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what is stochastic analysis?
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Data aequatione quotcunque fluentes quantitates involvente, fluxiones invenire; et vice versa (Newton)

[Given an equation involving any number of fluent quantities to find the fluxions, and vice versa]



diffusion processes

The word “random” comes from a French hunting term: “randon” designates
the erratic course of the deer which zigzags trying to escape the dogs. The
word also gave “randonnée” (hiking) in French.




Ito's brillant idea

lto arrived to his calculus while trying to understand Feller's theory of diffusions an
evolution in the space of probability measures and he introduced stochastic differ-

ential equations to define a map (the It6 map) which send Wiener measure to the
law of a diffusion.
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It6's original paper

(Japanese version 1942, M.A.M.S. 1951)

Differential Equations Determining a Markoff Process*

Kivosi ITo

More generally, for a simple Markoff process with its states being
represented by the real numbers and having continuous parameter, the prob-
lem of determining quantities corresponding to p{f’ mentioned above and of
constructing the corresponding Markoff process once these quantities are
given has been investigated systematically by Kolmogoroff[3], who reduced
the problem to the study of differential equations or integro-differential equa-
tions satisfied by the transition probability function.

W. Feller[4] has proved under fairly strong assumptions that these equa-
tions possess a unique solution and furthermore that the solution exhibits the
properties of transition probability function.

However, if we adopt more strict point of view such as the one J. Doob(5]
has applied toward his investigation of stochastic processes, it seems to us
that the aforementioned work done by Feller is not quite adequate. For exam-
ple, even though the differential equation determining the transition probabil-

ity function of a continuous stochastic process was solved in §3 of that paper,
no proof was given of the fact that it is possible to introduce by means of this
solution a probability measure on some “continuous” function space.

The objective of this article, then, is:

1) to formulate the problem precisely, and
2) to give a rigorous proof, a la Doob, for the existence of continuous
parameter stochastic processes.



§1. Definition of Differentiation of a Markoff Process

Let {y} be a (simple) Markoff process and denote by F,,; the conditional pro-
bability distribution! of y, — y, given that "y, is determined”. F, is clearly
a P,-measurable (p) function? of y,, where p denotes the Lévy distance
among probability distributions.

Definition 1.1.2
If

(1) F‘:EII:—:,]

(here [a] is the integer part of the number a, and “sk” denotes the k-fold
convolution) converges in probability with respect to the Lévy distance p as
t=1; +0, then we call the limit random variable (taking values in the space
of probability distributions) the derivative of {y,} at ; and denote it by

2 D, {y:} or Dy,

Corollary 1.1. Dy, is an infinitely divisible probability distribution.®

DADUILY WiSUIvuuwIiL.
Dy, obtained above is a function of f, as well as of y,, and so, we denote

it by L(f, ¥,) corresponds precisely to the “basic transition probability" dis-
cussed in the Introduction. .
The precise formulation of the problem of Kolmogoroff, then, is to solve

the equation
@ Dy, = L(t,)
when the quantity L(t,y) is given.

§2. A Comparison Theorem

Let us prove a comparison theorem for Dy, which we shall make use of
later.

Theorem 2.1. Ler {y,}, {2} be simple Markoff processes satisfying the fol-
lowing conditions:

D Yo = 2
2) E'Ey, -z, | y.) = o(t — &), where o is the Landau symbol.

3 oy =z | n) =oNt — ).

(Here E(x|y) denotes the conditional expectation of x given y and c(.f|y)
denotes the conditional standard deviation of x given y. Also, r{u quantity o
may depend on 1y or y,). Then, whenever Dz, exists, Dy, exists also, and
D y}. = sza ham‘



H. Féllmer, “On Kiyosi It6's Work and its Impact” (Gauss prize laudatio 2006)

In 1987 Kiyosi It6 received the Wolf Prize in Mathematics. The laudatio states that “he
has given us a full understanding of the infinitesimal development of Markov sample
paths. This may be viewed as Newton's law in the stochastic realm, providing a
direct translation between the governing partial differential equation and the under-
lying probabilistic mechanism. Its main ingredient is the differential and integral
calculus of functions of Brownian motion. The resulting theory is a cornerstone of
modern probability, both pure and applied”.

The reference to Newton stresses the fundamental character of [td's contribution to
the theory of Markov processes.

Let us also mention Leibniz in order to emphasize the fundamental importance of
1t6's work from another point of view. In fact It6's approach can be seen as a nat-
ural extension of Leibniz's algorithmic formulation of the differential calculus. In a
manuscript written in 1675 Leibniz argues that the whole differential calculus can be
developed out of the basic product rule d(XY) =XdY +YdX and he writes:

"Quod theorema sane memorabile omnibus curvis commune est”.



But when Kiyosi It came to Princeton in 1954, at that time a stronghold of prob-
ability theory with William Feller as the central figure, his new approach to diffusion
theory did not attract much attention. Feller was mainly interested in the general
structure of one-dimensional diffusions with local generator

d d

F=3n@

motivated by his intuition that a “one-dimensional diffusion traveler makes a trip in
accor- dance with the road map indicated by the scale function s and with the speed

indicated by the measure m” [...]



The first systematic exposition in Germany was the book Stochastische Differen-
tialgleichungen [2] by Ludwig Arnold, with the motion of satellites as a prime
example. It was based on seminars and lectures at the Technical University Stut-
tgart which he was urged to give by his colleagues in Engineering.

In the seventies the relevance of It6's work was also recognized in physics and
in particular in quantum field theory. When | came to ETH Zurich in 1977, Barry
Simon gave a series of lectures for Swiss physicists on path integral techniques
which included the construction of 1td's integral for Brownian motion, an introduc-
tion to stochastic calculus, and applications to Schréodinger operators with magnetic
fields; see chapter V in [45]. When Kiyosi [t6 was awarded a honorary degree by
ETH Zurich in 1987, this was in fact due to a joint initiative of mathematicians and
physicists.



stochastic analysis today

[...]there now exists a reasonably well-defined amalgam of probabilistic
and analytic ideas and techniques that, at least among the cognoscenti,
are easily recognized as stochastic analysis. Nonetheless, the term
continues to defy a precise definition, and an understanding of it is
best acquired by way of examples.

[D. Stroock, “Elements of stochastic calculus and analysis ”, Springer, 2018]

Nowadays: Ito integral, Ito formula, stochastic differential equations, Girsanov's formula,
Doob's transform, stochastic flows, Tanaka formula, local times, Malliavin calculus, Skorokhod
integral, white noise analysis, martingale problems, rough path theory...



analysis vs. stochastic analysis

Newton's calculus lto's calculus
planet orbit Sl Markov diffusion
(x,y) €O CR? global description Py (x,dy)
o (xx = x0)* + B(y —yo)* ="y Piis(x,dy) = [ Py(x,dz)Pi(z,dy)
t change parameter t
X(t+8t) ~x(t) +adt+0(8t) locsl description  Pay(x, dy) ~e Wb(xﬁt)ﬂ(iif_l(”b“)mﬁ

at+bt*+--- building block (Wi):

(x(8),5(t)) =F(x(t),y(£))  tocal/globallink dX;=a(X;)dW;+b(X;)dt

> other examples: rough paths, regularity structures, SLE, ...
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[Kennedy, Tom. ‘Numerical Computations for the Schramm-Loewner Evolution'. JSP 137 (2009) 10.1007/s10955-009-9866-2]



sewing lemma: controlled paths & regularity structures

integration of a germ A:[0,T]*—- R - when can we have
0<s<tT

for some y:[0,T] - R?

c>1

A(s,t) =y (t) —y(s) + O(It =sl%),
unique for {>1 - sufficient condition: coherence of A for

A(s,t) =A(s,u) +A(u,t) +O(It—s|*), O0<s<u<t<T
- S :"' -
/’N\\ I, \\ . IIII ,/—~§\ ”/’
» ! \\ ~~~~~~~~ 3‘, /, \\h_—"’
\ / \\ ,{"f \\\\ ’,
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two-parameter stochastic calculus

Hajek, Bruce. "Stochastic Equations of Hyperbolic Type and a Two-Parameter Stratonovich Calculus'. Ann. Prob. 10 (1982): 451-63.
Norris, J.R. “Twisted Sheets'. Jour. Func. Anal. 132 (1995): 273-334. 10.1006/jfan.1995.1107.

and differential eduations in Sect.3. The basic rules of two-parameter
stochastic calculus may be guessed: one has the usual Ité formula for C*

functions, together with two further Ité product rules which work like
partial differentiation

(i‘\'( f‘ 'Y.\f )) =.f‘l[ '\‘.\'l) d.Y "\_.\‘l + ;‘/\"{'\.A‘f) ({! '\..\'f d'\' '\’.\‘?'
dia,dx,)=da,dx,+a,ddx, +da,ddx,,

d.v (d!x.\'l dl )"sr) = d‘\' d{ x.w d{ y.\‘t + (1! '\‘_v! d.\ d{ }".\-r + a,.\' d.’ x.\'l (1‘\, d! ."s.’ N

There is also a Stratonovich calculus, which is related in the usual way to
the 1td calculus and which transforms the above formulas into those one

11 1 . 1. 1o P | 1 1

1n a manitold.

In Sect. 3 we turn to two-parameter stochastic differential equations. The

equations we study are stochastic generalizations of hyperbolic equations
of the form

xxr 1 1 (R a1

d°x Ox Ox
asat—a(x +b(,x)(a 6’) (1.1)




Euclidean quantum fields

conceptually: stationary Markovian d dimensional fields / Gibbsian stochastic fields

prob. measures v on #'(RY) - (Feynman-Kac) path integral formalism

o =S(®) e—fRdV«P(X))dx —So(@)
v(de)r——Ter——7r—u(de), u(de)~—7

D¢

S(9)= [, V()P +mP(x)+ [ V(p(x))dx
so(9) T T e

heuristic description - large scale & small scale problems - renormalization

they are natural probabilistic objects




stochastic equations for EQFTs

Gaussian free field . : E[o(x)@(y)] = (m*—=A)" (x—y) - T white noise

O “Gaussian map”:
¢(x)=(m*=A)T%g(x),  (m*=A)g(x)=(m*-1)*¢(x), x€R’
O Stochastic mechanics (Nelson):
0, @ (x0,X) = —(m? = A) 2@ (x0, %) + E(x0,X), xER,x€R!
® Parabolic stochastic quantization (Parisi-Wu):
e(x)~d(tx) b (t,x)=—(m*—A)d(t,x) +&(t,x), tER,xeR?
@ Elliptic stochastic quantization (Parisi-Sourlas):

9() ~d(zx)  (=B)P(tx) =—(m*—B)d(zx) +E(zx), zER%xER!



stochastic equations for EQFTs in general (V £0)

O Shifted Gaussian map (Albeverio/Yoshida)
[9(x)=V'(g)+ (m2=A)VE(x),  (m=A)g(x)+ (m*—A)/%(x), xeR]
® Stochastic mechanics (Nelson):
9, @ (x0,%) = —(m* = A) 2@ (x0,%) = V' (9 (x0,%)) +&(x0,%), x0ER,xeR!
® Parabolic stochastic quantization (Parisi-Wu):
9 ~9(tx)  AG(tX)=—(m=A)(Ex) —V (¢(x0. D) +E(tx), tERxeR

@ Elliptic stochastic quantization (Parisi-Sourlas):

(P(x) ~ q)(zrx) (_Az)q)(trx) = —(mz—Ax)([)(z,x) - V’<(P(x0/f)> + é(zrx)r zER? xER?



Nelson's Markov field equations

11. Remarks on Markov
field equations

E. NELSON

11.1. Introduction

WE have no new existence theorems in constructive quantum field theo
present here, but we wish to indicate a new direction which looks prom
and which certainly poses many interesting questions.

Only the theory of a neutral scalar field with a quartic self-interactjop will
be considered. This theory has been much studied in dimension d = 2 and
Glimm and Jaffe have pioneered the study in dimension d = 3, (For refer-
ences, see [4}—in particular, see the first article by Glimm, Jaffe, and
Spencer and the reference listed there.)

We wish to stress field equations, and so we will begin with a heuristic
discussion from that point of view. The simplest non-linear relativistic field
equation with good formal properties is

Iy to
1Sing

(m+mz)A=—gA‘+aA, (11.1)

corresponding to the interaction Lagrangian density —(8/4)A*+(a/2)A?
We could of course absorb the linear term @A in the term m*A, but wé
prefer not to. Here m” and g are positive.

The Euclidean approach to the problem of quantized solutions to (11.1)
is, in rough outline. as follows. The Wightman dictrihutiane (vanm ~e

11.3. The Markov field equation
Let us compute:

" 1 [~ ; i R e
torn=b [ e-sro (et en] 2o

-1 ol (-feege)er (o] G

-1 (igeml (S +5e)ec]) el -85 e

=[LV : 02(—g§‘+a§)edexP[(_§§4+g€z')E‘,] :
xcxp[ _(§2~(r;f)f] e
= *E[ - g (x)'+ ad(v)]e"
We may write this as
d(x)—p=0[—gb(x)’+ap(x)]e! + o’ w(x)e, s

where w(x) is a function of ¢(x) and ¢(y) for the nearest neighbours y of x
(because (11.8) is the definition of w(x)) and

Ew(x)=0. (11.9)

Nelson, E. "Remarks on Markov Field Equations'. Functional Integration and Its Applications
(Proc. Internat. Conf., London, 1974), 1975, 136-43.



Wilson's parameter

The renormalization group and critical phenomena*

Kenneth G. Wilson
Laboratory of Nuclear Studies, Cornell University, Ithaca, New York 14853

The possible types of cooperative behavior, in the renormalization group picture, are deter-
mined by the possible fixed points H* of r. Suppose for example that there are three fixed points
H%, Hg, and H¥. Then one would have three possible forms of cooperative behavior. If a particu-
lar system has an initial interaction ., one has to construct the sequence ¥, ¥, etc. in onder to
find out which of K}, H¥, or & gives the limit of the sequence. If 3} is the limit of the
sequence, then the cooperative behavior resulting from ¥y will be the cooperative behavior
determined by 3 }. In this example the set of all possible initial interactions ¢, would divide into
three subsets (called *domains™), one for each fixed point. Universality would now hold separately
for each domain. See section 12 for further discussion.

This is how one derives a form of universality in the renormalization group picture. It is not so
bold as previous formulations [9]. Experience with soluble examples of the renormalization group
transformation for critical phenomena shows that it generally has a number of fixed points, so one
has to define domains of initial Hamiltonians associated with each fixed point, and only within a
given domain is the critical behavior independent of the initial interaction.

Tharma ia v s selas cassacamant that tha cassiansas T sanaecash a Read aalat fae ok o T
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random fields can be decomposed along the parameter given by a typical scale of
fluctuations - “dynamical” picture of spatially extended fluctuations



subcritical & asymptotically free theories (UV)

critical surface

Vi Vi Vi V)

N\ N N N\

Gaussian

UV f.p. , Gauss ¢——— KPZ

IR £.p. |

\ \ \ \
7 4 7 7

KPZ: 9h = Ah +Ae™V2(Vh,)?>+C (non-reversible)
D331 0,0 =A@ +Ae @7+ T (reversible)

the small scales “looks like” GFF



Wilson-Polchinski continuous RG

> stochastic analysis along the scale decomposition
Cone=E[X,® X,] _A)" f o3 (-A)du,  X,=[ CVAdW
tAs = t u, t= )~ u
_ _ 1
e~ 7 @) .= E[¢~ 71X %,] at%(tP)—§D%%(1P)+|D%(1P)|é=0
d®,=C,DZ;(®,)dt+dX,, Dy=0

ELA()e" 0] _ BF(0)e %]
BLf(@)] == e =

= (P;);50 is the solution of an optimal control problem (“the variational method”)
—logE[e~"(*) =710 =inf E{h(@‘) + 77 (PF) + 2f ||us||2ds}

scale parameter t€[0,] - Of=X;+ fot(f,/l,/zusds, ulP =C"?*DY; (®,)dt



stochastic quantisation as a stochastic analysis

Ito's calculus

Markov diffusion

Pt(xrdy)

Piys(x,dy) = [ Ps(x,dz)Pi(z,dy)

t
=t TGt g,
P@t(x/ dy) ~e 2o Z.(5t)1/?
(Wi):

dXt = a(Xt)th + b(Xt>dt

stoch. quantisation

EQF
) O(@)e™5@d
ZJ) 1 (rey O\ P ¢

dS OF
<F((P) ;qu)-l- 6((;P)>:O

object

global description

change parameter t

local description

(X (1)
dX =5[(A,—m?)X]+E

building block

local/global link

G (t+8t) ~adp () + POX(E) + -

9P =5[(Ae=m?)p—V'($)] +&



some open problems




global solutions of several SPDEs

“large field problem” - global in time and space - well-posedness of the FBSDE
OK for @33 and exp (@), but open for all the other models:
» Sine—-Gordon (above the second threshold) [elliptic, parabolic, FBSDEs]

V(@) =Asin(pe)
» o-models, even in d=1 (dynamics of a loop in a manifold) [parabolic]
du=Au+gu)(Vue®Vu) +h(u)f, w:R,xT — b

» Abelian and non-Abelian gauge theories (and Higgs) [parabolic]

QA=ANA+gAVA+gAAA+epVp+C
0,0 =Ap+eAVe+eAAQ+ Nl +C

What about elliptic & FBSDEs for o-models?



uniqueness for @33

e.g. parabolic SQ:
U +m’p—Ap+A[@°] =¢,

would like to show that this equation has a unique stationary strong solution A >0
small (wrt m?). And maybe two solutions for A large.

> main difficulty: non-convexity of the potential. {:=¢—@
dutp+m2Y— A+ A [+ G2 =0

[o*+°] 20!

would need to prove that local perturbations do not propagate. This information
would also allow to prove decay of correlations.



Grassmann SPDEs

we have now a stochastic analysis of Grassmann valued random variables
PP+ Py =0

it can be used to describe Gibbisan Grassmann fields (Fermionic EQFTs), non-com-
mutative analog of EQFTs.

7

> we have concepts of “a.s.” or L? spaces but we are not able to solve singular
SPDEs globally, lack of coercive estimates

> same for equations involving classical fields and Grassmann fields, relevant also
for supersymmetric EQFTs



supersymmetry (SUSY) and supersymmetric EQFTs

for example: parabolic SQ of SUSY ®;

0, D (t, X) +m?>®(t,X) —AxP(t, X) + A\[D(t,X)’] =

[x]

(t,X),
with X = (x1,...,x4,6,0) € R*2, (8,); Grassmann coordinates
O(X) =@ (x) +c(x)0+c(x)0 + w(x)00
F@(X)) = f(@(x)) + £/ (@(x)) (c(x)8 +E(x)8 + w(x)00) + f (@ (x) )c(x) (%) 88
Ax = A+ 999

SUSY-GFF
E[Q(X)P(Y)] = (m*—Ax) (X =Y)

> existence? uniqueness?



a remark on non-commutative probability (for probabilists)

| look at non-comm probability as | would look at complex numbers : a larger struc-
ture which contains some object of interest and which allow “more mathematics”.

as complex number reveal a deeper structure of algebraic equations, non-comm
prob do for probabilistic problems:

» Onsager's solution of the Ising model is a theory of a Gaussian non-commutative

field

Schultz, T. D., D. C. Mattis, and E. H. Lieb. “Two-Dimensional Ising Model as a Soluble Problem of Many Fermions'.
Rev of Mod. Phys. 36 (1964) 10.1103/RevModPhys.36.856

» Determinantal point processes are related to free Fermions:

G. Olshanski, Grigori. ‘Determinantal Point Processes and Fermion Quasifree States'. Comm. Math. Phys. 378 (2020)
10.1007/s00220-020-03716-1

» Elliptic stochastic quantisation is proven via (Parisi-Sourlas) SUSY dimensional
reduction

S. Albeverio, F. C. De Vecchi, and M. Gubinelli. "Elliptic Stochastic Quantization'. Ann. Prob. 48 (2020) 10.1214/19-
AOP1404

» + some others examples...



non-equilibrium reaction-diffusion systems & NESSs

stochastic dynamics with conservation laws
9,9 +A(m*¢ —Ag +A@>) =V T,
this should have q);L as invariant measure, however we can make another model:
9,0+ (A + oA ) (m*e—Ap+A9®)=V-E,  x=(x,x.) ERxRI!
which even at the linear level behaves differently: (x £1= power-law correlations)

Elo(t,x)o(ty)]= z(mzl_A) [ (A?T_aAAi)z](x_y)

® # 1= no explicit invariant measures (non-equilibrium steady states)

> what about renormalization? uniqueness/non-uniqueness of stationary solutions?



integration by parts formulas

Q: how to define a EQFT?

one possible approach: IbP formulas

5 05 | |
Lo,(Rd) [%—%((P)]F(CP)V(CRP) =0, VF in some nice class

d 0S

5
= ~pS(@) = ,—5(9)
[5<P 5<P<(P)]Ne 5¢°

> existence of solutions, uniqueness?

up to now only for the Haegh—Krohn model (see recent work with Turra & de Vecchi)

&= relation with cohomological integration, Batalin-Vilkovisky formalism



SPDE for non-trivial fixpoints?

> can we write an SPDE for the Wilson-Fisher fixpoint?

09" +m** — A" +A[(¢*)°] =%,  A—co.
> can we write an SPDE for the KPZ fixpoint? inviscid Burgers
o +uVu=0

but not in viscosity sense and has to leave invariant the white noise

> what about SPDEs in kinetic formulation which have noise in the kinetic measure?



...and beyond

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 41, NUMBER 2 FEBRUARY 2000

Quantum interaction :¢2:, the construction of quantum
field defined as a bilinear form

Edward P. Osipov®
Department of Theoretical Physics, Sobolev Institute for Mathematics,
630090 Novosibirsk 90, Russia

(Received 2 February 1998; accepted for publication 26 March 1998)

We construct the solution ¢(z,x) of the quantum wave equation [1¢+m?¢
+\:¢%: =0 as a bilinear form which can be expanded over Wick polynomials of
the free in-field, and where :¢3(t,x): is defined as the normal ordered product with
respect to the free in-field. The constructed solution is correctly defined as a bilin-
ear form on D ¢yX D, where D, is a dense linear subspace in the Fock space of the
free in-field. On D yX D, the diagonal of the Wick symbol of this bilinear form
satisfies the nonlinear classical wave equation. © 2000 American Institute of
Physics. [S0022-2488(00)01001-X]

configuration space or on the space of trajectories is closely connected with dynamical equations
of motion and quantum mechanics. However, here we consider a possible description of dynamics
and leave a possible description of the vacuum for the future.

In the present paper we consider a self-interacting scalar quantum field in four-dimensional
Minkowski space—time satisfying the following relativistic wave equation,

Oe(t,x)+m?p(2,x)+\: p(2,%):=0, (1.1)

or in the form of integral equation
t
#u0=b(t0-N [ [ RG-rx-y: @ (ep:araiy. (12)

Equations (1.1) and (1.2) contain the relativistic and quantum constants ¢, # and we put #
= Planck's constant=1 and ¢ = the light velocity=1.
A principal barrier of this way appears as difficulties associated with the definition of a

o1 PEP e~ e e ~ 1 1

a formal analogy

Bo+Ap>=C

E[E(tx)E(ty) ]| =8(x—y)
VS.

O® +AP3=0

[P (x), P(y)]=3(x—y)
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