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what is stochastic analysis?



analysis

Data aequatione quotcunque fluentes quantitates involvente, fluxiones invenire; et vice versa (Newton)

[Given an equation involving any number of fluent quantities to find the fluxions, and vice versa]



diffusion processes

The word “random” comes from a French hunting term: “randon” designates
the erratic course of the deer which zigzags trying to escape the dogs. The
word also gave “randonnée” (hiking) in French.



Ito's brillant idea

Ito arrived to his calculus while trying to understand Feller's theory of diffusions an
evolution in the space of probability measures and he introduced stochastic differ-
ential equations to define a map (the Itô map) which send Wiener measure to the
law of a diffusion.
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Itô's original paper

(Japanese version 1942, M.A.M.S. 1951)





H. Föllmer, “On Kiyosi Itô's Work and its Impact” (Gauss prize laudatio 2006)

In 1987 Kiyosi Itô received theWolf Prize in Mathematics. The laudatio states that “he
has given us a full understanding of the infinitesimal development of Markov sample
paths. This may be viewed as Newton's law in the stochastic realm, providing a
direct translation between the governing partial differential equation and the under-
lying probabilistic mechanism. Its main ingredient is the differential and integral
calculus of functions of Brownian motion. The resulting theory is a cornerstone of
modern probability, both pure and applied”.

The reference toNewton stresses the fundamental character of Itô's contribution to
the theory of Markov processes.
Let us also mention Leibniz in order to emphasize the fundamental importance of
Itô's work from another point of view. In fact Itô's approach can be seen as a nat-
ural extension of Leibniz's algorithmic formulation of the differential calculus. In a
manuscript written in 1675 Leibniz argues that the whole differential calculus can be
developed out of the basic product rule d(XY)=XdY+YdX and he writes:
“Quod theorema sane memorabile omnibus curvis commune est”.



But when Kiyosi Itô came to Princeton in 1954, at that time a stronghold of prob-
ability theory with William Feller as the central figure, his new approach to diffusion
theory did not attract much attention. Feller was mainly interested in the general
structure of one-dimensional diffusions with local generator

F= d
dm

d
ds

motivated by his intuition that a “one-dimensional diffusion traveler makes a trip in
accor- dance with the road map indicated by the scale function s and with the speed
indicated by the measure m” [ . . . ]



The first systematic exposition in Germany was the book Stochastische Differen-
tialgleichungen [2] by Ludwig Arnold, with the motion of satellites as a prime
example. It was based on seminars and lectures at the Technical University Stut-
tgart which he was urged to give by his colleagues in Engineering.

In the seventies the relevance of Itô's work was also recognized in physics and
in particular in quantum field theory. When I came to ETH Zurich in 1977, Barry
Simon gave a series of lectures for Swiss physicists on path integral techniques
which included the construction of Itô's integral for Brownian motion, an introduc-
tion to stochastic calculus, and applications to Schrödinger operators with magnetic
fields; see chapter V in [45]. When Kiyosi Itô was awarded a honorary degree by
ETH Zurich in 1987, this was in fact due to a joint initiative of mathematicians and
physicists.



stochastic analysis today

[...] there now exists a reasonably well-defined amalgam of probabilistic
and analytic ideas and techniques that, at least among the cognoscenti,
are easily recognized as stochastic analysis. Nonetheless, the term
continues to defy a precise definition, and an understanding of it is
best acquired by way of examples.
[D. Stroock, “Elements of stochastic calculus and analysis ”, Springer, 2018]

Nowadays: Ito integral, Ito formula, stochastic differential equations, Girsanov's formula,
Doob's transform, stochastic flows, Tanaka formula, local times, Malliavin calculus, Skorokhod
integral, white noise analysis, martingale problems, rough path theory. . .



analysis vs. stochastic analysis

Newton's calculus Ito's calculus

planet orbit object Markov diffusion

(x,y)∈𝒪⊆ℝ2 global description Pt(x,dy)

α(x−x0)2 +β(y−y0)2 =γ . Pt+s(x, dy)=∫Ps(x, dz)Pt(z,dy)

t change parameter t

x(t+δt)≈x(t)+aδt+o(δt) local description Pδt(x, dy)≈ e− (y−x−b(x)δt)a(x)−1(y−x−b(x)δt)
2δt

dy
Zx(δt)d/2

at+bt2 + ⋅⋅ ⋅ building block (Wt)t

(ẍ(t), ÿ(t))=F(x(t),y(t)) local/global link dXt =a(Xt)dWt+b(Xt)dt

⊳ other examples: rough paths, regularity structures, SLE, . . .



SLE

[Kennedy, Tom. `Numerical Computations for the Schramm-Loewner Evolution'. JSP 137 (2009) 10.1007/s10955-009-9866-2]



sewing lemma: controlled paths & regularity structures

integration of a germ A:[0,T]2 →ℝ ⋅ when can we have

A(s, t)=y(t)−y(s)+O(|t− s|ζ), 0⩽ s⩽ t⩽T

for some y: [0,T]→ ℝ? ⋅ unique for ζ > 1 ⋅ sufficient condition: coherence of A for
ζ>1

A(s, t)=A(s,u)+A(u, t)+O(|t− s|ζ), 0⩽ s⩽u⩽ t⩽T



two-parameter stochastic calculus
Hajek, Bruce. `Stochastic Equations of Hyperbolic Type and a Two-Parameter Stratonovich Calculus'. Ann. Prob. 10 (1982): 451–63.
Norris, J.R. `Twisted Sheets'. Jour. Func. Anal. 132 (1995): 273–334. 10.1006/jfan.1995.1107.



Euclidean quantum fields

conceptually: stationary Markovian d dimensional fields / Gibbsian stochastic fields
prob. measures ν on 𝒮′(ℝd) . (Feynman–Kac) path integral formalism

ν(dφ)≈ e−S(φ)

Z 𝒟φ≈ e−∫
ℝdV(φ(x))dx

Z′ μ(dφ), μ(dφ)≈ e−S0(φ)

Z 𝒟φ
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heuristic description . large scale & small scale problems . renormalization

they are natural probabilistic objects



stochastic equations for EQFTs

Gaussian free field μ : 𝔼[φ(x)φ(y)]=(m2 −Δ)−1(x−y) . ξ white noise

❶ “Gaussian map”:

φ(x)=(m2 −Δ)−1/2ξ(x), (m2 −Δ)φ(x)=(m2 −Δ)1/2ξ(x), x∈ℝd

❶ Stochastic mechanics (Nelson):

∂x0φ(x0, x̄)=−(m2 −Δ x̄)1/2φ(x0, x̄)+ξ(x0, x̄), x0 ∈ℝ, x̄∈ℝd−1

❸ Parabolic stochastic quantization (Parisi–Wu):

φ(x)∼ϕ(t,x) ∂tϕ(t,x)=−(m2 −Δx)ϕ(t,x)+ξ(t,x), t∈ℝ,x∈ℝd

❹ Elliptic stochastic quantization (Parisi–Sourlas):

φ(x)∼ϕ(z,x) (−Δz)ϕ(t,x)=−(m2 −Δx)ϕ(z,x)+ξ(z,x), z∈ℝ2,x∈ℝd



stochastic equations for EQFTs in general (V ≠0)

❶ Shifted Gaussian map (Albeverio/Yoshida)

[φ(x)=V ′(φ)+(m2 −Δ)−1/2ξ(x), (m2 −Δ)φ(x)+(m2 −Δ)1/2ξ(x), x∈ℝd]

❷ Stochastic mechanics (Nelson):

∂x0φ(x0, x̄)=−(m2 −Δx̄)1/2φ(x0, x̄)−V ′(φ(x0, x̄))+ξ(x0, x̄), x0 ∈ℝ, x̄∈ℝd−1

❸ Parabolic stochastic quantization (Parisi–Wu):

φ(x)∼ϕ(t,x) ∂tϕ(t,x)=−(m2 −Δx)ϕ(t,x)−V ′(φ(x0, x̄))+ξ(t,x), t∈ℝ,x∈ℝd

❹ Elliptic stochastic quantization (Parisi–Sourlas):

φ(x)∼ϕ(z,x) (−Δz)ϕ(t,x)=−(m2 −Δx)ϕ(z,x)−V ′(φ(x0, x̄))+ξ(z,x), z∈ℝ2,x∈ℝd



Nelson's Markov field equations

Nelson, E. `Remarks on Markov Field Equations'. Functional Integration and Its Applications
(Proc. Internat. Conf., London, 1974), 1975, 136–43.



Wilson's parameter

random fields can be decomposed along the parameter given by a typical scale of
fluctuations . “dynamical” picture of spatially extended fluctuations



subcritical & asymptotically free theories (UV)

KPZ: ∂thε =Δhε +λε−1/2(∇hε)2 +ξ (non-reversible)
Φ2,3

4 : ∂tφε =Δφε +λε−αφε
3 +ξ (reversible)

the small scales “looks like” GFF



Wilson–Polchinski continuous RG

⊳ stochastic analysis along the scale decomposition

Ct∧s≔𝔼[Xt⊗Xs]=(m2 −Δ)−1�
0

t∧s
σu

2(−Δ)du, Xt =�
0

t
Ċu

1/2dWu

e−𝒱t(φt)≔𝔼[e−𝒱T(XT)|ℱt] ∂t𝒱t(ψ)− 1
2DĊt

2 𝒱t(ψ)+ |D𝒱t(ψ)|Ċt

2 =0

dΦt= ĊtD𝒱t(Φt)dt+dXt, Φ0 =0

𝔼[ f(Φt)]= 𝔼[ f(Xt)e−𝒱T(XT)]
𝔼[e−𝒱T(XT)]

= 𝔼[ f(Xt)e−𝒱t(Xt)]
𝔼[e−𝒱t(Xt)]

☞ (Φt)t⩾0 is the solution of an optimal control problem (“the variational method”)

−log𝔼[e−h(Xt)−𝒱T(XT)]=inf
u

𝔼�h(Φt
u)+𝒱T(ΦT

u)+ 1
2�

0

∞
‖us‖2ds�

scale parameter t∈[0,∞] ⋅ Φt
u=Xt+∫0

tĊu
1/2usds, us

opt = Ċt
1/2 D𝒱t(Φt)dt



stochastic quantisation as a stochastic analysis

Ito's calculus stoch. quantisation

Markov diffusion object EQF

Pt(x, dy) global description
1
Z∫𝒮′(ℝd)O(φ)e

−S(φ)dφ

Pt+s(x, dy)=∫Ps(x, dz)Pt(z, dy) . �F(φ)δS(φ)
δφ + δF(φ)

δφ �=0

t change parameter t

Pδt(x, dy)≈ e− (y−x−b(x)δt)a(x)−1(y−x−b(x)δt)
2δt

dy
Zx(δt)d/2 local description ϕ(t+δt)≈αϕ(t)+βδX(t)+ ⋅⋅ ⋅

(Wt)t building block
(X(t))t

∂tX= 1
2[(Δx−m2)X]+ξ

dXt=a(Xt)dWt+ b(Xt)dt local/global link ∂tϕ= 1
2[(Δx−m2)ϕ−V ′(ϕ)]+ξ



some open problems



global solutions of several SPDEs

“large field problem” . global in time and space . well-posedness of the FBSDE
OK for Φ2,3

4 and exp(φ)2 but open for all the other models:
� Sine–Gordon (above the second threshold) [elliptic, parabolic, FBSDEs]

V ′(φ)=λsin(βφ)

� σ-models, even in d=1 (dynamics of a loop in a manifold) [parabolic]

∂tu=Δu+g(u)(∇u⊗∇u)+h(u)ξ, u:ℝ+ ×𝕋→ℳ

� Abelian and non-Abelian gauge theories (and Higgs) [parabolic]

{{{{{{{{{{{{{{{{ ∂tA=ΔA+gA∇A+gAAA+ eφ∇φ+ξ
∂tφ=Δφ+ eA∇φ+ eAAφ+λ|φ|2φ+ξ

What about elliptic & FBSDEs for σ-models?



uniqueness for Φ2,3
4

e.g. parabolic SQ:

∂tφ+m2φ−Δφ+λ⟦φ3⟧=ξ,

would like to show that this equation has a unique stationary strong solution λ > 0
small (wrt m2). And maybe two solutions for λ large.
⊳ main difficulty: non-convexity of the potential. ψ≔φ−φ̃

∂tψ+m2ψ−Δψ+λ⟦φ2 +φ̃2⟧ψ=0

⟦φ2 +φ̃2⟧⩾/ 0!

would need to prove that local perturbations do not propagate. This information
would also allow to prove decay of correlations.



Grassmann SPDEs

we have now a stochastic analysis of Grassmann valued random variables

ψαψβ +ψβψα =0

it can be used to describe Gibbisan Grassmann fields (Fermionic EQFTs), non-com-
mutative analog of EQFTs.

⊳ we have concepts of “a.s.” or Lp spaces but we are not able to solve singular
SPDEs globally, lack of coercive estimates
⊳ same for equations involving classical fields and Grassmann fields, relevant also
for supersymmetric EQFTs



supersymmetry (SUSY) and supersymmetric EQFTs

for example: parabolic SQ of SUSY Φd
4

∂tΦ(t,X)+m2Φ(t,X)−ΔXΦ(t,X)+λ⟦Φ(t,X)3⟧=Ξ(t,X),

with X=(x1, . . . ,xd, θ, θ̄)∈ℝd|2, (θi)i Grassmann coordinates

Φ(X)=φ(x)+ c(x)θ+ c̄(x)θ̄+ω(x)θθ̄

f(Φ(X))= f(φ(x))+ f ′(φ(x))(c(x)θ+ c̄(x)θ̄+ω(x)θθ̄)+ f ′′(φ(x))c(x)c̄(x)θθ̄

ΔX =Δx+∂θ∂θ̄

SUSY-GFF

𝔼[Φ(X)Φ(Y)]=(m2 −ΔX)−1(X−Y)

⊳ existence? uniqueness?



a remark on non-commutative probability (for probabilists)

I look at non-comm probability as I would look at complex numbers : a larger struc-
ture which contains some object of interest and which allow “more mathematics”.

as complex number reveal a deeper structure of algebraic equations, non-comm
prob do for probabilistic problems:
� Onsager's solution of the Ising model is a theory of a Gaussian non-commutative
field
Schultz, T. D., D. C. Mattis, and E. H. Lieb. `Two-Dimensional Ising Model as a Soluble Problem of Many Fermions'.
Rev of Mod. Phys. 36 (1964) 10.1103/RevModPhys.36.856

� Determinantal point processes are related to free Fermions:
G. Olshanski, Grigori. `Determinantal Point Processes and Fermion Quasifree States'. Comm. Math. Phys. 378 (2020)
10.1007/s00220-020-03716-1

� Elliptic stochastic quantisation is proven via (Parisi–Sourlas) SUSY dimensional
reduction
S. Albeverio, F. C. De Vecchi, and M. Gubinelli. `Elliptic Stochastic Quantization'. Ann. Prob. 48 (2020) 10.1214/19-
AOP1404

� + some others examples. . .



non-equilibrium reaction-diffusion systems & NESSs

stochastic dynamics with conservation laws

∂tφ+Δ(m2φ−Δφ+λφ3)=∇⋅ξ,

this should have φd
4 as invariant measure, however we can make another model:

∂tφ+(Δ‖ +αΔ⊥)(m2φ−Δφ+λφ3)=∇⋅ξ, x=(x‖,x⊥)∈ℝ×ℝd−1

which even at the linear level behaves differently: (α≠1⇒ power-law correlations)

𝔼[φ(t,x)φ(t,y)]= 1
2(m2 −Δ)[[[[[[ Δ‖ +Δ⊥

(Δ‖ +αΔ⊥)2]]]]]](x−y)

α≠1⇒no explicit invariant measures (non-equilibrium steady states)
⊳ what about renormalization? uniqueness/non-uniqueness of stationary solutions?



integration by parts formulas

Q: how to define a EQFT?

one possible approach: IbP formulas

�
𝒮′(ℝd) [[[[[[ δ

δφ − δS
δφ(φ)]]]]]]F(φ)ν(dφ)=0, ∀F in some nice class

[[[[[[ δ
δφ − δS

δφ(φ)]]]]]]≈ eS(φ) δ
δφe−S(φ)

⊳ existence of solutions, uniqueness?
up to now only for the Høegh–Krohn model (see recent work with Turra & de Vecchi)

☞ relation with cohomological integration, Batalin–Vilkovisky formalism



SPDE for non-trivial fixpoints?

⊳ can we write an SPDE for the Wilson–Fisher fixpoint?

∂tφλ +m2φλ −Δφλ +λ⟦(φλ)3⟧=ξ, λ→∞.

⊳ can we write an SPDE for the KPZ fixpoint? inviscid Burgers

∂tu+u∇u=0

but not in viscosity sense and has to leave invariant the white noise

⊳ what about SPDEs in kinetic formulation which have noise in the kinetic measure?



. . .and beyond

a formal analogy

ℒφ+λφ3 =ξ

𝔼[ξ(t,x)ξ(t,y)]=δ(x−y)

vs.

□Φ+λΦ3 =0

[Φ(x), Φ̇(y)]=δ(x−y)



thanks

(no human has been harmed with TEX/LATEX to produce this presentation)


