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Controlled paths/distributions

Controlled paths are paths which “looks like” a given path which often is
random (but not necessarily).

This proximity allows a great deal of computations to be carried on explicitly
on the base path and then extends them to all controlled paths.

Successful approach which mixes functional analytic arguments and
probabilistic ones.

Basic analogies
I Itô processes

dXt = ftdMt + gtdt

I Amplitude modulation

f (t) = g(t) sin(ωt)

with |supp ĝ|� ω.

[Joint work with R. Catellier, K. Chouk, P. Imkeller, N. Perkowski]
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Some interesting problems (I)

Define and solve the following kind of stochastic partial differential
equations.

I Stochastic differential equations (1+0): u ∈ [0, T]→ Rn

∂tu = f (u)ξ

with ξ : R→ Rm m-dimensional white noise in time.
I Burgers equations (1+1): u ∈ [0, T]× T→ Rn

∂tu = ∆u + f (u)Du + ξ

with ξ : R× T→ Rn space-time white noise.
I Parabolic Anderson model (1+2): u ∈ [0, T]× T2 → R

∂tu = ∆u + f (u)ξ

with ξ : T2 → R space white noise.

Recall that
ξ ∈ C−d/2−
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Some interesting problems (II)

Define and solve the following kind of stochastic partial differential
equations.

I Kardar-Parisi-Zhang equation (1+1)

∂th = ∆h + "(Du)2 −∞" + ξ

with ξ : R× T→ R space-time white noise.
I Stochastic quantization equation (1+3)

∂tu = ∆u + "u3" + ξ

with ξ : R× T3 → R space-time white noise.
I But (currently) not: Multiplicative SPDEs (1+1)

∂tu = ∆u + f (u)ξ

with ξ : R× T→ R space-time white noise.
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What can go wrong?

Consider the sequence of functions xn : R→ R2

x(t) =
1
n
(cos(2πn2t), sin(2πn2t))

then xn(·)→ 0 in Cγ([0, T];R2) for any γ < 1/2. But

I(xn,1, xn,2)(t) =
∫ t

0
xn,1(s)∂txn,2(s)ds→ t

2
YET ANOTHER INTRODUCTION TO ROUGH PATHS 31

· · ·

Figure 10. Moving freely in the third direction.

where C2 depends only on C1 and T .
Now, if tnk ! s ! tnk + T2−n−1 ! t ! tnk+1, we get by combining the

previous estimates that

|xn
s,t| ! C0C2‖x‖α((t− T2−n−1)α + (T2−n−1 − s)α)

! 2α−1C0C2‖x‖α(t− s)α.

We have then proved (21) with a constant which is in addition propor-
tional to ‖x‖α. "

Let us come back to the Remark 6 following Lemma 8. For α ∈
(1/3, 1/2], let us consider xt = (0, 0,ϕt) where ϕ ∈ C2α([0, T ]; R), then
one can find xn ∈ C1

p([0, T ]; R) such that xn converges uniformly to 0,
xn = (xn, A(xn; 0, ·)) is uniformly bounded in Cα([0, T ]; A(R2)) and
converges in Cβ([0, T ]; A(R2)) to x for any β < α. For this, one may
simply consider (see Figure 10)

zn
t =

1

n
√

π
(cos(2πtn2)− 1, sin(2πtn2)),

and then set xn
t = zn

ϕt
.

Thus, moving freely in the “third direction” is equivalent to accu-
mulate the areas of small loops. Using the language of differential
geometry, which we develop below, this new degree of freedom comes
from the lack of commutativity of (A(R2), #): a small loop of radius√

ε around the origin in the plane R2 is equivalent to a small displace-
ment of length ε in the third direction. To rephrase Remark 6, even if
ϕ ∈ C1([0, T ]; R), then one has to see x as a path in C1/2([0, T ]; A(R2))
that may be approximated by paths in C1

p([0, T ]; A(R2)) which converge
to x only in ‖ · ‖β for any β < 1/2. Hence, we recover the problem
underlined in Section 3.2.

5.7. Construction of the integral. Let f be a differential form in
Lip(γ; R2 → R) with γ > 1/α− 1.

If x ∈ Cα([0, T ]; A(R2)) with α > 1/2, then from Lemma 8, x =

(x,x3
0 + A(x)) with x = (x1,x2). Hence we set I(x)

def
= I(x) =

∫
x|[0,·]

f

which is well defined as a Young integral.
The next proposition will be refined later.

I(xn,1, xn,2)(t) 6→ I(0, 0)(t) = 0

The definite integral I(·, ·)(t) is not a continuous map Cγ × Cγ → R for
γ < 1/2.

(Cyclic microscopic processes can produce macroscopic results. Resonances.)
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Concept of solution

Consider the simple controlled ODE (η smooth, fixed initial condition)

∂tu(t) =
m∑

i=1

fi(u(t)ηi(t)

fi : Rd → Rd. u, ξ : R→ Rd. Solution map: u = Ψ(η) is generally not
continuous for η ∈ Cγ−1 with γ < 1/2.

. We will develop techniques to show that for γ > 1/3:

u = Φ(η, θ ◦ η)

Φ : Cγ−1 × C2γ−1 → Cγ

where ∂tθ = η and θ ◦ η = X2(η) will be describe later.

. Probabilistic step: prove that there exists reasonable definitions of X2(ξ)
when ξ is a white noise. In general X2 is not a continuous map Cγ−1 → C2γ−1.

η→ (η, θ ◦ η)→Φ u
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Littlewood-Paley blocks and Hölder-Besov spaces

We will measure regularity in Hölder-Besov spaces Cγ = Bγ∞,∞.

f ∈ Cγ, γ ∈ R iff
‖∆if‖L∞ . 2−iγ, i > 0

F(∆if )(ξ) = ρ(2−i|ξ|)f̂ (ξ)

where ρ : R→ R+ is a smooth function with support in [1/2, 5/2] and such
that ρ(x) = 1 if x ∈ [1, 2] and there exists θ : R→ R+ smooth and with
support [0, 1] such that θ(|x|) +

∑
i>0 ρ(2

−i|x|) = 1 for all x ∈ R.

F(∆−1f )(ξ) = θ(|ξ|)f̂ (ξ).

f =
∑
i>−1

∆if
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Paraproducts
Deconstruction of a product: f ∈ Cρ, g ∈ Cγ

fg =
∑

i,j>−1

∆if∆jg = π<(f , g) + π◦(f , g) + π>(f , g)

π<(f , g) = π>(g, f ) =
∑

i<j−1

∆if∆jg π◦(f , g) =
∑

|i−j|61

∆if∆jg

Paraproduct (Bony, Meyer et al.)

π<(f , g) ∈ Cmin(γ+ρ,γ)

π◦(f , g) ∈ Cγ+ρ if γ+ ρ > 0

Young integral: γ, ρ ∈ (0, 1)

fDg = π<(f , Dg)︸        ︷︷        ︸
Cγ−1

+π◦(f , Dg) + π>(f , Dg)︸                        ︷︷                        ︸
Cγ+ρ−1

Recall ∫ t

s
fudgu = fs(gt − gs) + O(|t − s|γ+ρ)
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(Para)controlled structure

Idea
Use the paraproduct to define a controlled structure. We say y ∈ D

γ,ρ
x if x ∈ Cγ

y = π<(yx, x) + y]

with yx ∈ Cρ and y] ∈ Cγ+ρ.

Paralinearization. Let ϕ : R→ R be a sufficiently smooth function and
x ∈ Cγ, γ > 0. Then

ϕ(x) = π<(ϕ ′(x), x) + C2γ

. A first commutator: f , g ∈ Cρ, x ∈ Cγ

π<(f ,π<(g, h)) = π<(fg, h) + Cγ+ρ

Stability. (ρ > γ)
ϕ(y) = π<(ϕ ′(y)yx, x) + Cγ+ρ
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A key commutator

All the difficulty is concentrated in the resonating term

π◦(f , g) =
∑

|i−j|61

∆if∆jg

which however is smoother than π<(f , g).

Paraproducts decouple the problem from the source of the problem.

Commutator
The linear form R(f , g, h) = π◦(π<(f , g), h) − fπ◦(g, h) satisfies

‖R(f , g, h)‖α+β+γ . ‖f‖α‖g‖β‖h‖γ

with α ∈ (0, 1), β+ γ < 0, α+ β+ γ > 0.

Paradifferential calculus allow algebraic computations to simplify the form of
the resonating terms (π◦).
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The Good, the Ugly and the Bad

Concrete example. Let B be a d-dimensional Brownian motion (or a
regularisation Bε) and ϕ a smooth function. Then B ∈ Cγ for γ < 1/2.

ϕ(B)DB = π<(ϕ(B), DB)︸              ︷︷              ︸
the Bad

+π◦(ϕ(B), DB)︸             ︷︷             ︸
the Ugly

+π>(ϕ(B), DB)︸              ︷︷              ︸
the Good, C2γ−1

and recall the paralinearization

ϕ(B) = π<(ϕ ′(B), B) + C2γ

Then
π◦(ϕ(B), DB) = π◦(π<(ϕ ′(B), B), DB) + π◦(C2γ, DB)︸           ︷︷           ︸

OK

= π<(ϕ
′(B),π◦(B, DB)) + C3γ−1

Finally

ϕ(B)DB = π<(ϕ(B), DB) + π<(ϕ ′(B),π◦(B, DB)︸        ︷︷        ︸
"Besov area"

) + π>(ϕ(B), DB) + C3γ−1
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The Besov area

The Besov area π◦(B, DB) can be defined and studied efficiently using
Gaussian arguments:

π◦(Bε, DBε)→ π◦(B, DB)

almost surely in C2γ−1 as ε→ 0.

Remark. If d = 1

π◦(B, DB) =
1
2
(π◦(B, DB) + π◦(DB, B)) =

1
2

Dπ◦(B, B)

which is well defined.

Tools: Besov embeddings Lp(Ω; Cθ)→ Lp(Ω; Bθ
′

p,p) ' Bθ
′

p,p(Lp(Ω)), Gaussian
hypercontractivity Lp(Ω)→ L2(Ω), explicit L2 computations.
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Au delá des paraproduits

u : R→ Rd, ξ ∈ C−1/2− is (an approx. to) 1d white noise. We want to solve

∂tu = f (u)ξ = f (u) ≺ ξ+ f (u) ◦ ξ+ f (u) � ξ

. Paracontrolled ansatz (∂tX = ξ, X ∈ C1/2−)

u = f (u) ≺ X + u] ⇒ ∂tu = ∂tf (u) ≺ X + f (u) ≺ ξ+ ∂tu]

so
∂tu] = −∂tf (u) ≺ X + f (u) ◦ ξ+ f (u) � ξ ∈ C0−

. Paralinearization: f (u) = f ′(u) ≺ u + R(f , u)

f (u) = (f ′(u)f (u)) ≺ X + R(f , u, X)

. Commutator lemma:

f (u) ◦ ξ = ((f ′(u)f (u)) ≺ X) ◦ ξ+ R(f , u, X) ◦ ξ

= (f ′(u)f (u))(X ◦ ξ) + C(f ′(u)f (u), X, ξ) + R(f , u, X) ◦ ξ
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SDEs

The SDE
∂tu = f (u)ξ = f (u) ≺ ξ+ f (u) ◦ ξ+ f (u) � ξ

is equivalent to the system

∂tX =ξ

∂tu] =(f ′(u)f (u))(X ◦ ξ) − ∂tf (u) ≺ X
+ f (u) � ξ+ C(f ′(u)f (u), X, ξ) + R(f , u, X) ◦ ξ

u =f (u) ≺ X + u]

. We can check that indeed

X ∈ C1/2−, (X ◦ ξ) ∈ C0−

. The system can be solved by fixed point.

( 14 / 23 )



Structure of the solution

. When ξ smooth, the solution to

∂tu = f (u)ξ, u(0) = u0

is given by u = Φ(u0, ξ, X ◦ ξ) where

Φ : Rd × Cγ−1 × C2γ−1 → Cγ

is continuous for any γ > 1/3.
. So if (ξn, Xn ◦ ξn)→ (ξ,η) in Cγ−1 × C2γ−1 and

∂tun = f (un)ξn, u(0) = u0

then
un → u

where u = Φ(u0, ξ,η).
. Note that in general we can have ξ1,n → ξ, ξ2,n → ξ and

lim
n

X1,n ◦ ξ1,n , lim
n

X2,n ◦ ξ2,n
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Relaxed form of the equation

. Take ξn, ξ smooth but ξn → ξ only in Cγ−1 then in general we could have

lim
n

Xn ◦ ξn = X ◦ ξ+ϕ ∈ C2γ−1

In this case un → u and u = Φ(ξ, X ◦ ξ+ϕ) solves the equation

∂tu = f (u)ξ+ f ′(u)f (u)ϕ.

So this limit procedure generates correction terms to the equation. The
original equation relaxes to another form.
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Generalized Parabolic Anderson Model on T2

L = ∂t − D2, u : R× T2 → R, ξ ∈ C−1 space white noise.

Lu = f (u)ξ

. Paracontrolled ansatz LX = ξ so X ∈ C1−

u = f (u) ≺ X + u] ⇒ Lu = Lf (u) ≺ X + Df (u) ≺ DX + f (u) ≺ ξ+ Lu]

. Paralinearization: f (u) = (f ′(u)f (u)) ≺ X + R(f , u, X)

f (u) ◦ ξ = (f ′(u)f (u))(X ◦ ξ) + C(f ′(u)f (u), X, ξ) + R(f , u, X) ◦ ξ
Problem

X ◦ ξ = X ◦ LX = c + C0−

with c = +∞.
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Renormalization

To cure the problem we add a suitable counterterm to the equation.

Lu = f (u)ξ− c(f ′(u)f (u))

f (u)◦ξ− c(f ′(u)f (u)) = (f ′(u)f (u))(X ◦ξ− c)+C(f ′(u)f (u), X, ξ)+R(f , u, X)◦ξ

. The gPAM is equivalent to the equation

Lu] = −Lf (u) ≺ X + Df (u) ≺ DX + (f ′(u)f (u))(X ◦ ξ− c)

+C(f ′(u)f (u), X, ξ) + R(f , u, X) ◦ ξ

X ∈ C1−, (X ◦ ξ− c) ∈ C0−, u] ∈ C2−
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The Kardar–Parisi–Zhang equation

∆h(t, x)

h(t, x)

ξ(t, x)
diffusion

drift F (∇h(t, x))

noise

Large scale dynamics of the height h : [0, T]× T→ R of an interface

∂th ' ∆h + F(Dh) + ξ

The universal limit should coincide with the large scale fluctuations of the
KPZ equation

∂th = ∆h + [(Dh)2 −∞] + ξ

with ξ : R× T→ R space-time white noise.
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Stochastic Burgers equation

Take u = Dh

Lu = Dξ+ Du2

u = u1 + u2 + · · · = u1 + u>2

Lu1 + Lu>2 = Dξ+ Du2
1 + 2Du1u>2 + Du2

>2

Lu1 = Dξ⇒ u1 ∈ C−1/2−

Lu2 + Lu>3 = Du2
1 + 2D(u1u2) + 2D(u1u>3) + Du2

2 + 2D(u>3u2) + Du2
>3

Lu2 = Du2
1 ⇒ u2 ∈ C0−

Lu3 + Lu>4 = 2D(u1u2) + 2D(u1u3) + 2D(u1u>4) + Du2
2 + 2Du>3u2 + Du2

>3

Lu3 = 2D(u1u2)⇒ u3 ∈ C1/2−

Lu>4 = 2D(u1u3) + 2D(u1u>4) + Du2
2 + 2D(u>3u2) + Du2

>3
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Paracontrolled ansatz for SBE
Recall:

u1 ∈ C−1/2−, u2 ∈ C0−, u3 ∈ C1/2−

Lu>4 = 2D(u1u3) + 2(u>4 ≺ Du1) + Du2
2 + 2D(u1 ◦ u>4) + 2(Du>4 ≺ u1)

+2D(u1 � u>4) + 2Du>3u2 + Du2
>3

. Ansatz: u>4 = Q + v ≺ X + v]

Lu>4 = LQ + Lv ≺ X + v ≺ LX − Dv ≺ DX + Lv]

LQ = 2D(u1u3), v = 2u>4, LX = Du1

X ∈ C3/2−, Q ∈ C1/2−

. The Ugly:

u1 ◦ u>4 = u1 ◦ (Q + v ≺ X + v]) = u1 ◦Q + u1 ◦ (v ≺ X) + u1 ◦ v]

= u1 ◦Q + v(u1 ◦ X) + R(v, u1, X) + u1 ◦ v]

. Final equation:

Lv] = 2Du>4 ≺ DX + Lu>4 ≺ X + Du2
2 + 2D(u1 ◦ u>4)

+2(Du>4 ≺ u1) + 2D(u1 � u>4) + 2Du>3u2 + Du2
>3
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Stochastic Quantization

Stochastic quantization of (Φ4)3 : ξ ∈ C−5/2−, u ∈ C−1/2−, u = u1 + u2 + u>3.

Lu = ξ+ λ(u3 − 3c1u − c2u)

Lu1 + Lu>2 = ξ+ λ(u3
1 − 3c1u1) + 3λ(u>2(u2

1 − c1)) + 3λ(u2
>2u1) + λu3

>2 − λc2u

. Lu1 = ξ⇒ u1 ∈ C−1/2−, Lu2 = λ(u3
1 − 3c1u1)⇒ u2 ∈ C1/2−

Lu>3 = 3λ(u>2(u2
1 − c1)) + 3λ(u2

2u1) + 6λ(u>3u2u1) + 3λ(u2
>3u1) + λu3

>2 − λc2u

. Ansatz: u>3 = 3λu>2 ≺ X + u], with LX = (u2
1 − c1)

Lu] = −3λLu>2 ≺ X+3λDu>2 ≺ DX+3λ(u>2◦(u2
1−c1)−c2u)+3λ(u>2 � (u2

1−c1))

+ 3λ(u2
2u1) + 6λ(u>3(u2u1)) + 3λ(u2

>3u1) + λu3
>2

u>2 ◦ (u2
1 − c1) − c2u = (u2 ◦ (u2

1 − c1) − c2u1) + (u>3 ◦ (u2
1 − c1) − c2u>2)

(u>3 ◦ (u2
1 − c1) − c2u>2) = (3λ(u>2 ≺ X) ◦ (u2

1 − c1) − c2u>2) + u] ◦ (u2
1 − c1)

= u>2(3λ(X ◦ (u2
1 − c1)) − c2) + 3λC(u>2, X, (u2

1 − c1)) + u] ◦ (u2
1 − c1)

. Basic objects: (u2
1 − c1), (u3

1 − 3c1u1), (3λ(X ◦ (u2
1 − c1)) − c2), (u2u1), (u2

2u1)
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Thanks
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