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KPZ is the following SPDE

Lh(t,x)=χ(Dh(t,x))2 − ∞+ξ(t,x), t⩾0,x∈ ℝ,𝕋

with ξ space�time white noise and L =∂t −Δ.

⊳ KPZ introduced (in the 80's) the equation in order to capture the universal macro-
scopic behaviour of the fluctuations h of growing interfaces. In this respect KPZ is
just an element of a wider universality class.

⊳ The KPZ equation is believed to describe also these fluctuations in a certain
asymptotic regime where the non�linear effects are weak in the microscopic scale.

⊳ Bertini�Giacomin ('96) proved that existence of random function h describing the
scaling limit of the fluctuation of WASEP for which φ = eh satisfies the Stochastic
Heat Equation (SHE)

Lφ(t,x)=φ(t,x)ξ(t,x), t⩾0,x∈ ℝ

where the r.h.s. is defined as an Ito integral with respect to the Brownian sheet (à
la Walsh).



⊳ Cole�Hopf transformation (ξε a regularisation of ξ) , φε = ehε

Lφε(t,x)=φε(t,x)ξε(t,x)− Cεφε(t,x)
⇕

Lhε(t,x)= (Dhε(t,x))2 −Cε +ξε(t,x)

Not a general approach to universality, needs a specific structure, especially at the
microscopic level.

⊳ Intrinsic notions of solution:

• Energy solutions (Jara�Gonçalves) : weak notion, global in time solutions, easy
to estabilish, no uniqueness.

• Rough paths (Hairer) : strong notion, local solutions, uniqueness / stability.

First part of the talk is about Hairer's approach, reloaded in the paracontrolled set-
ting.

Second part is about a new result of uniqueness for energy solutions.

Talk based on joint work with: N. Perkowski.
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KPZ is ok, but Burgers is more convenient. Let u=Dh

Lu=D(u2)+Dξ, t⩾0,x∈ 𝕋 .

Hairer's approach is based on a partial expansion of the solution. Make the change
of variables

uQ=u− (X +X +2X )

where X ,X ,X solve

LX = ξ, LX =D(X 2), LX =D(XX ), LX =D(X )2, LX =D(XX ).

Then

LuQ=2D[(X +X )(2X +uQ)]
not defined

+DX +D(2X +uQ)2

Regularity (CC α =C([0,T ];B∞,∞
α ).

X ∈CC −1/2−, X ∈CC −0−, X ,X ∈CC 1/2−, X ∈CC 1−
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Decomposition of a product into paraproducts and resonant term

fg= f ≺ g+ f ∘ g+ f ≻ g

Theorem (Bony, Meyer)

(f , g)∈C α ×C β → f ≺ g= g≻ f ∈C β+α∧0, α, β ∈ ℝ\ℕ

(f , g)∈C α ×C β → f ∘ g∈C α+β, α+ β >0

Paralinearization:

f ∈C α →R(f )=G(f )−G′(f )≺ f ∈C 2α, α>0

A single new key ingredient:

Lemma (G-Imkeller-Perkowski 2012)

(f , g,h)∈C α ×C β ×C γ →C(f , g,h)= (f ≺ g) ∘h− f (g ∘h)∈C α+β+γ, α+ β +γ >0
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LuQ= 2D[X (2X +uQ)] +2D[X (2X +uQ)]+D(X )2+D(2X +uQ)2

X (2X +uQ) = (2X +uQ)≺X + X ∘ (2X +uQ) +X ≺ (2X +uQ)

Note that

LuQ=2(2X +uQ)≺DX +CC −1−

from which we can deduce that uQ has a paracontrolled structure

uQ=2(2X +uQ)≺ Q+CC 1−, LQ=DX .

With Q∈CC 1/2−. The commutator lemma then gives

X ∘ (2X +uQ) =2X ∘X + 2((2X +uQ)≺ Q) ∘X +CC 1− ∘X

=2X ∘X +2(2X +uQ) (Q ∘X ) +2C(2X +uQ, Q,X )+CC 1− ∘X



We assume that Q ∘X ∈CC 0−. Then

LuQ=2(2X +uQ)≺X +L (4X +X )+4(2X +uQ)(Q ∘X )+CC −1−

where LX =D(X ∘X ) with X ∈CC 1−. Let

𝕏=(X ,X ,X , 4X +X , Q ∘X )

the extendend noise (rough path / model). A final change of variables gives

u=X +X +2X +uQ, uQ=2(2X +uQ)≺ Q+u#

with u# ∈CC 1− and satisfying

Lu#=L (4X +X )+4(2X +uQ)(Q ∘X )+CC −1−

⊳ Fixpoint equation for u#.
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Paracontrolled distributions. Let (f , f x)∈ 𝒬rbe(𝕏)⊆CC −1/2− ×CC 1/2− if

f =X +X +2X + f Q, f #= f Q − f x ≺ Q∈CC 1−

⊳ The non�linear term

Df 2=L (X +2X +4X +X )+2(2X + f Q)≺ Q+2f x(Q ∘X )+CC −1−

is well defined for all (f , f x)∈ 𝒬rbe(𝕏).

Theorem (Local) existence, uniqueness and stability of (u,ux)∈ 𝒬rbe(𝕏) satisfying

Lu=Du2+ ξ

with ux = 2(2X + uQ). Continuous solution map Ψ: (u0, 𝕏) ↦ (u, ux), in particular if
𝕏ε → 𝕏 then

uε →u.

⊳ Related results about paracontrolled solutions to KPZ and RHE (SHE).
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Let h be a solution to KPZ with smooth noise θ and let h
��

(t)=h(T −t) and B a Brownian
motion of variance 2, then

(∂t+Δ)h
��

=−(Dh
��

)2+ c(θ)− θ
��

, h
��

(T )=h0

⊳ Ito formula gives

h
��

(0,x)− ∫0
TDh
��

(s,x+Bs)dBs − ∫0
T(Dh
��

)2(s,x+Bs)ds

=h
��

(T ,x+BT)+∫0
T[θ
��

(s,x+Bs)− c(θ)]ds=−F(B)

Theorem (Dubué�Dupuis, Üstunel) Let γt
v=x+Bt +∫0

tvs ds then

−log𝔼[e−F(B)]= inf
v

𝔼
h
F (γ⋅

v)+ 1
4 ∫0

T∣vs∣2 d s
i
.

−h(T ,x)=−h
��

(0,x)=−log𝔼[e−F(B)]= inf
v

𝔼
�

−h0(γT
v )+∫0

T[−θ
��

(s,γs
v)+ c(θ)+ ∣vs∣2

4 ]ds
�



h(T ,x)=sup
v

𝔼[h0(γT
v )+∫0

T(θ
��

(s,γs
v)− c(θ)− ∣vs∣2

4
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Φ(γv)

]

⊳ Use that (∂t +Δ)Y
��

=−θ
��

and Itô formula to have

Y
��

(T ,γT)=Y
��

(0,γ0)+∫0
T(vsDY

��
− θ
��

)(s,γs
v)ds+mart

Φ(γv)=h0(γT
v )−Y

��
(T ,γT)+Y

��
(0,γ0)− ∫0

T[−vsDY
��

+ c(θ)+ ∣vs∣2
4 ](s,γs

v)ds+mart

=h0(γT
v )−Y

��
(T ,γT

v )+Y
��

(0,γ0
v)− ∫0

T[−(DY
��

)2+ c(θ)+ ∣vs −2DY
��

∣2
4

](s,γs
v)ds+mart

⊳ We obtain a new form of the optimization problem (with vs=2DY
��

+vs
1) :

h(T ,x)=sup
v1

𝔼
�

h0(γT
v )−Y

��
(T ,γT

v )+Y
��

(0,γ0
v)+∫0

T[(DY
��

)2 − c(θ)− ∣vs
1∣2
4

](s,γs
v)ds

�

Note that θ disappeared. Define now (∂t +Δ)Y
��

=−(DY
��

)2 − c(θ) and iterate...
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Theorem For smooth θ we have

(h−Y −Y −YR)(T ,x)=sup
v

𝔼
h
h0(ζT

v )−Y (0, ζT
v )+∫0

T(∣DY
��R

∣2 − 1
4

∣v−2DY
��R

∣2)(s, ζs
v)ds

i
where DY τ =X τ, ζt

v=x+∫0
t(2X
��

+2X
��

+v )(v, ζs
v)ds+Bt and

LYR= (X )2+2XX +2(X +X )DYR, YR(0)=0.

⊳ The equation for YR is a linear paracontrolled equation with solution YR ∈CC 1/2−

YR=Y +Y x ≺≺P+Y #, LP=θ.

⊳ In particular, since Y ,Y ,YR are bounded in [0,T ]×𝕋 we get uniform bounds for h:

h(T ,x)⩽2‖Y‖CTL∞ +‖Y ‖CTL∞ +‖YR‖CTL∞ +‖DYR‖CTL∞
2 +‖h0‖L∞

and

−h(T ,x)⩽2‖Y‖CTL∞ +‖Y ‖CTL∞ +‖YR‖CTL∞ +‖h0‖L∞
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⊳ The uniform bound

‖h(T , ⋅)‖L∞ ⩽KT(𝕐 )+‖h0‖L∞

ensures global in time existence for solutions of KPZ. And solutions to the RHE

Lφ=φθ − c(θ)φ, φ(0)= eh0

have a uniform lower bound which is strictly away from zero

φ(t,x)⩾ e−‖h(t,⋅)‖L∞ ⩾ e−KT(𝕐 )−‖h0‖L∞ >0.

⊳ In particular alternative proof of the strict positivity of the SHE started from
strictly positive initial data (cfr. Müller).

⊳ This property does not depends on the law of the driving noise θ (but on its regu-
larity and enhancement 𝕐 ).

⊳ Also a comparison principle for KPZ holds: for all T ⩾0

‖h1 − h2‖CTL∞ ⩽ ‖h0
1 −h0

2‖L∞.
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⊳ The variational representation holds a priori only for smooth θ.

⊳ Following Delarue�Diel we can however define the controlled diffusion

ζt
v=x+∫0

t(2X
��

+2X
��

+v )(v, ζs
v)ds+Bt

as a solution of a martingale problem for more irregular θ (in particular ξ).

⊳ The generator of ζ0 is 𝒢=Δ+2(X
��

+ X
��

)D and is possible to solve

(∂t +𝒢)F = f , F(T ) given.

as a paracontrolled equation for a large class of (F(T), f ) with F ∈CTC 3/2−.

⊳ A martingale solution of the controlled SDE is then a measure on trajectories
(γt)t∈[0,T ] such that

Mt
f =F(t,γt)− ∫0

t(f (s,γs)+vsDF(s,γs))ds

is a martingale. This is enough to make the optimization problem work at the limit.
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A general weakly asymmetric interface model

dφN(t,x) =ΔℤN φN(t,x)d t+ ε√ (BℤN (DℤN φN(t),DℤN φN(t)))(x)d t+dWN(t,x),
φN(0,x) =φ0

N(x).

Diffusive rescaling

uN(t,x)= ε−1/2 DℤN φN (t/ε2,x/ε).

This is a stochastic process on ℝ+ × 𝕋N with 𝕋N =(εℤ)/(2πℤ) which solves the SDE

duN(t,x)=ΔN uN(t,x)d t+(DN BN(uN(t),uN(t)))(x)d t+d (DN ε−1/2 WN(t,x))
uN(0)=u0

N.

where

ΔN φ(x)= ε−2 ∫ℤφ (x+ εy)π (d y), DN φ(x)= ε−1 ∫ℤφ (x+ εy)ν (d y),
BN(φ,ψ)(x)=∫ℤ2φ (x+ εy)ψ (x+ εz)μ (d y,d z).

+ some moment conditions on π,ν,μ.



Theorem 1 uN converges in distribution in CC −1/2− to the unique paracontrolled
solution u of

Lu=Du2+4 cDu+D ξ, u(0)=u0, (1)

where ξ is a space-time white noise which is independent of u0, and where

c=− 1
4π ∫0

π Im(g(x) h̄(x))
x

h (x,−x)∣g(x)∣2
∣f (x)∣2 dx∈ ℝ.

Here

f (x)=
∫ℤeixy π (d y)

−x2 , g(x)=
∫ℤeixy ν (d y)

i x
, h(x1,x2)=∫ℤ2e

i(x1z1+x2z2) μ (d z1,d z2).

If

ΔN f (x)= ε−2 (f (x+ ε)+ f (x− ε)−2 f (x)), DN f (x)= ε−1 (f (x)− f (x− ε))

BN(φ,ψ)(x)=φ(x)ψ(x)

then c=1/8.



⊳ The less obvious choice

BN(φ,ψ)(x)= 1
2 (κ+λ)

(κφ(x)ψ(x)+λ (φ(x)ψ (x+ ε)+φ (x+ ε)ψ(x))+ κφ (x+ ε)ψ (x+ ε))

for some κ,λ ∈ [0,∞) with κ+λ>0 gives c=0.

⊳ The Sasamoto�Spohn (2009) discretization corresponds to κ = 1, λ = 1/2. In that
case one furthermore has

∑
x∈𝕋N

φ(x)DN BN(φ,φ)(x)=0,

⇒ the existence of a family of stationary measures for uN of the form

με,m(dx)= ∏
j=0

N−1 exp (−εxj
2+mxj)

Zm
ε dxj.

⇒ the white noise is an invariant distribution for the stochastic Burgers equation.
[To the best of our knowledge, ours is the first proof which does not rely on the
Cole�Hopf transform, see Bertini�Giacomin (1996), Funaki�Quastel (2014)]
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Another notion of solution for the SBE (but not only).

Definition 2 (Jara�Gonçalves, 2010) u is an energy solution of SBE if

Mt(φ)=ut(φ)−u0(φ)− ∫0
tus(Δφ)ds− ℬt(φ)

is a martingale with bracket [M(φ)]t= t‖Dφ‖L2
2 and if

𝔼∣ℬs,t(φ)− ℬs,t
ε (φ)∣2 ⩽ Cε∣t− s∣‖Dφ‖L2

2 (energy condition)

where ℬs,t
ε (φ)=∫s

tD(ρε ∗us)2(φ)ds and ρε(x)= ε−1ρ(ε−1x).

⊳ Jara and Gonçalves proved that a large class of weakly asymmetric simple exclu-
sion models have fluctuations which converge to stationary energy solutions of SBE
with fixed time marginal given by white noise.

⊳ An energy solution is given by a pair (u, ℬ). Very little information about 𝒜. As
a result energy solutions are to weak to be compared meaningfully.

⊳ Uniqueness is not obvious. Proved only recently (GP 2015).



A more powerful notion of energy solutions 18/23

Jara�G. introduced another notion of energy solution

Definition 3 (Jara�G. 2013) (u,𝒜) is a controlled process if

1. (Dirichlet) ut(φ) is a Dirichlet process with

Mt(φ)=ut(φ)−u0(φ)− ∫0
tus(Δφ)ds− 𝒜t(φ)

is a martingale with bracket [M(φ)]t = t‖Dφ‖L2
2 and [𝒜(φ)]=0.

2. (Stationarity) ut is a white noise for all t;

3. (Time�reversal) u��t=uT−t satisfies 1. with 𝒜
��

t(φ)=𝒜T(φ)− 𝒜T−t(φ).

⊳ For controlled processes we can define and control functionals of the form

∫0
tf (us)ds.
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Assume that F solves the Poisson equation L OUF = f where L OU is the generator of
the OU process X given by LX =Dξ. Then by the Itô formula for Dirichlet processes

F(ut)=F(u0)+∫0
t∇F(us)dMs+∫0

t∇F(us)d𝒜s+∫0
t
L OUF(us)ds

and

F(u��T)=F(u��0)+∫0
T∇F(u��s)dM

��
s+∫0

T∇F(u��s)d𝒜
��

s+∫0
T
L OUF(u��s)ds

Summing we get

2∫0
t
L OUF(us)ds=−∫0

T∇F(u��s)dM
��

s − ∫0
t∇F(us)dMs

Then BDG inequalities give

𝔼
��∫0

Tf (us)ds
��p ≲p T p/2 𝔼[ℰOU(F)p/2]

Gives a powerful control of additive functionals (Itô trick, Kipnis�Varadhan).
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Lemma 4 If (u,𝒜) is controlled then

ℬt(φ): =lim
ε→0

ℬt
ε(φ)

with useful estimates.

Definition 5 (Jara,G. 2013) A controlled process (u,𝒜) is a stationary solution to
SBE if

𝒜=ℬ.

⊳ Existence is proved via stationary Galerkin approximations uN. The Itô trick gives
tightness for the approximate drift ℬN.

⊳ Not difficult to show that particle systems converge to limits satisfying this notion
too.

⊳ This notion of solution is more powerful since brings along all the information
about estimations of additive functionals, not only of ℬ.
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Theorem 6 (G. Perkowski, 2015) There exists only one controlled energy solutions
are unique, in particular it coincides with the Cole�Hopf solution.

The proof is quite easy, it uses a key estimate from Funaki�Quastel (2014).

Let (u,𝒜) be an energy solution and let uε =ρε ∗u. Then uε satisfies

dut
ε(x)=Δut

ε(x)dt+ (ρε ∗ d𝒜t)(x)+ (ρε ∗ dMt)(x)

Consider φt
ε(x)= eht

ε(x) where Dht
ε(x)=ut

ε(x). Then

dφt
ε(x)= eht

ε(x)(Δht
ε(x)dt+ cεdt+D−1(ρε ∗ d𝒜t)(x)+D−1(ρε ∗ dMt)(x))

=Δφt
ε(x)dt+φt

ε(x)(Qt
ε +K ε)dt+φt

ε(x)(ρε ∗ dWt)(x)+dRt
ε(φ)

Rt
ε(φ)=∫0

t(φs
ε(x)D−1(ρε ∗ d𝒜s)(x)− φs

ε(x)Π0(us
ε(x))2ds−K εds), Qt

ε =∫𝕋((us
ε(x))2 − cε)dx.

If we show that Rt
ε(φ)→0 then φε →φ solution to a tilted SHE which is unique.
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We approximate Rε as

Rt
ε,δ(φ)=∫0

t(−Kεds+φs
ε(x)D−1(ρε ∗ dℬs

δ)(x)−φs
ε(x)(us

ε(x))2ds)

=∫0
t(−Kε + eD−1us

ε(x)(ρε ∗ (ρδ ∗us)2 − (ρε ∗us)2)(x))dt=∫0
tfε,δ(us)ds

So we use the forward�backward Itô trick to get an L2 estimate

𝔼∣Rt
ε,δ(φ)∣2 ≲ t‖fε,δ‖ℋ−1

2

where ℋ−1 is the Sobolev space associated to the OU generator.

Following the strategy in Funaki�Quastel a detailed computation shows that there
exists a choiche for Kε →K =−1/2 for which

‖fε,δ‖ℋ−1
2 =sup

Φ
[2𝔼(fε,δΦ)− ‖Φ‖ℋ1

2 ]→0.

It is enough to show that ∣𝔼(fε,δΦ)∣ ⩽o(1)‖Φ‖ℋ1.
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