The regularising effects of irregular functions

•••

•••

Massimiliano Gubinelli – Université Paris Dauphine. Kyoto University, October 2014.

 \triangleright We will discuss some examples of the "good" effects of "very bad", "irregular" functions.

 \triangleright In particular we will look at non-linear differential (partial or ordinary) equations perturbed by some kind of (deterministic) noise.

 \triangleright By defining a suitable notion of "irregular" noise we are able to show, in a quantitative way, that the more the noise is irregular the more the properties of the equation are better.

 \triangleright Some examples includes: ODE perturbed by additive noise, linear stochastic transport equations and non-linear modulated dispersive PDEs.

 \triangleright It is possible to show that the sample paths of Brownian motion or fractional Brownian motion and related processes have almost surely this kind of irregularity.

The models

Addition of noise has positive effects on the theory of the equation (in some pathwise sense)

→ ODEs:

$$
X_t = x + \int_0^t b(X_s)ds + W_t
$$

where (W_t) is a BM in \mathbb{R}^d and b a less-than-Lipshitz vectorfield. Many results: Veretennikov, Davie, Krylov-Röckner, Flandoli, Attanasio, Fedrizzi, Proske, ... Essentially: bounded b: (in L^{∞} or with some particular integrability: LPS condition).

Transport equation:

$$
d_t u(t, x) + b(x) \cdot \nabla u(t, x) dt = \nabla u(t, x) \cdot dW_t
$$

good theory for L^{∞} solutions and preservation of regularity. Flandoli–G.–Priola, Flandoli– Attanasio, Flandoli–Maurelli, Flandoli–Beck–G.–Maurelli

- \rightarrow Some other PDE: Vlasov–Poisson, point vortices in 2d.
- \rightarrow Modulated non-linear Schrödinger equation in $d=1$. De Bouard–Debussche, Debussche– Tsutsumi.

Regularisation of PDEs

Goal: provide a deterministic framework to discuss regularization by "perturbations/modulation" for the following model PDEs:

Transport equation: $x \in \mathbb{R}^d$, $t \ge 0$, $w: \mathbb{R} \to \mathbb{R}^d$, $b: \mathbb{R}^d \to \mathbb{R}^d$

$$
\partial_t u(t, x) + \dot{w}_t \cdot \nabla u(t, x) + b(x) \cdot \nabla u(t, x) = 0, \qquad u(0, \cdot) = u_0.
$$

Non-linear Schrödinger equation: $x \in \mathbb{T}, \mathbb{R}, t \geq 0, w: \mathbb{R} \to \mathbb{R}$

$$
\partial_t \varphi(t, x) = i \Delta \varphi(t, x) \dot{w}_t + i |\varphi(t, x)|^{p-2} \varphi(t, x).
$$

Korteweg–de Vries equation: $x \in \mathbb{T}$, \mathbb{R} , $t \ge 0$, $w: \mathbb{R} \to \mathbb{R}$

$$
\partial_t u(t, x) = \partial_x^3 u(t, x) \dot{w}_t + \partial_x (u(t, x))^2.
$$

Joint work with Remi Catellier and Khalil Chouk.

Consider the linear transport PDE

$$
\partial_t u(t, x) + \dot{w}_t \cdot \nabla u(t, x) = f(x), \qquad u(0, \cdot) = 0.
$$

Solutions are give explicitly by

$$
u(t, x) = \int_0^t f(x + w_s - w_t) ds = T_t^w f(x - w_t)
$$

where given a function $w: [0, 1] \to \mathbb{R}^d$ we define the averaging operator

$$
T_t^w f(x) = \int_0^t f(x + w_s) ds, \qquad T_{t,s}^w f = T_t^w f - T_s^w f
$$

acting on functions (or distributions) $f: \mathbb{R}^d \to \mathbb{R}$.

Question: What is the relation between w, the (space) regularity of f and that of $u(t, \cdot)$?

If w is smooth we do not expect anything special to happen and u to have the same regularity of f .

 \triangleright d=1, $w_t = t$. Then if $F'(x) = f(x)$ we have $T_t^w f(x) = \int_0^t F'(x+s) ds = F(x+t) - F(x)$ and $T^w: L^\infty \to \text{Lip}$:

$$
|T_t^w f(x) - T_t^w f(y)| \le ||f||_{\infty} |x - y|, \qquad |T_{t,s}^w f(x)| \le ||f||_{\infty} |t - s|
$$

 \rhd Tao–Wright: if w "wiggles enough" then T^w_t maps L^q into $L^{q'}$ with $q'>q.$ \triangleright Davie: if w is a sample of BM then a.s. (the exceptional set depends on f)

$$
|T_{t,s}^w f(x) - T_{t,s}^w f(y)| \leq C_w \|f\|_{\infty} |x - y|^{1 - |t - s|^{1/2 - 1}}
$$

Problem: study the mapping properties of T^w for w the sample path of a stochastic process.

Consider

$$
Y_t^w(\xi) = \int_0^t e^{i\langle \xi, w_s \rangle} ds
$$

then $T^w_t f = \mathcal{F}^{-1}(Y^w_t \mathcal{F}(f))$. Mapping properties of T^w in $(H^s)_{s\in\mathbb{R}}$ spaces can be discussed in terms of Y^w :

$$
||T_{t,s}^{w}f||_{H^{s}} = ||(1+\xi^{2})^{s/2}Y_{t,s}^{w}(\xi)\mathcal{F}f(\xi)||_{H_{\xi}^{s}}.
$$

In our setting more convenient to look at the scale $(\mathcal{F}L^{\alpha})_{\alpha}$:

$$
||f||_{\mathcal{F}L^{\alpha}} = \int |f(\xi)| (1+\xi^2)^{\alpha/2} d\xi
$$

since $C^{\alpha} \subset \mathcal{F}L^{\alpha}$.

Definition 1 (Catellier–G.) *We say that* w *is* (ρ, γ)*–irregular if there exists a constant* K such that for all $\xi \in \mathbb{R}^d$ and $0 \le s \le t \le 1$:

 $|Y^w_{t,s}(\xi)| \leqslant K(1+|\xi|)^{-\rho}|t-s|^{\gamma}.$

Theorem 2 *The fBM of Hurst index H is* ρ *-irregular for any* $\rho < 1/2H$.

 \Rightarrow there exists functions of arbitrarily high irregularity and arbitrarily L^{∞} -near any given continuous function.

Lemma 3 *An irregular function cannot be too regular.*

Proof. If $w \in C^{\theta}$ with $\alpha\theta + \gamma > 1$ and $\alpha \in [0,1]$, using the Young integral, we find

$$
|t - s| = |e^{ia}(t - s)| = \left| \int_s^t \underbrace{e^{ia - iaw} \cdot \mathrm{d}_r Y_r^w(a)}_{C^{\alpha\theta}} \right|
$$

$$
\langle CK_w(|t-s|^\gamma+|t-s|^{\alpha\theta+\gamma}|a|^\alpha)||w||_\theta(1+|a|)^{-\rho}\to 0
$$

if $t>s$ and $\alpha < \rho$. This implies that is not possible that $\theta > (1 - \gamma) / \rho$.

 \triangleright Not easy to say if a function is irregular.

 \rhd In $d = 1$ smooth functions are (ρ, γ) irregular for $\rho + \gamma = 1$. In particular if we insist on $\gamma > 1/2$ we have $\rho < 1/2$.

 \triangleright For $d > 1$ smooth functions are not irregular: if $|t - s| \ll 1$

$$
\int_s^t e^{i\langle a, w_r \rangle} dr \simeq \int_s^t e^{i\langle a, w'_s \rangle (t-s)} dr \simeq (1 + |\langle a, w'_s \rangle|)^{-1} \nless (1 + |a|)^{-\rho}.
$$

 \triangleright If w is ρ –irregular and φ is a C^1 perturbation then $w + \varphi$ is at least $\rho - (1 - \gamma)$ irregular since:

$$
Y_{t,s}^{w+\varphi}(\xi) = \int_s^t e^{i\langle \xi, w_r + \varphi_r \rangle} dr = \int_s^t e^{i\langle \xi, \varphi_r \rangle} d_r Y_{s,r}^w(\xi)
$$

and we can use Young integral estimates.

 \triangleright If W is a fBM and Φ an adapted smooth perturbation then $W + \Phi$ is as irregular as W (via Girsanov theorem).

Proof. Indeed

$$
||T_{t,s}^{w}f||_{\mathcal{F}L^{\alpha+\rho}} = \int d\xi (1+|\xi|)^{\alpha+\rho} |Y_{t,s}^{w}(\xi)(\mathcal{F}f)(\xi)|
$$

$$
\leq K_{w}|t-s|^{\gamma} \int d\xi (1+|\xi|)^{\alpha} |(\mathcal{F}f)(\xi)| = K_{w}|t-s|^{\gamma} ||f||_{\mathcal{F}L^{\alpha}}.
$$

Remark 5 More difficult to understand the mapping properties in other spaces, for example Hölder spaces C^{α} . Only partial results available.

 \triangleright Consider the transport equation with a perturbation:

$$
\partial_t u(t, x) + \dot{w}_t \cdot \nabla u(t, x) + b(x) \cdot \nabla u(t, x) = 0, \qquad u(0, \cdot) = u_0.
$$

 \triangleright In the Lipshitz case there is only one solution u given by the method of characteristics:

$$
u(t, x) = u_0(\phi_t^{-1}(x))
$$

where $\phi_t(x) = x_t$ is the flow of the ODE

$$
\begin{cases} \n\dot{x}_t = b(x_t) + \dot{w}_t \\
x_0 = x\n\end{cases}
$$

 \triangleright Uniqueness of solutions is related to the uniqueness (and smothness) theory of the flow.

In order to exploit the averaging properties of w in the study of the ODE

$$
x_t = x_0 + \int_0^t b(x_s)ds + w_t
$$

we rewrite it in order to make the action of the averaging operator explicit: let $\theta_t = x_t - w_t$:

$$
\theta_t = \theta_0 + \int_0^t b(w_s + \theta_s) ds = \theta_0 + \int_0^t (d_s G_s)(\theta_s)
$$

where $G_s(x) = T_s^w b(x)$ so that $d_s G_s(x) = f(w_s + x)$.

If we assume that G is C^{γ} in time $(\gamma > 1/2)$ with values in a space of regular enough functions we can study this equation as a Young type equation for $\theta \in C^{\gamma}$.

 \triangleright Non-linear Young integral:

$$
\int_0^t (\mathrm{d}_s G_s)(\theta_s) = \lim_{\Pi} \sum_i G_{t_{i+1}, t_i}(\theta_{t_i})
$$

This limit exists if $\theta \in C_t^{\gamma}$ and $G \in C_t^{\gamma} C_x^{\nu}$ with $\gamma(1+\nu) > 1$. The integral is in C_t^{γ} .

Theorem 6 *The integral equation*

$$
\theta_t = \theta_0 + \int_0^t \left(\mathrm{d}_s G_s \right) (\theta_s)
$$

is well defined for $\theta \in C^{\gamma}$ *and* $G \in C^{\gamma}_t C^{\nu}_{x, loc}$ *with* $(1 + \nu)\gamma > 1$ *.*

- *Existence of global solutions if* G *of linear growth.*
- Uniqueness if $G \in C^{\gamma}_t C^{\nu+1}_{x,\,{\rm loc}}$ and differentiable flow.
- *Smooth flow if* $G \in C^{\gamma}_t C^{\nu+k}_x$ *.*

Theorem 7 *The equation*

$$
x_t = x_0 + \int_0^t b(x_s)ds + w_t
$$

has a unique solution for w ρ –irregular and $b \in FL^{\alpha}$ for $\alpha > 1 - \rho$. In this case we can take $\theta\in C^1$ above and the condition for uniqueness (and Lipshitz flow) is $G\in C^{\gamma}_t C^{3/2}_x.$

 \triangleright Say that x is controlled by w if $\theta = x - w \in C^{\gamma}$. In this case we have

$$
I_x(b) = \int_0^t b(x_s)ds = \int_0^t (d_s T_s^w b)(\theta_s)
$$

and the r.h.s. is well defined as soon as $T^w b \in C^{\gamma}_t C^{\nu}_x$.

 \triangleright If w is ρ irregular and $b \in \mathcal{F}L^\alpha$ then $T^w b \in C^\gamma_t \mathcal{F}L^{\alpha+\rho}_x$ so if $\alpha + \rho \geqslant \nu$ we have $T^w b \in C^\gamma_t C^\nu_x$. In this case $I_x(b)$ can be extended by continuity to all $b \in \mathcal{F}L^\alpha$ and in particular we have given a meaning to

$$
\int_0^t b(x_s) \mathrm{d} s
$$

when b is a distribution *provided* x is controlled by a ρ -irregular path.

 \triangleright For controlled paths the ODE

$$
x_t = x_0 + \int_0^t b(x_s)ds + w_t
$$

make sense even for certain distributions b as a Young equation for θ .

Regularization of ODEs at a glance

(joint work with R. Catellier)

We want to give a meaning and study the uniqueness issue for the transport equation

 $(\partial_t + b(x) \cdot \nabla + \dot{w}_t \cdot \nabla) u(t, x) = 0$

for $u \in L^{\infty}$ and $w \in C^{\sigma}$ with $\sigma > 1/3$ such that (w, W) is a geometric σ -Hölder rough path such that w is ρ -irregular. For the moment only in the case $div b = 0$.

 \triangleright Weak formulation: We consider u as a distribution: $u_t(\varphi) = \int dx \varphi(x) u(t, x)$ for all $\varphi \in L^1(\mathbb{R}^d)$. The integral formulation of the equation is

$$
u_t(\varphi) - u_s(\varphi) = \int_s^t u_r(\nabla \cdot (b\varphi)) dr + \int_s^t u_r(\nabla \varphi) d_r w_r
$$

for all $\varphi \in \mathcal{S}(\mathbb{R}^d)$ and $0 \leq s \leq t$.

We need to give a meaning to such an integral equation in order to discuss the regularization by noise phenomenon. (No way out!)

 \triangleright It is possible via the theory of **controlled rough paths** (G. JFA 2004).

Let (X, X) be a σ -Hölder rough path with $\sigma > 1/3$:

 $\mathbb{X}_{t,s} = \mathbb{X}_{t,u} + \mathbb{X}_{u,s} + (X_t - X_u) \otimes (X_u - X_s), \qquad |X_t - X_s| + |\mathbb{X}_{s,t}|^{1/2} = O(|t-s|^\sigma)$

 \triangleright We say that $y\in C^{\sigma}_t$ is controlled by \boldsymbol{X} if there exists $y^X\in C^{\sigma}_t$ such that

$$
y_t - y_s - y_s^X(X_t - X_s) =: y_{s,t}^{\sharp} = O(|t - s|^{2\sigma}).
$$

 \triangleright For a controlled path y we can define the integral against X by compensated Riemman sums:

$$
I_{t} = \int_{0}^{t} y_{s} dX_{s} : = \lim_{\Pi} \sum_{i} y_{t_{i}} (X_{t_{i+1}} - X_{t_{i}}) + y_{t_{i}}^{X} \mathbb{X}_{t_{i+1}, t_{i}}
$$

 \triangleright This integral is the only function (up to constants) which has the following property

$$
I_t - I_s = y_s(X_t - X_s) + y_s^X \mathbb{X}_{t,s} + O(|t - s|^{3\sigma}).
$$

In particular, the integral is itself controlled by X and $I^X = y$.

Definition 8 We say that u is a function controlled by w if for all $\varphi \in \mathcal{S}(\mathbb{R}^d)$ we have

$$
u_t(\varphi) - u_s(\varphi) = u_s^w(\varphi)(w_t - w_s) + u_{t,s}^{\sharp}(\varphi)
$$

where $u^{w}(\varphi) \in C^{\sigma}$ and $|u^{\sharp}_{t,s}(\varphi)| \lesssim |t-s|^{2\sigma}$.

Definition 9 *If* u *is controlled we say that it is a* L[∞] *solution of the rough transport equation (RTE) if*

$$
u_t(\varphi) - u_s(\varphi) = \int_s^t u_r(\nabla \cdot (b\varphi)) dr + \int_s^t u_r(\nabla \varphi) d_r w_r
$$

holds for all $\varphi \in \mathcal{S}(\mathbb{R}^d)$, $0 \leqslant s \leqslant t$.

Remark: If $\sigma > 1/2$ we can just assume that $u_t(\nabla \varphi) \in C_t^{\sigma}$ so that the rough integral becomes a Young integral.

Equivalently, u is a solution to the RTE iff

$$
u_t(\varphi) - u_s(\varphi) = \int_s^t u_r(\nabla \cdot (b\varphi))dr + u_s(\nabla \varphi)(w_t - w_s) + u_s(\nabla^2 \varphi)W_{t,s} + O(|t - s|^{3\sigma})
$$

Lemma 10 If *b* is Lipshitz there exists a solution to the RTE given by $u(t,x) = u_0(\phi_t^{-1}(x))$.

Proof. The proof proceed by approximation of (w, W) by $(w^{\varepsilon}, W^{\varepsilon})$ and by stability of the flow. Let ϕ^{ε} be the approximate flow, then $u_t^{\varepsilon}(\varphi) = \int_{\mathbb{R}^d} u_0(\phi_t^{\varepsilon,-1}(x)) \varphi(x) dx =$
 $\int_{-\infty}^{\infty} u_0(x) \varphi(\phi_t^{\varepsilon}(y)) dy$. Taylor expansion gives $_{\mathbb{R}^{\text{d}}}u_{0}(x)\varphi(\phi^{\varepsilon}_{t}(y))\text{d}y.$ Taylor expansion gives

$$
\varphi(\phi_t^\varepsilon(y)) = \varphi(\phi_s^\varepsilon(y)) + \int_s^t \nabla \varphi(\phi_r^\varepsilon(y)) b(\phi_r^\varepsilon(y)) \mathrm{d} r + \nabla \varphi(\phi_s^\varepsilon(y)) (w_t^\varepsilon - w_s^\varepsilon) + O_\varphi(|t-s|^{2\sigma})
$$

That is $u_t^\varepsilon(\varphi)=u_s^\varepsilon(\varphi)+u_s^\varepsilon(\nabla\varphi)(w_t^\varepsilon-w_s^\varepsilon)+O_\varphi(|t-s|^{2\sigma})$. By weak compactness it is possible to pass to the limit (along a subsequence) in this equation and obtain a controlled path $u = \lim_{\varepsilon_k} u_{\varepsilon_k}$.

Uniqueness is proven by showing via a direct computation that

$$
t \mapsto \int_{\mathbb{R}^d} u(t, \phi_t(x)) \rho(x) dx = u_t(\rho \circ \phi_t^{-1})
$$

is a constant function of t for all $\rho \in \mathcal{S}(\mathbb{R}^d)$. This implies that $u(t, \phi_t(x)) = u_0(x)$. Uniqueness depends only on the Lipschitz property of the flow.

Theorem 11 Let $b \in FL^{\alpha}$ for $\alpha > 0$ and $\alpha + \rho > 3/2$ and let w be ρ -irregular. Then there *exists a unique solution to the RTE given by the method of characteristics.*

Proof. Approximate b by b_{ε} , then by the previous theorem there exists a unique solution u_{ε} to the RTE. Analysis of the approximate flow ϕ_{ε} shows that this solution converges to a controlled solution u of the RTE with vectorfield b. Since ϕ is Lipschitz we can prove again uniqueness. \square

Remark 12 The above result is path-wise. In particular b can depend on w .

Remark 13 If $b \in C^{\alpha}$, b deterministic and w is a fBm of Hurst index H then the uniqueness holds almost surely when $\alpha > 1-1/(2H)$ and $\alpha > 0$. This recovers the results of Flandoli– Gubinelli–Priola for the Brownian case but extend them well beyond the Brownian context.

(joint work with K. Chouk)

Two simple dispersive models with ρ -irregular modulation w :

Non-linear Schödinger equation: $x \in \mathbb{T}, \mathbb{R}, \mathbb{R}^2, t \geq 0$

 $\partial_t \varphi(t,x) = i \Delta \varphi(t,x) \partial_t w_t + i |\varphi(t,x)|^{p-2} \varphi(t,x).$

Korteweg–de Vries equation: $x \in \mathbb{T}, \mathbb{R}, t \geq 0$

$$
\partial_t u(t,x) = \partial_x^3 u(t,x) \partial_t w_t + \partial_x (u(t,x))^2.
$$

To be compared to the non-modulated setting where $\partial_t w_t = 1$ and studied in the scale of $(H^s)_{s}$ spaces.

The equations are understood in the mild formulation

$$
u(t) = \mathcal{U}_t^w u(0) + \int_0^t \mathcal{U}_t^w (\mathcal{U}_s^w)^{-1} \partial_x (u(s))^2 ds.
$$

with $\mathcal{U}^w_t\!=\!e^{i w_t\partial_x^3}.$ (similarly for NLS). Here w can be an arbitrary continuous function.

Rewrite the mild formulation as $(\mathcal{U}^w_t = e^{\partial_x^3 w_t})$

$$
v(t) = (\mathcal{U}_t^w)^{-1} u(t) = u(0) + \int_0^t (\mathcal{U}_s^w)^{-1} \partial_x (\mathcal{U}_s^w v(s))^2 ds.
$$

Theorem 14 *Let*

$$
X_t(\varphi) = X_t(\varphi, \varphi) = \int_0^t (\mathcal{U}_s^w)^{-1} \partial_x (\mathcal{U}_s^w \varphi)^2 ds
$$

If w *is* ρ *irregular then* $X \in C^{\gamma}$ *L*ip_{loc}(H^{α}) *for* $\alpha > -\rho$ *and* $\rho > 3/4$ *.*

For $v \in C^{\gamma}H^{\alpha}$ we can give a meaning to the non–linearity as a Young integral

$$
\int_0^t (\mathcal{U}_s^w)^{-1} \partial_x (\mathcal{U}_s^w v(s))^2 ds := \int_0^t (d_s X_s)(v(s)) := \lim_{\Pi} \sum_i X_{t_{i+1}}(v(t_i)) - X_{t_i}(v(t_i))
$$

The continuity of the Young integral implies that if $v_n \to v$ in $C^{\gamma}H^{\alpha}$ then

$$
\int_0^t (\mathcal{U}_s^w)^{-1} \partial_x (\mathcal{U}_s^w v(s))^2 ds = \lim_n \int_0^t (\mathcal{U}_s^w)^{-1} \partial_x (\mathcal{U}_s^w v_n(s))^2 ds
$$

Theorem 15 *The Young equation for* $v \in C^{\gamma}H^{\alpha}$ *:*

$$
v(t) = u(0) + \int_0^t (d_s X_s)(v(s))
$$

has local solutions for initial conditions in H^α *with locally Lipshitz flow. Uniqueness in* $C^{\gamma}H^{\alpha}$ *.*

Equivalent "differential" formulation:

$$
v(t) - v(s) = X_{t,s}(v(s)) + O(|t - s|^{2\gamma}), \qquad v(0) = u_0
$$

Regularization by modulation. In the non-modulated case it is known that there cannot be continous flow for $\alpha \leqslant -1/2$ on $\mathbb T$ and $\alpha \leqslant -3/4$ on $\mathbb R$.

 \triangleright Global solutions thanks to the L^2 conservation and smoothing for $\alpha > 0$ or an adaptation of the I-method for $-3/2 \le \alpha < 0$ and $\alpha > -\rho/(3-2\gamma)$.

 \triangleright NLS: 1d, global solutions for $\alpha \geqslant 0$ and $\rho > 1/2$. 2d, local solutions for $\alpha \geqslant 1/2$.

 \triangleright Global solutions for 1d NLS with $\alpha > 0$ come from a smoothing effect of the non–linearity which is due to the irregularity of the driving function.

A different line of attack to the modulated Schrödinger equation comes from the application of the following Strichartz type estimate which can be proved under the same ρ -irregularity assumption.

Theorem ${\bf 16}$ Let $T>0$, $p\in (2,5]$, $\rho>\min{(\frac{3}{2}-\frac{2}{p},1)}$ then there exists a finite constant $C_{w,T} > 0$ and $\gamma^*(p) > 0$ such that the following inequality holds: $\begin{matrix} \end{matrix}$ $\frac{1}{2}$ $\frac{1}{2}$ \vert $\begin{matrix} \end{matrix}$ \parallel \parallel \vert !
! $\overline{0}$. $U_\cdot (U_s)^{-1} \, \psi_s \, d\, s$ $\begin{matrix} \end{matrix}$ \parallel \parallel \vert $\overline{}$ $\overline{}$ $\overline{}$ $|_{L^p([0,T],L^{2p}(\mathbb{R}))}$ $\leq C_w T^{\gamma^*(p)} || \psi ||_{L^1([0,T],L^2(\mathbb{R}))}$ *for all* $\psi \in L^1([0, T], L^2(\mathbb{R}))$.

 \triangleright In the deterministic case the Strichartz estimate does not have the factor of T in the critical case $p = 5$. This is a sign of a mild regularization effect of the noise.

As an application we obtain global well-posedness for the modulated NLS equation with generic power nonlinearity $i\,e{:}\,\mathcal{N}(\phi)\!=\!|\phi|^\mu\,\phi$: (Debussche–de Bouard, Debussche–Tsutsumi)

Theorem 17 Let $\mu \in (1,4]$, $p = \mu + 1$, $\rho > \min{(1,3/2-\frac{2}{p})}$ and $u^0 \in L^2(\mathbb{R})$ then there *exists* $T^* > 0$ *and a unique* $u \in L^p([0, T], L^{2p}(\mathbb{R}))$ *such that the following equality holds:*

$$
u_t = U_t u^0 + i \int_0^t U_t (U_s)^{-1} (|u_s|^\mu u_s) \, ds
$$

for all $t \in [0, T^{\star}]$ *. Moreover we have that* $||u_t||_{L^2(\mathbb{R})} = ||u_0||_{L^2(\mathbb{R})}$ *and then we have a global unique solution* $u \in L_{loc}^{p}([0,+\infty), L^{2p}(\mathbb{R}))$ *and* $u \in C([0,+\infty), L^{2}(\mathbb{R}))$ *. If* $u^{0} \in H^{1}(\mathbb{R})$ *then* $u \in C([0,\infty), H^1(\mathbb{R}))$.

Thanks.