves, 2010) *u* is an *energy solution* of SBE if

$$M_t(\varphi) = u_t(\varphi) - u_0(\varphi) - \int_0^t u_s(\Delta \varphi) ds - \mathcal{B}_t(\varphi)$$

is a martingale with bracket $[M(\varphi)]_t = t \| \mathbf{D} \varphi \|_{L^2}^2$ and if

 $\mathbb{E}|\mathcal{B}_{s,t}(\varphi) - \mathcal{B}_{s,t}^{\varepsilon}(\varphi)|^2 \leq C \varepsilon |t - s| \|\mathbf{D}\varphi\|_{L^2}^2 \qquad (energy \ condition)$

where $\mathscr{B}_{s,t}^{\varepsilon}(\varphi) = \int_{s}^{t} \mathbb{D}(\rho_{\varepsilon} * u_{s})^{2}(\varphi) ds$ and $\rho_{\varepsilon}(x) = \varepsilon^{-1} \rho(\varepsilon^{-1}x)$.

▷ An energy solution is given by a **pair** (u, \mathscr{B}) . Very little information about \mathscr{B} . As a consequence, energy solutions are too weak to be compared meaningfully.

Jara–G. introduced another notion of energy solution

Definition 2 (Jara-G. 2013) (u, \mathcal{A}) is a controlled process if

1. (Dirichlet) $u_t(\varphi)$ is a Dirichlet process with

$$M_t(\varphi) = u_t(\varphi) - u_0(\varphi) - \int_0^t u_s(\Delta \varphi) ds - \mathcal{A}_t(\varphi)$$

is a martingale with bracket $[M(\varphi)]_t = t \| \mathbf{D} \varphi \|_{L^2}^2$ and $[\mathcal{A}(\varphi)] = 0$.

2. (Stationarity) u_t is a white noise for all t;

3. (Time-reversal) $\stackrel{\leftarrow}{u}_t = u_{T-t}$ satisfies 1. with $\stackrel{\leftarrow}{\mathcal{A}}_t(\varphi) = \mathcal{A}_T(\varphi) - \mathcal{A}_{T-t}(\varphi)$.

Key property: For controlled processes we can define and control functionals of the form

 $\int_0^t f(u_s) \mathrm{d}s.$

The Itô trick, forward and then backward

Assume that *F* solves the Poisson equation $\mathscr{L}_{OU}F = f$ where \mathscr{L}_{OU} is the generator of the OU process *X* given by $\mathscr{L}X = D\xi$. Then by the Itô formula for Dirichlet processes [Russo–Vallois]

$$F(u_t) = F(u_0) + \int_0^t \nabla F(u_s) dM_s + \int_0^t \nabla F(u_s) d\mathcal{A}_s + \int_0^t \mathcal{L}_{OU} F(u_s) ds$$

and, backward,

$$F(\overleftarrow{u}_{T}) = F(\overleftarrow{u}_{0}) + \int_{0}^{T} \nabla F(\overleftarrow{u}_{s}) d\overleftarrow{M}_{s} + \int_{0}^{T} \nabla F(\overleftarrow{u}_{s}) d\overleftarrow{\mathcal{A}}_{s} + \int_{0}^{T} \mathscr{L}_{OU} F(\overleftarrow{u}_{s}) ds.$$

Summing and using BDG inequalities :

$$2\int_{0}^{t} \mathcal{L}_{\text{OU}}F(u_{s})\mathrm{d}s = -\int_{0}^{T} \nabla F(\overleftarrow{u}_{s})\mathrm{d}\overleftarrow{M}_{s} - \int_{0}^{t} \nabla F(u_{s})\mathrm{d}M_{s}$$
$$\mathbb{E}\left|\int_{0}^{T} f(u_{s})\mathrm{d}s\right|^{p} \lesssim_{p} T^{p/2} \mathbb{E}[\mathscr{E}_{\text{OU}}(F)^{p/2}]$$

Result: powerful control of additive functionals of controlled processes. [Itô trick, Kipnis–Varadhan 1986, Chang–Landim–Olla 2001]. **Lemma 3** If (u, \mathcal{A}) is controlled then

 $\mathcal{B}_t(\varphi) := \lim_{\varepsilon \to 0} \mathcal{B}_t^{\varepsilon}(\varphi)$

with good estimates on space-time regularity (e.g. zero quadratic variation).

Definition 4 (Jara–G. 2013) A controlled process (u, \mathcal{A}) is a stationary solution to SBE if

 $\mathcal{A} = \mathcal{B}.$

 \triangleright Existence is proved via stationary Galerkin approximations u^N . The Itô trick gives tightness for the approximate drift \mathscr{B}^N .

 \triangleright Not difficult to show that particle systems converge to limits satisfying this notion too.

 \triangleright This notion of solution is more powerful since brings along all the information about estimations of additive functionals, not only of \mathcal{B} .

Theorem 5 (G.-Perkowski, 2015) There exists only one controlled energy solutions are unique, in particular it coincides with the Cole–Hopf solution.

The proof uses a key estimate from [Funaki-Quastel 2014].

Let (u, \mathcal{A}) be an energy solution and let $u^{\varepsilon} = \rho_{\varepsilon} * u$. Then u^{ε} satisfies

$$\mathrm{d} u_t^{\varepsilon}(x) = \Delta u_t^{\varepsilon}(x) \mathrm{d} t + (\rho_{\varepsilon} * \mathrm{d} \mathcal{A}_t)(x) + (\rho_{\varepsilon} * \mathrm{d} M_t)(x)$$

Consider $\varphi_t^{\varepsilon}(x) = e^{h_t^{\varepsilon}(x)}$ where $Dh_t^{\varepsilon}(x) = u_t^{\varepsilon}(x)$. Then

$$\mathrm{d}\varphi_t^{\varepsilon}(x) = e^{h_t^{\varepsilon}(x)} (\Delta h_t^{\varepsilon}(x) \mathrm{d}t + c_{\varepsilon} \mathrm{d}t + \mathrm{D}^{-1}(\rho_{\varepsilon} * \mathrm{d}\mathcal{A}_t)(x) + \mathrm{D}^{-1}(\rho_{\varepsilon} * \mathrm{d}M_t)(x))$$

 $= \Delta \varphi_t^{\varepsilon}(x) \mathrm{d}t + \varphi_t^{\varepsilon}(x) (Q_t^{\varepsilon} + K^{\varepsilon}) \mathrm{d}t + \varphi_t^{\varepsilon}(x) (\rho_{\varepsilon} * \mathrm{d}W_t)(x) + \mathrm{d}R_t^{\varepsilon}(\varphi)$

$$R_t^{\varepsilon}(\varphi) = \int_0^t (\varphi_s^{\varepsilon}(x) \mathrm{D}^{-1}(\rho_{\varepsilon} * \mathrm{d}\mathcal{A}_s)(x) - \varphi_s^{\varepsilon}(x) \Pi_0(u_s^{\varepsilon}(x))^2 \mathrm{d}s - K^{\varepsilon} \mathrm{d}s), \quad Q_t^{\varepsilon} = \int_{\mathbb{T}} ((u_s^{\varepsilon}(x))^2 - c_{\varepsilon}) \mathrm{d}x.$$

If we show that $R_t^{\varepsilon}(\varphi) \to 0$ then $\varphi^{\varepsilon} \to \varphi$ solution to a tilted SHE which is unique.

We approximate R^{ε} as

$$R_t^{\varepsilon,\delta}(\varphi) = \int_0^t (-K_\varepsilon \mathrm{d}s + \varphi_s^\varepsilon(x) \mathrm{D}^{-1}(\rho_\varepsilon * \mathrm{d}\mathscr{B}_s^\delta)(x) - \varphi_s^\varepsilon(x)(u_s^\varepsilon(x))^2 \mathrm{d}s)$$

$$= \int_0^t (-K_{\varepsilon} + e^{\mathbf{D}^{-1}u_s^{\varepsilon}(x)}(\rho_{\varepsilon} * (\rho_{\delta} * u_s)^2 - (\rho_{\varepsilon} * u_s)^2)(x)) dt = \int_0^t f_{\varepsilon,\delta}(u_s) ds$$

So we use the forward–backward Itô trick to get an L^2 estimate

$$\mathbb{E}|R_t^{\varepsilon,\delta}(\varphi)|^2 \lesssim t \, \|f_{\varepsilon,\delta}\|_{\mathscr{H}^{-1}}^2$$

where \mathscr{H}^{-1} is the Sobolev space associated to the OU generator.

Following the strategy in Funaki–Quastel a detailed computation shows that there exists a choiche for $K_{\varepsilon} \rightarrow K = -1/2$ for which

$$\|f_{\varepsilon,\delta}\|_{\mathcal{H}^{-1}}^2 = \sup_{\Phi} \left[2\mathbb{E}(f_{\varepsilon,\delta}\Phi) - \|\Phi\|_{\mathcal{H}^{1}}^2\right] \to 0.$$

It is enough to show that $|\mathbb{E}(f_{\varepsilon,\delta}\Phi)| \leq o(1) \|\Phi\|_{\mathscr{H}^1}$.

Thanks!

