The regularising effects

of irregular functions

Massimiliano Gubinelli — Université Paris Dauphine.

Kyoto University, October 2014.



> We will discuss some examples of the "good" effects of "very bad", "irregular" functions.

> In particular we will look at non-linear differential (partial or ordinary) equations perturbed
by some kind of (deterministic) noise.

> By defining a suitable notion of "irregular" noise we are able to show, in a quantitative
way, that the more the noise is irregular the more the properties of the equation are better.

> Some examples includes: ODE perturbed by additive noise, linear stochastic transport
equations and non-linear modulated dispersive PDEs.

> It is possible to show that the sample paths of Brownian motion or fractional Brownian
motion and related processes have almost surely this kind of irregularity.



The models

Addition of noise has positive effects on the theory of the equation (in some pathwise sense)
— ODEs:

t
Xi=x +/ b(Xs)ds + W;
0

where (W;) is a BM in R? and b a less-than-Lipshitz vectorfield. Many results: Vereten-
nikov, Davie, Krylov-Réckner, Flandoli, Attanasio, Fedrizzi, Proske, ... Essentially:
bounded b: (in L°° or with some particular integrability: LPS condition).

— Transport equation:
dyu(t, x) + b(x) - Vu(t, z)dt = Vu(t,z) - dW,
good theory for L°° solutions and preservation of regularity. Flandoli-G.—Priola, Flandoli-
Attanasio, Flandoli-Maurelli, Flandoli-Beck—G.—Maurelli
—  Some other PDE: Vlasov—Poisson, point vortices in 2d.

—  Modulated non-linear Schrodinger equation in d =1. De Bouard—Debussche, Debussche—
Tsutsumi.



Regularisation of PDEs

Goal: provide a deterministic framework to discuss regularization by “perturbations/modula-
tion” for the following model PDEs:

e Transport equation: z ¢ R?, t >0, w: R — R%, b: RY— R4
Owu(t, z) +we- Vu(t,z) +b(x) - Vu(t,x) =0, u(0, ) = up.
e Non-linear Schrédinger equation: € T R, t >0, w: R — R
Opp(t,x) =iDp(t, x)iy +ilp(t, z)[P~2p(t, ).
e Korteweg—de Vries equation: x ¢ T, R, t >0, w: R — R

Owu(t, z) = O3u(t, o)y + Ox(u(t, )2

Joint work with Remi Catellier and Khalil Chouk.



A model problem

Consider the linear transport PDE
Ou(t, x) + we- Vu(t,z) = f(x), u(0,-)=0.

Solutions are give explicitly by
t
u(t, ) :/ flr+ws —wy)ds =T f(x — wy)
0

where given a function w: [0, 1] — R? we define the averaging operator

T f (x) = /O flotw)ds,  TPf=TPf — T

acting on functions (or distributions) f: R?— IR.
Question: What is the relation between w, the (space) regularity of f and that of w(t,-)?

If w is smooth we do not expect anything special to happen and u to have the same regularity

of f.



The averaging operator

>d=1,ws=t. Thenif F'(z)= f(x) we have T}" f fo "(z+s)ds=F(x+t)— F(x)
and T'": L°° — Lip:

T2 f () =T ()l < | f lloo]z — 9

~

T ()] <1 flloolt — s

> Tao—Wright: if w “wiggles enough” then T} maps L? into L9 with ¢’ > q.

> Davie: if w is a sample of BM then a.s. (the exceptional set depends on f)
T f () = T f ()] < Cuwll f ool =yl [t = s]1/2~

Problem: study the mapping properties of 1™ for w the sample path of a stochastic process.



Irregular functions

Consider

then 71" f = F~Y(Y*F(f)). Mapping properties of 7" in (H*),cR spaces can be discussed
in terms of Y'":

|7 e = (| (1 + €)*2Y (O FF ()]

In our setting more convenient to look at the scale (FL%), :

1f lrze = / F(O1(1+ €2)°/2de

since C'“ C FL.

We say that w is (p, ~v)—irregular if there exists a constant
K such that for all ¢ € R? and 0 <s<t<1:

Y (I < K(1+ €))7t — s]7.



Where we find irregularity?

QLI WA The fBM of Hurst index H is p—irregular for any p <1/2H.

= there exists functions of arbitrarily high irregularity and arbitrarily L°°-near any given
continuous function.

NIGTOEWCR An irregular function cannot be too regular.

Proof. If wc C? with afl +~v>1 and o €0, 1], using the Young integral, we find

t
yt—sy:yew(t—s)y:/ gia—iawn y(g)

SO Ky ([t = s+ [t = s[*]a|*)[wllo(1 +|a])7*—0

if t>s and o< p. This implies that is not possible that 6 > (1 — )/ p.



Facts about irregularity

> Not easy to say if a function is irregular.

> In d =1 smooth functions are (p, ) irregular for p + v = 1. In particular if we insist on
v>1/2 we have p<1/2.

> For d > 1 smooth functions are not irregular: if |t —s| <1

t t
/€i<a,wr>drg/ €i<a,w;>(t—8)dr2(1+\(a,w@\)_l%(lﬂab_p-

> If w is p—irregular and ¢ is a C'! perturbation then w + ¢ is at least p — (1 — ) irregular
since:

t

t
Yt’i";r@(é-):/ ei<£,wr+s0r>d7a:/ €i<€’%>dq~Y;fT(€)

S

and we can use Young integral estimates.

> If W is a fBM and ® an adapted smooth perturbation then W + ® is as irregular as W
(via Girsanov theorem).



Irregularity, what for?

If w is p—irregular then
TV: HS— H3*P
and

TY: FL& — FLoTP,
Proof. Indeed

\ T f g = / A€ (14 1) 2|V (E) (FF ()

<Kwrt—sw/ A€ (14 €D (FAE) = Kt — 57| £ | 710

m More difficult to understand the mapping properties in other spaces, for example
Holder spaces C'*. Only partial results available.



Transport equation

> Consider the transport equation with a perturbation:
Opu(t, x) +we- Vu(t,z) +b(z) - Vu(t,z) =0, u(0, ) = up.
> In the Lipshitz case there is only one solution u given by the method of characteristics:
u(t, ) =uo(¢y ' (2))
where ¢;(x) =z, is the flow of the ODE

{ it = b(LCt) —+ ’lbt

To—X

> Uniqueness of solutions is related to the uniqueness (and smothness) theory of the flow.



ODEs and the averaging operator

In order to exploit the averaging properties of w in the study of the ODE

t
Ty =To+ / b(xs)ds + wy
0

we rewrite it in order to make the action of the averaging operator explicit: let 0, = x; — wy:

t t
0, = Oy + / b(ws + 0,)ds = Oy + / (d,G)(0)
0 0
where G () =T"b(z) so that d;Gs(x) = f(ws+ x).

If we assume that G is C'7 in time (7 >1/2) with values in a space of regular enough functions
we can study this equation as a Young type equation for 6 € C7.

> Non-linear Young integral:

t
|| @GO =1m > Gua 0

This limit exists if 6 € C,' and G € C/CY with (14 ) > 1. The integral is in C}'.



Young equations

The integral equation

0,=00+ /0 (4G (0)

is well defined for 6 € C" and G € C'CY 1, with (1+v)y > 1.
e Existence of global solutions if GG of linear growth.
e Uniqueness if G € C]C% 1. and differentiable flow.

x,loc

e Smooth flow if GecCJCYT".

The equation

'
Ty= o+ / b(xs)ds + wy
0

has a unique solution for w p—irregular and b € FL™ for « > 1 — p. In this case we can take
0 € C' above and the condition for uniqueness (and Lipshitz flow) is G € C]Ci/z.



Distributional vectorfields

> Say that z is controlled by w if 0 =2 —w e C7. In this case we have

L= | " b(s)ds = / (dT)(6,)

and the r.h.s. is well defined as soon as T"b € C,'CY.

> If wis p irregular and b€ FL then T*bc C)FLS " so if a+ p>v we have T"b e C]CY.

In this case I..(b) can be extended by continuity to all b€ FL® and in particular we have given

a meaning to
t
/ b(zs)ds
0

when b is a distribution provided x is controlled by a p-irregular path.

> For controlled paths the ODE
t
Ty =10+ / b(xs)ds + wy
0

make sense even for certain distributions b as a Young equation for 0.



Regularization of ODEs at a glance

Q. C' functions
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Transport equations driven by irregular paths

(joint work with R. Catellier)

We want to give a meaning and study the uniqueness issue for the transport equation
(Or+b(x) -V +w-V)u(t,z) =0

for u e L>° and w € C'7 with ¢ >1/3 such that (w, W) is a geometric o-Hdlder rough path
such that w is p-irregular. For the moment only in the case divb=0.

> Weak formulation: We consider u as a distribution: u:(¢) = [ dze(x) u(t, z) for all
¢ € LY(RY). The integral formulation of the equation is

(o) —us() = (V- (bg))dr + / ur (V)

for all ¢ € S(RY) and 0 < s <.

We need to give a meaning to such an integral equation in order to discuss the regularization
by noise phenomenon. (No way out!)

> It is possible via the theory of controlled rough paths (G. JFA 2004).



Integration of controlled paths

Let (X, X) be a o-Holder rough path with o >1/3:
X, = Xput Koo + (X = Xo) @ (X = Xo), | Xe = X | +1X,o| 2= O(Jt — 5]%)
> We say that y € Cf is controlled by X if there exists y* € Cf such that
Y —ys — Yo (Xe — Xo) =1 ¢k , = O(|t — 5]>7).

> For a controlled path y we can define the integral against X by compensated Riemman
sums:

t
1 X
It — /0 ySdXS . _hg[n EZ: yti<th‘+1 _ th‘) + Y, th‘+17ti

> This integral is the only function (up to constants) which has the following property
I — I = yo(Xy — XJ) + y XX, o+ O(|t — 5.

In particular, the integral is itself controlled by X and ¥ = .



Rough solutions to the transport equation

DIMNAIEN Ve say that u is a function controlled by w if for all ¢ € S(RY) we have
ue(p) — us(p) = ul () (wy — ws) +uf ()

where u* () € C and |uf ()| S|t —s|?.

Y

DI TIAl T N /f 1 is controlled we say that it is a L°° solution of the rough transport equation
(RTE) if

()= usli)= [ (V- (bip))dr + / " (Ve)dy,

holds for all p € S(RY), 0<s<¢t.

Remark: If 0 >1 /2 we can just assume that u;(V¢) € Cf so that the rough integral becomes
a Young integral.

Equivalently, u is a solution to the RTE iff

ut(p) —us(p) = /t ur(V - (bp))dr +us(Vp) (we — ws) + u8<v2¢>wt,s +O(Jt - 5’30>



RTE for Lipshitz vectorfields

If b is Lipshitz there exists a solution to the RTE given by u(t,x) =uqo(®; '(x)).

Proof. The proof proceed by approximation of (w, W) by (w®, W¢) and by stability of
the flow. Let ¢° be the approximate flow, then ui(yp) = [, uo( 95 H(z) ) p(z)dr =
| ga uo(@)p(¢5(y))dy. Taylor expansion gives

p(9i(y)) = ¢(d5(y)) + /t Vo(or(y)b(dn(y))dr + V(d5(y)) (wi —ws) + Oy ([t — s]*7)

That is uf (@) = uS(p) + ui(Ve)(wi — ws) + O,(|t — s[*7). By weak compactness it is
possible to pass to the limit (along a subsequence) in this equation and obtain a controlled
path v =lim., u,,.

Uniqueness is proven by showing via a direct computation that

ts | u(t, du(@)p(z)dz =u(po ¢ )
Rd

is a constant function of ¢ for all p € S(IR?). This implies that u(t, ¢;(x)) = ug(x). Uniqueness
depends only on the Lipschitz property of the flow.



Regularisation for RTE

LI WBN Lt bc FLY for o >0 and oo+ p >3 /2 and let w be p-irregular. Then there
exists a unique solution to the RTE given by the method of characteristics.

Proof. Approximate b by b, then by the previous theorem there exists a unique solution .
to the RTE. Analysis of the approximate flow ¢. shows that this solution converges to a
controlled solution u of the RTE with vectorfield 6. Since ¢ is Lipschitz we can prove again

uniqueness. [

N FT WA The above result is path-wise. In particular b can depend on w.

NEOEL @R If b CY, b deterministic and w is a fBm of Hurst index H then the uniqueness

holds almost surely when o >1—1/(2H) and a > 0. This recovers the results of Flandoli—
Gubinelli—-Priola for the Brownian case but extend them well beyond the Brownian context.



Dispersive equations modulated by irregular signals

(joint work with K. Chouk)
Two simple dispersive models with p-irregular modulation w:

e Non-linear Schédinger equation: z € T, R, IR?, t >0
Opo(t, x) =iAp(t, x)0wws +i|o(t, z)|P~2p(t, z).
e Korteweg—de Vries equation: xt € T, R, t >0
Owu(t, ) = 03u(t, x)Ow; + Op(ult, )2

To be compared to the non-modulated setting where 0;w; = 1 and studied in the scale of
(H?®)s spaces.

The equations are understood in the mild formulation
t
w(t) = Uu(0) + / UPU)~10, (u(s))2ds.
0

with YUY = w9z (similarly for NLS). Here w can be an arbitrary continuous function.
t y y



Young formulation of KdV

Rewrite the mild formulation as (14" = e%=)
t
v(t) = (U") " tu(t) = u(0) +/ UL 10, (UYPv(s))?ds.
0

Theorem 14 gK=s

Xi(p) = Xi(, 9) —/Ot (UL) 10 (U p)?ds

If w is p irregular then X € C'7 Lipjo.(H®) for a > —p and p >3 /4.

For v € C7H® we can give a meaning to the non-linearity as a Young integral
t t
| @) onuu) s = [ (@aX) @) =lim Y X, (0(t) = X 0(t)
The continuity of the Young integral implies that if v,, — v in CYH® then

/ UP) 10, (UPv(s))2ds = lim / (UP) 10, (U v, (5))2ds
0 n 0



Young equation and well-posedness
LGN The Young equation for ve CTH® :

o) =u(0)+ (dX)(0(s))

has local solutions for initial conditions in H® with locally Lipshitz flow. Uniqueness in
C7H®.

> Equivalent “differential” formulation:

v(t) —v(s) =Xis(v(s)) +O(|t = s*7),  v(0)=wug

Regularization by modulation. In the non-modulated case it is known that there cannot
be continous flow for « <—1/2 on T and o< —3/4 on R.

> Global solutions thanks to the L? conservation and smoothing for oz > 0 or an adaptation
of the I-method for —3/2<a<0and a>—p/(3 —27).

> NLS: 1d, global solutions for « >0 and p >1/2. 2d, local solutions for o> 1/2.

> Global solutions for 1d NLS with o > 0 come from a smoothing effect of the non—linearity
which is due to the irregularity of the driving function.



Strichartz estimates

A different line of attack to the modulated Schrédinger equation comes from the application

of the following Strichartz type estimate which can be proved under the same p-irregularity
assumption.

LILECICTEY Let 7> 0, p € (2,5],p > min (% - %, 1) then there exists a finite constant

Cyw.7>0 and v*(p) > 0 such that the following inequality holds:

for all ¢ € L1([0,T], L*(R)).

/' U (U;)~! e d s

0

<Co TP Y || 110,11, 22®R))
L?([0,T],L??(R))

> In the deterministic case the Strichartz estimate does not have the factor of 7" in the
critical case p=>5. This is a sign of a mild regularization effect of the noise.



Application of Strichartz estimates

As an application we obtain global well-posedness for the modulated NLS equation with
generic power nonlinearity i e: N'(¢) = |¢|* ¢: (Debussche—de Bouard, Debussche—Tsutsumi)

LIl Let pc(1,4], p=p+1, p>min(1,3/2 — %) and u” € L*(R) then there
exists T* >0 and a unique v € LP([0,T], L°?(R)) such that the following equality holds:

t
ut:Utuo—i—i/ UU.) = (Jua|#us) d s
0

for all t € [0,’T]. Moreover we have that || u;||r2(r)= || uo||L2(r) and then we have a global
unique solution u € LY, ([0, +00), L*?(R)) and u € C([0,+00), L*(R)). If u® € HY(R) then

loc

u e C([0,00), H(R)).



Thanks.



