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The Kardar—Parisi-Zhang equation 2/23

KPZ is the following SPDE
Zh(t,x) = y(Dh(t,x))* — co + £(¢, %), t>0,xeR,T

with £ space—time white noise and . =0, —A.

> KPZ introduced (in the 80’s) the equation in order to capture the universal macro-
scopic behaviour of the fluctuations # of growing interfaces. In this respect KPZ is
just an element of a wider universality class.

> The KPZ equation is believed to describe also these fluctuations in a certain
asymptotic regime where the non-linear effects are weak in the microscopic scale.

> Bertini—Giacomin ('96) proved that existence of random function 4 describing the
scaling limit of the fluctuation of WASEP for which ¢ = ¢ satisfies the Stochastic
Heat Equation (SHE)

Lot x)=¢(t,0)€(,x), t20,x€R

where the r.h.s. is defined as an Ito integral with respect to the Brownian sheet (a
la Walsh).



> Cole—Hopf transformation (¢, a regularisation of £) , ¢, =e

Lo(t,x)=(t,x)(t,x) — C.0(t,x)

0
Lh(t,x)=(Dh(t,x))? - C. + £(t,x)

Not a general approach to universality, needs a specific structure, especially at the

microscopic level.

> Intrinsic notions of solution:

e Energy solutions (Jara—Goncalves) : weak notion, global in time solutions, easy
to estabilish, no uniqueness.

e Rough paths (Hairer) : strong notion, local solutions, uniqueness / stability.

First part of the talk is about Hairer’s approach, reloaded in the paracontrolled set-
ting.

Second part is about a new result of uniqueness for energy solutions.

Talk based on joint work with: N. Perkowski.



Hairer’s approach to KPZ 4/23

KPZ is ok, but Burgers is more convenient. Let u=DA
ZLu=Dw?+D¢, t>0,x€T.

Hairer’s approach is based on a partial expansion of the solution. Make the change
of variables

u=u— (X +XV+2X")

where X ,XV,XV' solve
X =¢, XV=DX?), «X'=DXXY), «x¥=DX"2, Xx‘=DXX).

Then

Zu?=2DIX +X")2X " +u9]+DX" +DEX " +u®)?

not defined

Regularity (C¢*=C([0,T]; BS o).

Xece 2, xVeCe O, X' X'ece', x¥ecet-



Paracontrolled analysis 5/23

Decomposition of a product into paraproducts and resonant term

fe=f<g+f-g+f>g

Theorem
(f,8)€EC xECP > f<g=g>fecChor a, BER\N

(f,8) EC xEP > foge€™P, a+ >0

Paralinearization:

fEC*—>R()=G(f)-G (f)<f €&?, a>0

A single new key ingredient:

Lemma

(f,g,h)eC xEPx€" - C(f,g,h)=(f <g)eh —f(g-h) e € P+, a+f+y>0



Paracontrolled Burgers 6/23

2u° - BDIXERRUO] + 2D1xV(2X" + u®)] + D)2+ D2X" + @)

Note that

Zu9=22X"+u?)<DX +C%1-
from which we can deduce that u® has a paracontrolled structure
u9=22X"+u9<Q+C¥",  LQ=DX.

With @ € C¢V?~. The commutator lemma then gives

=2X o X" +22X" +u) (@BKD) + 2C2X" +u?, @, X)+ CZ1 o X



We assume that @ X € C4°~. Then
2u9=202X"+u) <X + 2(4X *+ X%+ 42X +u(Q-X) + Ct -
where ZX ¥=D(X - X %) with X *e C¢1~. Let
X=X, XV, XY 4x %+ X% Q-X)
the extendend noise (rough path / model). A final change of variables gives
u=X+Xv+2XY'+uQ, uQ=2(2XY'+uQ)<Q+u#
with u" € C¢'~ and satisfying

Sut= 27X 4+ X +4@2X Y +uQ0X) + CE1-

> Fixpoint equation for u".



The intrinsic notion of solution 8/23

Paracontrolled distributions. Let (£, f*) € Q,,.(X) CCE¢ 12~ x C¢V?~ if
F=X+X"+2X +fQ,  fi=fR-fr<QeC¥'-
> The non-linear term
Df2= XY +2X" +4X %+ X*) 422X+ F9) < Q + 2F(QoX) + CL 1~

1s well defined for all (f, f*) € @1,.(X).
(Local) existence, uniqueness and stability of (u,u”) € Qe(X) satisfying

Lu=Du?+¢

with u* = Z(ZXV +u®). Continuous solution map V: (ug, X) — (u, u%), in particular if
X, — X then

Us— U.

> Related results about paracontrolled solutions to KPZ and RHE (SHE).



Optimization problem 9/23

-
Let /& be a solution to KPZ with smooth noise 0 and let 4 (¢)=h(T —t) and B a Brownian
motion of variance 2, then

O+ Mk =—(Dh2+c(0)— 0,  h(T)=hy

> Ito formula gives
— T e T
h(0,x)— [ Dh(s,x+By)dB;— [ (Dh )%(s,x + B,)ds

=h(T,x+Br)+ [10(s,x+By) —c(0)lds =—F (B)

Theorem Let v/ =x+B;+ fot v, ds then

. 1
~log Ele T ®]=infE | F ())+ 1 ; logfds .

— — 2
—h(T,x)=—h(0,x)=—logE[e F'®]=infE { —ho(yT) + fOT[— 0 (s, vs)+c(0) + lv%]ds}



|US|2

4

BT, x)=sup Elho( 74 + [ (0(s, 72) —c(6) -

B(7?)

)ds]

— —
> Use that (0;+A)Y =—0 and Ito formula to have

— — T —
Y(T,yr)=Y (0, 9/0)+f0 (vsDY — 0)(s, 7)ds + mart

lus|

«— «— T «— 2
S(y)=ho(yr) =Y (T, yr)+Y (O, gfo)—fo [—v DY +c(0) + 1 I(s, 7¥)ds + mart,

e
lvs—2DY |2

1 1(s, ¥¥)ds + mart

=ho(y) =Y (T, %)+ Y (0, 38) — [T ~(DY )2+ c(6) +

e
> We obtain a new form of the optimization problem (with v,=2DY +v}):

CHE&
4

BT, x)=sup E| ho(4) =Y (T, 74) + Y (0, %)+ [T DY )2 - e(6) - 2L 1(s, 9)ds

<~V <
Note that 0 disappeared. Define now (0;+A)Y =—(DY )? —c(0) and iterate...



Renormalized stochastic optimal control problem 11/23

N X209 For smooth 0 we have

(h—Y = Y" =Y )T x) =supE| ho(() =Y (0, () + [, (DY "= Lo —2DY " s, ()

A <V
where DY "=X", C§’=x+f0t(2X +2X +v)(,Y)ds+B; and

LYE=(X")2+2XX"+2X +X)DYE,  YE0)=0.
> The equation for Y7 is a linear paracontrolled equation with solution Y e C%1/2-
YE=Y'+Y*<«P+Y*  #P=0.
> In particular, since Y, Yv, Y are bounded in [0, 7] x T we get uniform bounds for A:

AT, %) <2/|Y [l cpre+ 1Y Nl oz + 1Y Bl cyze + DY E|12, 1o + 1ol 2
and

—(T,0)<2|Y I,z + 1Y legze + 1Y Bl epre + ol L



Global in time existence and positivity for RHE 12/23

> The uniform bound

|A(T, )| L= < Kr(Y) + || Aol L=
ensures global in time existence for solutions of KPZ. And solutions to the RHE
Zo=¢0—c(0)g, ¢(0) =eM0
have a uniform lower bound which is strictly away from zero
o2, %) 3 e h e 5 o=Kr=llhollzss 5

> In particular alternative proof of the strict positivity of the SHE started from
strictly positive initial data (cfr. Miiller).

> This property does not depends on the law of the driving noise 0 (but on its regu-
larity and enhancement Y).

> Also a comparison principle for KPZ holds: for all 7> 0

2 1 12
|2t = Rh2||core < |1ho — G| L.



Paracontrolled control problem 13/23

> The variational representation holds a priori only for smooth 6.

> Following Delarue—Diel we can however define the controlled diffusion
&4 =x+/(f(2}?+2)?v+ v )(v, ()ds + B;
as a solution of a martingale problem for more irregular 0 (in particular ).
> The generator of (Vis €=A+ 2()? +)<Ev )D and is possible to solve
(0;+G)F =f, F(T)given.

as a paracontrolled equation for a large class of (F(T), ) with F € C;¢3?.

> A martingale solution of the controlled SDE is then a measure on trajectories
(¥)ter0,71 such that

M/ =F(t,y)— [,(f(s,75)+v;DF (s, 7))ds

is a martingale. This is enough to make the optimization problem work at the limit.



Sasamoto—-Spohn discretizations 14/23

A general weakly asymmetric interface model

don(t,x) =0z, on(E,x)dt+ \ﬁ (Bzy (Dzy o8 (), Dz, on(@))(x) d t +d Wi (2, x),
on(0,x) =@} (x).

Diffusive rescaling

un(t,x)=¢ 2Dz, gy (/€% x/¢).
This is a stochastic process on R, x Ty with Ty =(eZ)/(2 rZ) which solves the SDE

dun(t,x) =Ayun(t,x)dt+(DyBy(uy®), un®))x)d t +d (Dy e V2 Wy (t, x))
un(0)=ul.

where

Avg)=e2 [Lgx+ey)n(dy), Dyox)=e" [olc+ey)v(dy),
Bn(¢, h)(x) = /szﬂ(x +ey)P(x+ez)pu(dy,dz).

+ some moment conditions on 7, v, u.



uy converges in distribution in C%¢ V>~ to the unique paracontrolled
solution u of

ZLu=Du?+4cDu+D¢,  u(0)=u,, (1)
where £ 1s a space-time white noise which is independent of uo, and where

1 xIm(g(x)h(x)) A (x, —x)|g(x)|?

_ R.
4570 X If (x)]2 dxe

C=

Here

1xy d
I G

1xy d ‘
/Ze L;:)( y)’ Bxy, x9) = Z2el(xlzl+x2Z2)‘l,L(d21,dZQ).

If
ANF@)=e?(f (x+e)+f (x—e)—2f(x)),  Dyf@)=¢e " (fx)—f (x—¢)

Bn (¢, )(x) = ¢(x) ()
then ¢=1/8.



> The less obvious choice

By (¢, v)(x)= (£ () Px) + A(px) Y(x + &)+ plx+ &) Px)) + k9 (x + €) P(x + €))

1
2(k+A)

for some k, A€[0, c0) with £+ 4> 0 gives ¢c=0.

> The Sasamoto—Spohn (2009) discretization corresponds to k=1, A =1/2. In that
case one furthermore has

Y ¢(x) Dy Bn(9, 9)(x)=0,

xE Ty

= the existence of a family of stationary measures for uy of the form

N-1
‘ue,m(dx) — H

j=0

exp (—ex; + mx;)
Zin

da;.

= the white noise is an invariant distribution for the stochastic Burgers equation.
[To the best of our knowledge, ours is the first proof which does not rely on the
Cole—Hopf transform, see Bertini—Giacomin (1996), Funaki—Quastel (2014)]
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Another notion of solution for the SBE (but not only).

Definition 2 u is an energy solution of SBE if
M(9) =ud9) —uo(9) — [ u(Ap)ds — Bil(p)
is a martingale with bracket [M(¢)l;=t||Do|| _%z and if
E| B (9) — BE L 9)|2< Celt —s|||Dg||2. (energy condition)

where B .9)= [ Dlp. * u)X(9)ds and p.(x) =& p(e"1x).

> Jara and Gongalves proved that a large class of weakly asymmetric simple exclu-
sion models have fluctuations which converge to stationary energy solutions of SBE
with fixed time marginal given by white noise.

> An energy solution is given by a pair (u, %). Very little information about /. As
a result energy solutions are to weak to be compared meaningfully.

> Uniqueness is not obvious. Proved only recently (GP 2015).



A more powerful notion of energy solutions 18/23

Jara—G. introduced another notion of energy solution

Definition 3 (u, ) is a controlled process if

1. (Dirichlet) u/¢) is a Dirichlet process with
M(9)=u9)—uo(9) — [;us(Ap)ds — o (g)

is a martingale with bracket [M(¢)l;=t||Dy|| %2 and [/(9)]=0.

2. (Stationarity) u; is a white noise for all t;

e
3. (Time—-reversal) <L7t=U,T_t satisfies 1. with (@)= () — A 1_i(@).

> For controlled processes we can define and control functionals of the form

Jof (wo)ds.



The Ito trick, forward and then backward 19/23

Assume that F' solves the Poisson equation . guF =f where Z oy is the generator of
the OU process X given by . ZX =D¢&. Then by the It6 formula for Dirichlet processes

F(u)=F(uo)+ [,VF (u)dM; + [[VF(u)deds+ | £ ouF (us)ds
and
F(r)=F (o) + [ VF(,)dM, + [T VF (,)dedy+ [ LouF (i2,)ds
Summing we get
2 [ LouF (u)ds =— [ VF (i2,)dM, — ['VF(u,)dM,
Then BDG inequalities give

E| ['F(w)ds|” S, TP2 E[&ou(F )]

Gives a powerful control of additive functionals (It6 trick, Kipnis—Varadhan).



Energy solutions, the controlled way 20/23

If (u,d) is controlled then
B 9): =ling Bi(¢)

with useful estimates.

Definition 5 A controlled process (u, /) is a stationary solution to
SBE if
A=3%.

> Existence is proved via stationary Galerkin approximations " . The It6 trick gives
tightness for the approximate drift %" .

> Not difficult to show that particle systems converge to limits satisfying this notion
too.

> This notion of solution is more powerful since brings along all the information
about estimations of additive functionals, not only of .



Uniqueness of controlled energy solutions 21/23

There exists only one controlled energy solutions
are unique, in particular it coincides with the Cole—Hopf solution.

The proof is quite easy, it uses a key estimate from Funaki—Quastel (2014).

Let (u, /) be an energy solution and let u*=p,*u. Then u® satisfies
dui(x) =Aui(x)de + (p, * Aol )(x) + (pe = dM;)(x)
Consider ¢;(x) =M™ where Dh{(x)=ui(x). Then
dgi(x) = O(ARi(x)dt + ¢ dt + DX p, * Ao )(x) + D™ 1(p, 5 AM)(x))
=Agi(x)de + gi(x)(Qf + K )dt + 9;(x)(pe * AWy)(x) + AR} ()
Ri(9)= [ (9D Hp, * d)(x) — ) Tp(uix))?ds —Kds), Q= [(uix))?—c,)dx.

If we show that R;(¢) — 0 then ¢* — ¢ solution to a tilted SHE which is unique.



Control of the remainder 22/23

We approximate R as

R;(9)= [, (~K.ds + g(x)D ™ (p, » d B(x) — ¢t ) (ui(x))?ds)

= [ (=K. +eP @ p s (g ug)? — (p, + u)@)dt = [ f, sus)ds
So we use the forward—backward Ité trick to get an L? estimate

EIRZ(9)2 St |Ifesll 2

where 7! is the Sobolev space associated to the OU generator.

Following the strategy in Funaki—Quastel a detailed computation shows that there
exists a choiche for K, - K =—1/2 for which

[1+,61| %1 = sup [2E(f, s®) — ||| 5.1 — 0.
P

It is enough to show that |E(f; s®)| <o(1)[|®|| 5.



Thanks!
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