• • • • •

Two controlled paths to the KPZ equation

• • • • •

Massimiliano Gubinelli – University of Bonn.

14th International symposium "Stochastic Analysis on Large Scale Interacting Systems" RIMS Kyoto, Oct 26th–29th 2015. KPZ is the following SPDE

 $\mathscr{L}h(t,x) = \chi(\mathrm{D}h(t,x))^2 - \infty + \xi(t,x), \qquad t \ge 0, x \in \mathbb{R}, \mathbb{T}$

with ξ space–time white noise and $\mathscr{L} = \partial_t - \Delta$.

 \triangleright KPZ introduced (in the 80's) the equation in order to capture the universal macroscopic behaviour of the fluctuations *h* of growing interfaces. In this respect KPZ is just an element of a wider universality class.

 \triangleright The KPZ equation is believed to describe also these fluctuations in a certain asymptotic regime where the non-linear effects are weak in the microscopic scale.

▷ Bertini–Giacomin ('96) proved that existence of random function h describing the scaling limit of the fluctuation of WASEP for which $\varphi = e^h$ satisfies the Stochastic Heat Equation (SHE)

 $\mathscr{L}\varphi(t,x) = \varphi(t,x)\xi(t,x), \qquad t \ge 0, x \in \mathbb{R}$

where the r.h.s. is defined as an Ito integral with respect to the Brownian sheet (à la Walsh).

 \triangleright Cole–Hopf transformation (ξ_{ε} a regularisation of ξ), $\varphi_{\varepsilon} = e^{h_{\varepsilon}}$

$$\mathscr{L}\varphi_{\varepsilon}(t,x) = \varphi_{\varepsilon}(t,x)\xi_{\varepsilon}(t,x) - C_{\varepsilon}\varphi_{\varepsilon}(t,x)$$
$$\textcircled{}$$
$$\mathscr{L}h_{\varepsilon}(t,x) = (Dh_{\varepsilon}(t,x))^{2} - C_{\varepsilon} + \xi_{\varepsilon}(t,x)$$

Not a general approach to universality, needs a specific structure, especially at the microscopic level.

▷ Intrinsic notions of solution:

- Energy solutions (Jara–Gonçalves) : weak notion, global in time solutions, easy to estabilish, no uniqueness.
- Rough paths (Hairer) : strong notion, local solutions, uniqueness / stability.

First part of the talk is about Hairer's approach, reloaded in the paracontrolled setting.

Second part is about a new result of uniqueness for energy solutions.

Talk based on joint work with: N. Perkowski.

KPZ is ok, but Burgers is more convenient. Let u = Dh

$$\mathscr{L}u = \mathcal{D}(u^2) + \mathcal{D}\xi, \qquad t \ge 0, x \in \mathbb{T}.$$

Hairer's approach is based on a partial expansion of the solution. Make the change of variables

$$u^{Q} = u - (X + X^{\mathbf{V}} + 2X^{\mathbf{V}})$$

where X, X^{\vee}, X^{\vee} solve

$$\mathscr{L}X = \xi, \quad \mathscr{L}X^{\mathbf{V}} = \mathcal{D}(X^2), \quad \mathscr{L}X^{\mathbf{V}} = \mathcal{D}(XX^{\mathbf{V}}), \quad \mathscr{L}X^{\mathbf{V}} = \mathcal{D}(X^{\mathbf{V}})^2, \quad \mathscr{L}X^{\mathbf{V}} = \mathcal{D}(XX^{\mathbf{V}}).$$

Then

$$\mathscr{L}u^{Q} = \underbrace{2\mathrm{D}[(X + X^{\mathsf{V}})(2X^{\mathsf{V}} + u^{Q})]}_{\text{not defined}} + \mathrm{D}X^{\mathsf{V}} + \mathrm{D}(2X^{\mathsf{V}} + u^{Q})^{2}$$

Regularity $(C\mathscr{C}^{\alpha} = C([0,T]; B_{\infty,\infty}^{\alpha})).$

 $X \in C \mathscr{C}^{-1/2-}, \quad X^{\mathsf{V}} \in C \mathscr{C}^{-0-}, \quad X^{\mathsf{V}}, X^{\mathsf{V}} \in C \mathscr{C}^{1/2-}, \quad X^{\mathsf{V}} \in C \mathscr{C}^{1-2}$

Decomposition of a product into *paraproducts* and *resonant term*

 $fg = f \prec g + f \circ g + f \succ g$

Theorem (Bony, Meyer)

$$(f,g) \in \mathscr{C}^{\alpha} \times \mathscr{C}^{\beta} \to f \prec g = g \succ f \in \mathscr{C}^{\beta + \alpha \wedge 0}, \qquad \alpha, \beta \in \mathbb{R} \setminus \mathbb{N}$$

$$(f,g) \in \mathscr{C}^{\alpha} \times \mathscr{C}^{\beta} \to f \circ g \in \mathscr{C}^{\alpha+\beta}, \qquad \alpha+\beta > 0$$

Paralinearization:

$$f \in \mathscr{C}^{\alpha} \to R(f) = G(f) - G'(f) < f \in \mathscr{C}^{2\alpha}, \qquad \alpha > 0$$

A single new key ingredient:

Lemma (G-Imkeller-Perkowski 2012)

 $(f,g,h) \in \mathscr{C}^{\alpha} \times \mathscr{C}^{\beta} \times \mathscr{C}^{\gamma} \to C(f,g,h) = (f \prec g) \circ h - f(g \circ h) \in \mathscr{C}^{\alpha+\beta+\gamma}, \qquad \alpha+\beta+\gamma > 0$

$$\mathcal{L}u^{Q} = 2D[X(2X^{\mathbf{v}} + u^{Q})] + 2D[X^{\mathbf{v}}(2X^{\mathbf{v}} + u^{Q})] + D(X^{\mathbf{v}})^{2} + D(2X^{\mathbf{v}} + u^{Q})^{2}$$
$$X(2X^{\mathbf{v}} + u^{Q}) = (2X^{\mathbf{v}} + u^{Q}) \prec X + X \circ (2X^{\mathbf{v}} + u^{Q}) + X \prec (2X^{\mathbf{v}} + u^{Q})$$

Note that

$$\mathcal{L}u^Q = 2(2X^{\mathbf{V}} + u^Q) \prec \mathrm{D}X + C\mathcal{C}^{-1-}$$

from which we can deduce that u^Q has a paracontrolled structure

$$u^{Q} = 2(2X^{\mathbf{V}} + u^{Q}) \prec Q + C\mathcal{C}^{1-}, \qquad \mathcal{L}Q = DX.$$

With $Q \in C \mathscr{C}^{1/2-}$. The commutator lemma then gives

$$X \circ (2X^{\mathbf{v}} + u^{Q}) = 2X \circ X^{\mathbf{v}} + 2((2X^{\mathbf{v}} + u^{Q}) \prec Q) \circ X + C\mathcal{C}^{1-} \circ X$$

$$= 2X \circ X^{\mathbf{V}} + 2(2X^{\mathbf{V}} + u^Q) (Q \circ X) + 2C(2X^{\mathbf{V}} + u^Q, Q, X) + C\mathcal{C}^{1-} \circ X$$

We *assume* that $Q \circ X \in C \mathscr{C}^{0-}$. Then

$$\mathcal{L}u^{Q} = 2(2\mathbf{X}^{\mathbf{V}} + u^{Q}) \prec X + \mathcal{L}(4\mathbf{X}^{\mathbf{V}} + \mathbf{X}^{\mathbf{V}}) + 4(2\mathbf{X}^{\mathbf{V}} + u^{Q})(\mathbf{Q} \circ \mathbf{X}) + C\mathcal{C}^{-1-}$$

where $\mathscr{L} X^{\mathscr{V}} = D(X \circ X^{\mathscr{V}})$ with $X^{\mathscr{V}} \in C \mathscr{C}^{1-}$. Let

$$\mathbb{X} = (X, X^{\mathsf{V}}, X^{\mathsf{V}}, 4X^{\mathsf{V}}, 4X^{\mathsf{V}}, Q \circ X)$$

the extendend noise (rough path / model). A final change of variables gives

$$u = X + X^{\vee} + 2X^{\vee} + u^{Q}, \qquad u^{Q} = 2(2X^{\vee} + u^{Q}) < Q + u^{\#}$$

with $u^{\#} \in C \mathscr{C}^{1-}$ and satisfying

$$\mathcal{L}u^{\#} = \mathcal{L}(4X^{\vee} + X^{\vee}) + 4(2X^{\vee} + u^{Q})(Q \circ X) + C\mathcal{C}^{-1-}$$

 \triangleright Fixpoint equation for $u^{\#}$.

Paracontrolled distributions. Let $(f, f^x) \in \mathcal{Q}_{rbe}(X) \subseteq C\mathcal{C}^{-1/2-} \times C\mathcal{C}^{1/2-}$ if

$$f = X + X^{\mathbf{V}} + 2X^{\mathbf{V}} + f^{Q}, \qquad f^{\#} = f^{Q} - f^{x} \prec Q \in C\mathscr{C}^{1-}$$

 \triangleright The non–linear term

 $Df^{2} = \mathscr{L}(X^{\mathbf{V}} + 2X^{\mathbf{V}} + 4X^{\mathbf{V}} + X^{\mathbf{V}}) + 2(2X^{\mathbf{V}} + f^{Q}) \prec Q + 2f^{x}(Q \circ X) + C\mathcal{C}^{-1-}$

is well defined for all $(f, f^x) \in \mathcal{Q}_{\text{rbe}}(\mathbb{X})$.

Theorem (Local) existence, uniqueness and stability of $(u, u^x) \in Q_{rbe}(X)$ satisfying $\mathcal{L}u = Du^2 + \xi$

with $u^x = 2(2X^{\vee} + u^Q)$. Continuous solution map $\Psi: (u_0, \mathbb{X}) \mapsto (u, u^x)$, in particular if $\mathbb{X}_{\varepsilon} \to \mathbb{X}$ then

 $u_{\varepsilon} \rightarrow u$.

▷ Related results about paracontrolled solutions to KPZ and RHE (SHE).

Let *h* be a solution to KPZ with smooth noise θ and let $\overleftarrow{h}(t) = h(T-t)$ and *B* a Brownian motion of variance 2, then

$$(\partial_t + \Delta) \overleftarrow{h} = -(D\overrightarrow{h})^2 + c(\theta) - \overleftarrow{\theta}, \qquad \overleftarrow{h}(T) = h_0$$

 \triangleright Ito formula gives

$$\overleftarrow{h}(0,x) - \int_0^T \mathbf{D}\overleftarrow{h}(s,x+B_s) \mathrm{d}B_s - \int_0^T (\mathbf{D}\overleftarrow{h})^2(s,x+B_s) \mathrm{d}s$$
$$= \overleftarrow{h}(T,x+B_T) + \int_0^T [\overleftarrow{\theta}(s,x+B_s) - c(\theta)] \mathrm{d}s = -F(B)$$

Theorem (Dubué–Dupuis, Üstunel) Let $\gamma_t^v = x + B_t + \int_0^t v_s ds$ then

$$-\log \mathbb{E}[e^{-F(B)}] = \inf_{v} \mathbb{E}\left[F(\gamma_{\cdot}^{v}) + \frac{1}{4}\int_{0}^{T} |v_{s}|^{2} \mathrm{d}s\right].$$

$$-h(T,x) = -\overset{\leftarrow}{h}(0,x) = -\log \mathbb{E}[e^{-F(B)}] = \inf_{v} \mathbb{E}\left\{-h_0(\gamma_T^v) + \int_0^T [-\overset{\leftarrow}{\theta}(s,\gamma_s^v) + c(\theta) + \frac{|v_s|^2}{4}]ds\right\}$$

$$h(T,x) = \sup_{v} \mathbb{E}[h_0(\gamma_T^v) + \int_0^T (\overleftarrow{\theta}(s,\gamma_s^v) - c(\theta) - \frac{|v_s|^2}{4}) ds]$$

 $\triangleright \text{ Use that } (\partial_t + \Delta) \overleftarrow{Y} = -\overleftarrow{\theta} \text{ and Itô formula to have }$

$$\overleftarrow{Y}(T, \gamma_T) = \overleftarrow{Y}(0, \gamma_0) + \int_0^T (v_s D \overleftarrow{Y} - \overleftarrow{\theta})(s, \gamma_s^v) ds + mart$$

$$\Phi(\gamma^{v}) = h_{0}(\gamma^{v}_{T}) - \overleftarrow{Y}(T, \gamma_{T}) + \overleftarrow{Y}(0, \gamma_{0}) - \int_{0}^{T} [-v_{s} \mathrm{D}\overleftarrow{Y} + c(\theta) + \frac{|v_{s}|^{2}}{4}](s, \gamma^{v}_{s}) \mathrm{d}s + \mathrm{mart}$$

$$=h_0(\gamma_T^v) - \overleftarrow{Y}(T, \gamma_T^v) + \overleftarrow{Y}(0, \gamma_0^v) - \int_0^T [-(D\overrightarrow{Y})^2 + c(\theta) + \frac{|v_s - 2D\overrightarrow{Y}|^2}{4}](s, \gamma_s^v) ds + \text{mart}$$

▷ We obtain a new form of the optimization problem (with $v_s = 2 D \dot{Y} + v_s^1$):

$$h(T,x) = \sup_{v^1} \mathbb{E}\left[h_0(\gamma_T^v) - \overleftarrow{Y}(T,\gamma_T^v) + \overleftarrow{Y}(0,\gamma_0^v) + \int_0^T [(D\overrightarrow{Y})^2 - c(\theta) - \frac{|v_s^1|^2}{4}](s,\gamma_s^v)ds\right]$$

Note that θ disappeared. Define now $(\partial_t + \Delta) \overleftarrow{Y}^{\mathsf{v}} = -(D\overleftarrow{Y})^2 - c(\theta)$ and iterate...

Theorem For smooth θ we have

$$(h - Y - Y^{\mathsf{V}} - Y^{R})(T, x) = \sup_{v} \mathbb{E} \left[h_{0}(\zeta_{T}^{v}) - Y(0, \zeta_{T}^{v}) + \int_{0}^{T} (|DY^{R}|^{2} - \frac{1}{4}|v - 2DY^{R}|^{2})(s, \zeta_{s}^{v}) ds \right]$$

where $DY^{\tau} = X^{\tau}$, $\zeta_t^v = x + \int_0^t (2X + 2X + v)(v, \zeta_s^v) ds + B_t$ and

$$\mathscr{L}Y^R = (X^{\mathbf{V}})^2 + 2XX^{\mathbf{V}} + 2(X + X^{\mathbf{V}})DY^R, \qquad Y^R(0) = 0.$$

 \triangleright The equation for Y^R is a linear paracontrolled equation with solution $Y^R \in C \mathscr{C}^{1/2-1}$

$$Y^{R} = Y^{\mathbf{V}} + Y^{x} \not\ll P + Y^{\#}, \qquad \mathscr{L}P = \theta.$$

 \triangleright In particular, since Y, Y^{\vee}, Y^{R} are bounded in $[0, T] \times \mathbb{T}$ we get uniform bounds for *h*:

$$h(T,x) \leq 2 \|Y\|_{C_T L^{\infty}} + \|Y^{\mathsf{V}}\|_{C_T L^{\infty}} + \|Y^R\|_{C_T L^{\infty}} + \|\mathsf{D}Y^R\|_{C_T L^{\infty}}^2 + \|h_0\|_{L^{\infty}}$$

and

$$-h(T,x) \leq 2 \|Y\|_{C_T L^{\infty}} + \|Y^{\mathsf{V}}\|_{C_T L^{\infty}} + \|Y^R\|_{C_T L^{\infty}} + \|h_0\|_{L^{\infty}}$$

▷ The uniform bound

 $\|h(T,\cdot)\|_{L^{\infty}} \leq K_T(\mathbb{Y}) + \|h_0\|_{L^{\infty}}$

ensures global in time existence for solutions of KPZ. And solutions to the RHE

 $\mathscr{L}\varphi = \varphi\theta - c(\theta)\varphi, \qquad \varphi(0) = e^{h_0}$

have a uniform *lower bound* which is strictly away from zero

 $\varphi(t,x) \ge e^{-\|h(t,\cdot)\|_{L^{\infty}}} \ge e^{-K_T(\mathbb{Y})-\|h_0\|_{L^{\infty}}} > 0.$

 \triangleright *In particular* alternative proof of the strict positivity of the SHE started from strictly positive initial data (cfr. Müller).

 \triangleright This property does not depends on the law of the driving noise θ (but on its regularity and enhancement \forall).

 \triangleright Also a comparison principle for KPZ holds: for all $T \ge 0$

 $\|h^1 - h^2\|_{C_T L^{\infty}} \leq \|h_0^1 - h_0^2\|_{L^{\infty}}.$

 \triangleright The variational representation holds a priori only for smooth θ .

▷ Following Delarue–Diel we can however define the controlled diffusion

$$\zeta_t^v = x + \int_0^t (2\overleftarrow{X} + 2\overleftarrow{X}^v + v)(v, \zeta_s^v) ds + B_t$$

as a solution of a martingale problem for more irregular θ (in particular ξ). \triangleright The generator of ζ^0 is $\mathscr{G} = \Delta + 2(\overset{\leftarrow}{X} + \overset{\leftarrow}{X}^{\mathsf{V}})$ D and is possible to solve

$$(\partial_t + \mathcal{G})F = f, \qquad F(T)$$
 given.

as a paracontrolled equation for a large class of (F(T), f) with $F \in C_T \mathscr{C}^{3/2-}$.

▷ A martingale solution of the controlled SDE is then a measure on trajectories $(\gamma_t)_{t \in [0,T]}$ such that

$$M_t^f = F(t, \gamma_t) - \int_0^t (f(s, \gamma_s) + v_s DF(s, \gamma_s)) ds$$

is a martingale. This is enough to make the optimization problem work at the limit.

A general weakly asymmetric interface model

$$\begin{split} \mathrm{d}\,\varphi_N(t,x) &= \Delta_{\mathbb{Z}_N}\varphi_N(t,x)\,\mathrm{d}\,t + \sqrt{\varepsilon}\,(B_{\mathbb{Z}_N}(\mathsf{D}_{\mathbb{Z}_N}\varphi_N(t),\mathsf{D}_{\mathbb{Z}_N}\varphi_N(t)))(x)\,\mathrm{d}\,t + \mathrm{d}\,W_N(t,x), \\ \varphi_N(0,x) &= \varphi_0^N(x). \end{split}$$

Diffusive rescaling

$$u_N(t,x) = \varepsilon^{-1/2} \mathcal{D}_{\mathbb{Z}_N} \varphi_N(t/\varepsilon^2, x/\varepsilon).$$

This is a stochastic process on $\mathbb{R}_+ \times \mathbb{T}_N$ with $\mathbb{T}_N = (\varepsilon \mathbb{Z})/(2\pi \mathbb{Z})$ which solves the SDE

$$d u_N(t,x) = \Delta_N u_N(t,x) d t + (D_N B_N(u_N(t), u_N(t)))(x) d t + d (D_N \varepsilon^{-1/2} W_N(t,x))$$
$$u_N(0) = u_0^N.$$

where

$$\Delta_N \varphi(x) = \varepsilon^{-2} \int_{\mathbb{Z}} \varphi(x + \varepsilon y) \,\pi(\mathrm{d} y), \qquad D_N \varphi(x) = \varepsilon^{-1} \int_{\mathbb{Z}} \varphi(x + \varepsilon y) \,\nu(\mathrm{d} y), \\ B_N(\varphi, \psi)(x) = \int_{\mathbb{Z}^2} \varphi(x + \varepsilon y) \,\psi(x + \varepsilon z) \,\mu(\mathrm{d} y, \mathrm{d} z).$$

+ some moment conditions on π , ν , μ .

Theorem 1 u_N converges in distribution in $C\mathcal{C}^{-1/2-}$ to the unique paracontrolled solution u of

$$\mathscr{L}u = Du^{2} + 4c Du + D\xi, \qquad u(0) = u_{0}, \tag{1}$$

where ξ is a space-time white noise which is independent of u_0 , and where

$$c = -\frac{1}{4\pi} \int_0^{\pi} \frac{\operatorname{Im}(g(x)\bar{h}(x))}{x} \frac{h(x, -x)|g(x)|^2}{|f(x)|^2} dx \in \mathbb{R}.$$

Here

If

$$f(x) = \frac{\int_{\mathbb{Z}} e^{ixy} \pi(\mathrm{d} y)}{-x^2}, \quad g(x) = \frac{\int_{\mathbb{Z}} e^{ixy} \nu(\mathrm{d} y)}{ix}, \quad h(x_1, x_2) = \int_{\mathbb{Z}^2} e^{i(x_1 z_1 + x_2 z_2)} \mu(\mathrm{d} z_1, \mathrm{d} z_2).$$

$$\Delta_N f(x) = \varepsilon^{-2} (f(x+\varepsilon) + f(x-\varepsilon) - 2f(x)), \qquad D_N f(x) = \varepsilon^{-1} (f(x) - f(x-\varepsilon))$$
$$B_N(\varphi, \psi)(x) = \varphi(x)\psi(x)$$

then c = 1/8.

 \triangleright The less obvious choice

$$B_N(\varphi,\psi)(x) = \frac{1}{2(\kappa+\lambda)} \left(\kappa \,\varphi(x) \,\psi(x) + \lambda \left(\varphi(x) \,\psi(x+\varepsilon) + \varphi(x+\varepsilon) \,\psi(x)\right) + \kappa \,\varphi(x+\varepsilon) \,\psi(x+\varepsilon)\right)$$

for some $\kappa, \lambda \in [0, \infty)$ with $\kappa + \lambda > 0$ gives c = 0.

▷ The Sasamoto–Spohn (2009) discretization corresponds to $\kappa = 1$, $\lambda = 1/2$. In that case one furthermore has

$$\sum_{x \in \mathbb{T}_N} \varphi(x) D_N B_N(\varphi, \varphi)(x) = 0,$$

 \Rightarrow the existence of a family of stationary measures for u_N of the form

$$\mu^{\varepsilon,m}(\mathrm{d} x) = \prod_{j=0}^{N-1} \frac{\exp\left(-\varepsilon x_j^2 + m x_j\right)}{Z_m^{\varepsilon}} \mathrm{d} x_j.$$

 \Rightarrow the white noise is an invariant distribution for the stochastic Burgers equation. [To the best of our knowledge, ours is the first proof which does not rely on the Cole–Hopf transform, see Bertini–Giacomin (1996), Funaki–Quastel (2014)] Another notion of solution for the SBE (but not only).

Definition 2 (Jara-Gonçalves, 2010) *u is an energy solution of SBE if*

 $M_t(\varphi) = u_t(\varphi) - u_0(\varphi) - \int_0^t u_s(\Delta \varphi) ds - \mathscr{B}_t(\varphi)$

is a martingale with bracket $[M(\varphi)]_t = t ||D\varphi||_{L^2}^2$ and if

 $\mathbb{E}|\mathcal{B}_{s,t}(\varphi) - \mathcal{B}_{s,t}^{\varepsilon}(\varphi)|^2 \leq C \varepsilon |t - s| \|\mathbf{D}\varphi\|_{L^2}^2 \qquad (energy \ condition)$

where $\mathscr{B}_{s,t}^{\varepsilon}(\varphi) = \int_{s}^{t} D(\rho_{\varepsilon} * u_{s})^{2}(\varphi) ds$ and $\rho_{\varepsilon}(x) = \varepsilon^{-1} \rho(\varepsilon^{-1}x)$.

▷ Jara and Gonçalves proved that a large class of weakly asymmetric simple exclusion models have fluctuations which converge to **stationary** energy solutions of SBE with fixed time marginal given by white noise.

▷ An energy solution is given by a **pair** (u, \mathscr{B}) . Very little information about \mathscr{A} . As a result energy solutions are to weak to be compared meaningfully.

▷ Uniqueness is not obvious. Proved only recently (GP 2015).

Jara–G. introduced another notion of energy solution

Definition 3 (Jara-G. 2013) (u, \mathcal{A}) is a controlled process if

1. (Dirichlet) $u_t(\varphi)$ is a Dirichlet process with

$$M_t(\varphi) = u_t(\varphi) - u_0(\varphi) - \int_0^t u_s(\Delta \varphi) ds - \mathcal{A}_t(\varphi)$$

is a martingale with bracket $[M(\varphi)]_t = t ||D\varphi||_{L^2}^2$ and $[\mathscr{A}(\varphi)] = 0$.

2. (Stationarity) u_t is a white noise for all t;

3. (*Time-reversal*) $\stackrel{\leftarrow}{u}_t = u_{T-t}$ satisfies 1. with $\stackrel{\leftarrow}{\mathscr{A}}_t(\varphi) = \mathscr{A}_T(\varphi) - \mathscr{A}_{T-t}(\varphi)$.

 \triangleright For controlled processes we can define and control functionals of the form

 $\int_0^t f(u_s) \mathrm{d}s.$

Assume that *F* solves the Poisson equation $\mathscr{L}_{OU}F = f$ where \mathscr{L}_{OU} is the generator of the OU process *X* given by $\mathscr{L}X = D\xi$. Then by the Itô formula for Dirichlet processes

$$F(u_t) = F(u_0) + \int_0^t \nabla F(u_s) dM_s + \int_0^t \nabla F(u_s) d\mathcal{A}_s + \int_0^t \mathcal{L}_{OU} F(u_s) ds$$

and

$$F(\overleftarrow{u}_{T}) = F(\overleftarrow{u}_{0}) + \int_{0}^{T} \nabla F(\overleftarrow{u}_{s}) d\overleftarrow{M}_{s} + \int_{0}^{T} \nabla F(\overleftarrow{u}_{s}) d\overleftarrow{\mathcal{A}}_{s} + \int_{0}^{T} \mathscr{L}_{OU} F(\overleftarrow{u}_{s}) ds$$

Summing we get

$$2\int_0^t \mathscr{L}_{OU}F(u_s)ds = -\int_0^T \nabla F(\overleftarrow{u_s})d\overleftarrow{M_s} - \int_0^t \nabla F(u_s)dM_s$$

Then BDG inequalities give

$$\mathbb{E}\left|\int_{0}^{T} f(u_{s}) \mathrm{d}s\right|^{p} \lesssim_{p} T^{p/2} \mathbb{E}[\mathscr{E}_{\mathrm{OU}}(F)^{p/2}]$$

Gives a powerful control of additive functionals (Itô trick, Kipnis–Varadhan).

Lemma 4 If (u, \mathcal{A}) is controlled then

 $\mathscr{B}_t(\varphi) := \lim_{\varepsilon \to 0} \mathscr{B}_t^\varepsilon(\varphi)$

with useful estimates.

Definition 5 (Jara,G. 2013) A controlled process (u, \mathscr{A}) is a stationary solution to SBE if

 $\mathcal{A} = \mathcal{B}.$

 \triangleright Existence is proved via stationary Galerkin approximations u^N . The Itô trick gives tightness for the approximate drift \mathscr{B}^N .

 \triangleright Not difficult to show that particle systems converge to limits satisfying this notion too.

 \triangleright This notion of solution is more powerful since brings along all the information about estimations of additive functionals, not only of \mathscr{B} .

Theorem 6 (G. Perkowski, 2015) There exists only one controlled energy solutions are unique, in particular it coincides with the Cole–Hopf solution.

The proof is quite easy, it uses a key estimate from Funaki–Quastel (2014). Let (u, \mathscr{A}) be an energy solution and let $u^{\varepsilon} = \rho_{\varepsilon} * u$. Then u^{ε} satisfies

$$du_t^{\varepsilon}(x) = \Delta u_t^{\varepsilon}(x)dt + (\rho_{\varepsilon} * d\mathcal{A}_t)(x) + (\rho_{\varepsilon} * dM_t)(x)$$

Consider $\varphi_t^{\varepsilon}(x) = e^{h_t^{\varepsilon}(x)}$ where $Dh_t^{\varepsilon}(x) = u_t^{\varepsilon}(x)$. Then

$$\mathrm{d}\varphi_t^{\varepsilon}(x) = e^{h_t^{\varepsilon}(x)} (\Delta h_t^{\varepsilon}(x) \mathrm{d}t + c_{\varepsilon} \mathrm{d}t + \mathrm{D}^{-1}(\rho_{\varepsilon} * \mathrm{d}\mathscr{A}_t)(x) + \mathrm{D}^{-1}(\rho_{\varepsilon} * \mathrm{d}M_t)(x))$$

 $=\Delta \varphi_t^{\varepsilon}(x) \mathrm{d}t + \varphi_t^{\varepsilon}(x) (Q_t^{\varepsilon} + K^{\varepsilon}) \mathrm{d}t + \varphi_t^{\varepsilon}(x) (\rho_{\varepsilon} * \mathrm{d}W_t)(x) + \mathrm{d}R_t^{\varepsilon}(\varphi)$

$$R_t^{\varepsilon}(\varphi) = \int_0^t (\varphi_s^{\varepsilon}(x) \mathrm{D}^{-1}(\rho_{\varepsilon} * \mathrm{d}\mathscr{A}_s)(x) - \varphi_s^{\varepsilon}(x) \Pi_0(u_s^{\varepsilon}(x))^2 \mathrm{d}s - K^{\varepsilon} \mathrm{d}s), \quad Q_t^{\varepsilon} = \int_{\mathbb{T}} ((u_s^{\varepsilon}(x))^2 - c_{\varepsilon}) \mathrm{d}x.$$

If we show that $R_t^{\varepsilon}(\varphi) \to 0$ then $\varphi^{\varepsilon} \to \varphi$ solution to a tilted SHE which is unique.

We approximate R^{ε} as

$$R_t^{\varepsilon,\delta}(\varphi) = \int_0^t (-K_\varepsilon \mathrm{d}s + \varphi_s^\varepsilon(x) \mathrm{D}^{-1}(\rho_\varepsilon * \mathrm{d}\mathscr{B}_s^\delta)(x) - \varphi_s^\varepsilon(x)(u_s^\varepsilon(x))^2 \mathrm{d}s)$$

$$=\int_0^t (-K_{\varepsilon} + e^{D^{-1}u_s^{\varepsilon}(x)}(\rho_{\varepsilon} * (\rho_{\delta} * u_s)^2 - (\rho_{\varepsilon} * u_s)^2)(x))dt = \int_0^t f_{\varepsilon,\delta}(u_s)ds$$

So we use the forward–backward Itô trick to get an L^2 estimate

 $\mathbb{E}|R_t^{\varepsilon,\delta}(\varphi)|^2 \lesssim t \, \|f_{\varepsilon,\delta}\|_{\mathscr{H}^{-1}}^2$

where \mathcal{H}^{-1} is the Sobolev space associated to the OU generator.

Following the strategy in Funaki–Quastel a detailed computation shows that there exists a choiche for $K_{\varepsilon} \rightarrow K = -1/2$ for which

$$\|f_{\varepsilon,\delta}\|_{\mathscr{H}^{-1}}^2 = \sup_{\Phi} \left[2\mathbb{E}(f_{\varepsilon,\delta}\Phi) - \|\Phi\|_{\mathscr{H}^{1}}^2\right] \to 0.$$

It is enough to show that $|\mathbb{E}(f_{\varepsilon,\delta}\Phi)| \leq o(1) \|\Phi\|_{\mathscr{H}^1}$.

Thanks!

