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Regularisation by (Brownian) noise

Addition of noise has positive effects on the theory of the equation (in a pathwise sense)

—  ODEs:

t
Xt:x—l—/ b(XS)dS+Wt
0

Many results: Veretennikov, Davie, Krylov-Rockner, Flandoli, Attanasio, Fedrizzi, Proske,

Aryasova—Pilipenko, ... Essentially bounded b. More precisely, Ladyzhenskaya-Prodi-Serrin
(LPS) condition :

be LILP §+2<1_
P q

—  Transport (or continuity) equation (Stratonovich integral):
deu(t, ) + b(x) - Vu(t, z)dt = Vu(t, z) odWy

good theory for L°° solutions and preservation of regularity. Flandoli-G.—Priola, Flandoli-
Attanasio, Flandoli—-Maurelli, Neves—Olivera.

—  Flandoli-Beck—G.-Maurelli: full LPS condition (<1), new promising method of proof.

[Beck’s talk on monday]



(More) Regularisation by (Brownian) noise

—  Stochastic vector advection equation (Flandoli-Maurelli-Neklyudov):

d
d:B + curl(v x B)dt + O'Z curl(eg x B) odW/F =0.
k=1

Noise avoid blow-up of || B(t, )|z for v € C* with o€ (0, 1).

— Non-linear PDEs with transport structure. Point vortices in 2d (Flandoli-G.—Priola),
Vlasov—Poisson (Delarue-Flandoli—Vincenzi).

N
du(t,z) +u(t,z) - Vu(t,z)= Z or(z) - Vu(t,z) o dWE.
k=1

(Hypoelliptic) Noise helps to avoid collapse due to peculiar configurations.

—  Modulated non-linear Schrodinger equation in d =1. De Bouard—Debussche, Debussche—
Tsutsumi.

deo(t, x) =iAp(t, ) o dWy +i|p(t, z)|P~2p(t, x)dt

Motivated by homogeneisation in optical wave—guides with dispersion management.

— Averaging lemmas for kinetic equations. (Fedrizzi-Flandoli-Priola-Vovelle, Lions-
Perthame-Souganidis, Gess—Souganidis)



Deterministic regularisation by noise

Goal: provide a deterministic framework to discuss regularization by “perturbations/modula-
tion” for the following model PDEs:

e Transport equation: z € R%, ¢ >0, w: R — RY b: RY— R?
Owu(t, z) +we- Vu(t,z) +b(x) - Vu(t,x) =0, u(0, ) = up.
e Non-linear Schrodinger equation: x €T R, t >0, w:R— R
Onp(t, x) =iA(t, x)iy +i[p(t, z)[P~2p(t, 2).
e Korteweg—de Vries equation: x € T, R, t >0, w: R — R
Owu(t, z) = O2u(t, x )y + Oz (u(t, )2

> By defining a suitable notion of "irregular" w we are able to show, in a quantitative way,
that the more w is irregular the more some properties of these equations improves.

> The sample paths of Brownian motion or fractional Brownian motion and similar processes
have almost surely this kind of irregularity.

[Joint work with Remi Catellier and Khalil Chouk]



A model problem

Consider the linear transport PDE
Ou(t, x) + we- Vu(t,z) = f(x), u(0,-)=0.

Solutions are given explicitly by
t
u(t,z)= / flr+ws —wy)ds =T f(x — wy)

0
where for any continuous function w: [0, 1] — R we define the averaging operator

t

Tof@) = [ fatw)ds,  TEF =TV TS
0

acting on functions (or distributions) f: R?— IR.
Question: What is the relation between w, the regularity of f and that of w(t,-)?

If w is smooth we do not expect anything special to happen and u to have the same regularity

of f.



The averaging operator

>d=1, w,=t. Then if F'(z)= f(x) we have T} f fo "(x+s)ds=F(x+t)— F(x)
and T'": L°° — Lip:

T2 f () =T f )l < flloolz —yl, TS (@) < floolt — 5]

> Tao-Wright: if w “wiggles enough” then T3 maps L? into L9 with ¢’ > g.

> Davie: if w is a sample of BM then a.s. (the exceptional set depends on f)

T f (@) = T f (9)] < Cull fllocla =y [t = s[1/2

Problem: study the mapping properties of 7" with w sample path of a stochastic process.



Irregular functions

Consider

then T f = FY(YF(f)). Mapping properties of T in (H?®),cR spaces can be discussed
in terms of Y'":

1T N = (| (1 + €2 2Y (O FF ()] g

In our setting more convenient to look at the scale (FL%), :

1f lrze = / F(6)](1+ €2)°/2de

since FL® C C'*.

We say that w is (p, v)—irregular if there exists a constant
K such that for all ¢ € R? and 0<s<t<1:

Y5 (O < K1+ €))7t — 5.



Where we find irregularity?

> In d =1 smooth functions are (p, ) irregular for p + ~ = 1. In particular if we insist on
v>1/2 we have p<1/2.

> Not easy to say if a function is irregular.

LLEE WA The fBM of Hurst index H is p—irregular for any p <1/2H.

= there exists functions of arbitrarily high irregularity and arbitrarily L°°-near any given
continuous function.

NGO EWCR An irregular function cannot be too regular.

Proof. If wc C? with afl +~v>1 and o €0, 1], using the Young integral, we find

t
’t o S’ — leia(t o 8)’ — /S eia—iaw,,ﬁdr}/rrw(a)

cro oA

SC Ky ([t =57+t —s]*"7a|*)|wllo(1 +|al)~*—0

if t>s and a < p. This implies that is not possible that 6 > (1 — )/ p.



Facts about irregularity

> For d > 1 smooth functions are not irregular: if |t — s| < 1

t t
/ 6i<a,wr)drg/ e“a’wé)(t—s)dr:(l%—\(a,wé}\)_1Z(1+’aD_p-

> If w is p—irregular and ¢ is a C'! perturbation then w + ¢ is at least p — (1 — ) irregular
since:

t t
Yﬁj@(é):/ €i<£,wr+¢r>dr:/ 6“5’%)(17«5/5%(5)

and we can use Young integral estimates.

> If W is a fBM and ® an adapted smooth perturbation then W + ® is as irregular as W
(via Girsanov theorem).

> Other results (see Catellier thesis): relation with intersection local times, irregularity for -
stable Levy processes, relation with local non-determinism.



Irregularity, what for?

If w is p—irregular then
TV: H5— H5TP
and

TY: FL® — FLYTP,
Proof. Indeed

\ T f g = / A€ (14 1) 2|V (E) (FF ()

<Kwrt—sw/ A€ (1+ 1) |(FE)] = Kult — s f | 71

m More difficult to understand the mapping properties in other spaces, for example
Holder spaces C'®. Only partial results available. Wide open problem.



Transport equation

> Consider the transport equation with a perturbation:
Opu(t, x) +we- Vu(t,z) +b(z) - Vu(t,z) =0, u(0, ) = up.
> In the Lipshitz case there is only one solution u given by the method of characteristics:
u(t, ) =uo(¢y ' (2))
where ¢;(x) =z, is the flow of the ODE

{ iy = b(xy) + by

To—X

> Uniqueness of solutions is related to the uniqueness (and smothness) theory of the flow.



ODEs and the averaging operator

In order to exploit the averaging properties of w in the study of the ODE

'
Ty =To+ / b(xs)ds + wy
0

we rewrite it in order to make the action of the averaging operator explicit: let 0, = x; — wy:

t t
0, = Oy + / b(ws + 0,)ds = Oy + / (d,G)(0)
0 0
where G () =T"b(z) so that d;Gs(x) = f(ws+ x).

If we assume that G is C'7 in time (7 >1/2) with values in a space of regular enough functions
we can study this equation as a Young type equation for 6 € C7.

> Non-linear Young integral:

t
|| @GI@I=1p > o0

This limit exists if 6 € C, and G € C/CY with (14 1) > 1. The integral is in C}'.



Young equations

The integral equation
t
0: =00+ / (dsGs)(0s)
0

is well defined for 6 € C" and G € CCY 1, with (1+v)y > 1.
e Existence of global solutions if G of linear growth.

e Uniqueness if G € C;C% 7. and differentiable flow.

x,loc

e Smooth flow if G e CCYH".

The equation

'
Ty=xTo+ / b(xs)ds + wy
0

has a unique solution for w p—irregular and b € FL™ for « > 1 — p. In this case we can take
0 € C' above and the condition for uniqueness (and Lipshitz flow) is G € C?Ci’ﬂ.



Distributional vectorfields

> Say that z is controlled by w if 0 =2 —w e C7. In this case we have

I.(b) = /0 b(z)ds — /O (AT)(0.)

and the r.h.s. is well defined as soon as T"b € C,'CY.

> If wis p irregular and b€ FL then T*bc C)FLS " so if a+ p>v we have T"b e C]CY.

In this case I..(b) can be extended by continuity to all b€ FL® and in particular we have given

a meaning to
t
/ b(zs)ds
0

when b is a distribution provided x is controlled by a p-irregular path.

> For controlled paths the ODE
t
Ty =10+ / b(xs)ds + wy
0

make sense even for certain distributions b as a Young equation for 6 =z — w.



Transport equations driven by irregular paths

(work of R. Catellier)

We want to give a meaning and study the uniqueness problem for the transport equation
(Or+b(x) -V +w-V)u(t,z) =0

for u e L>° and w € C'7 with ¢ >1/3 such that (w, W) is a geometric o-Hdlder rough path
such that w is p-irregular. For the moment only in the case divb=0.

> Weak formulation: We consider u as a distribution: u:(¢) = [ dze(x) u(t, z) for all
¢ € LY(RY). The integral formulation of the equation is

(o) ule)= [ (V- (bg))dr + / ur (V)

for all ¢ € S(RY) and 0 < s <.

We need to give a meaning to such an integral equation in order to discuss the regularization
by noise phenomenon. (No way out!)

> Possible via the theory of controlled rough paths (G. 2004).



Integration of controlled paths

Let (X, X) be a o-Holder rough path with o >1/3:
Xio=Xp,u+Xus+ (Xp = Xo) @ (Xu = Xy), [ X = Xo| + X[V =0(]t — 5/7)
> We say that y € Cf is controlled by X if there exists y* € Cf such that
Y —ys — Yo (Xe — Xo) =1 ¢k , = O(|t — 5]>7).

> For a controlled path y we can define the integral against X by compensated Riemman
sums:

t
1 X
[t:/o ySdXS . _hénzi: yti(Xti—l—l - th') + Y, Xti—l—l;ti

> This integral is the only function (up to constants) which has the following property
I — I = yo(Xy — XJ) + y XX, o+ O(|t — 5.

In particular, the integral is itself controlled by X and ¥ = .



Rough solutions to the transport equation

LN N We say that u is a function controlled by w if for all ¢ € S(R?) we have
u(p) — us(p) =u () (we — ws) +uf ()

where u’(yp) € C? and \ufs(go)\ <|t —s|?.

Y

ISRl N /f 1 is controlled we say that it is a L°° solution of the rough transport equation
(RTE) if

(o) = uslo)= [ (V- (bi))dr + / " (Ve)d,

holds for all o € S(RY), 0 < s<t.

Remark: If 0 >1 /2 we can just assume that u;(V¢) € Cf so that the rough integral becomes
a Young integral.

Equivalently, u is a solution to the RTE iff

ut(p) —us(p) = /t ur(V - (bp))dr +us(Vp) (we — ws) + US(V290)Wt,S +O(Jt - 3’30)



Regularisation for RTE

WOERNN /f b is Lipshitz there exists a solution to the RTE given by u(t, ) =uo(¢; '(x)).

LI WBN Let be FLY for a >0 and oo+ p >3 /2 and let w be p-irregular. Then there
exists a unique solution to the RTE given by the method of characteristics.

Proof. Approximate b by b., then by the previous Lemma there exists a unique solution .
to the RTE. Analysis of the approximate flow ¢. shows that this solution converges to a
controlled solution u of the RTE with vectorfield b. Since ¢ is Lipschitz we can prove again

uniqueness. [
FENET( @ PA The above result is path-wise. In particular b can depend on w.

NENEL@ER If be CY, b deterministic and w is a fBm of Hurst index H then the uniqueness
holds almost surely when o >1—1/(2H) and a > 0. This recovers the results of Flandoli—
Gubinelli—Priola for the Brownian case but extend them well beyond the Brownian context.



Dispersive equations modulated by irregular signals

(joint work with K. Chouk)
Two simple dispersive models with p-irregular modulation w:

e Non-linear Schédinger equation: z € T, R,IR?, ¢t >0
Opo(t, x) =iAp(t, x)0wws +i|o(t, z)|P~2p(t, z).
e Korteweg—de Vries equation: xt € T, IR, t >0
Owu(t, z) = O2u(t, x)Opw; + Oz (u(t, z))2.

To be compared to the non-modulated setting where 0,w; = 1 and studied in the scale of
(H?®)s spaces.

The equations are understood in the mild formulation
t
u(t) = Uu(0) + / U (U) =1, (u(s))2ds.
0

with U = e?9_ (similarly for NLS). Here w can be an arbitrary continuous function.



Young formulation of KdV

Rewrite the mild formulation as (U}" :eaiwt)

v(t) = (U#) " tu(t) = u(0) +/Ot (U~ 10,(U¥v(s))?ds.

Theorem 14 gK=s

Xi(p)=Xs(, 9) —/Ot (US)~10.(Usp)ds

If w is p irregular then X € C'7 Lipjo.(H®) for > —p and p >3 /4.

For v € C7H® we can give a meaning to the non-linearity as a Young integral
t t
| o re)Ps = [ (@X)0(s): =lim S Xi (0(t) = X (0(t)
The continuity of the Young integral implies that if v,, — v in CYH® then

/t (U;U)_lam(Ug“v(s))st:lim/t (U710, (U¥vn(s))?ds
0 n Jo



Young equation and well-posedness
LI The Young equation for ve CTH® :

o) =u(0)+ (dX)(0(s))

has local solutions for initial conditions in H® with locally Lipshitz flow. Uniqueness in
C7H*.

> Equivalent “differential” formulation:

v(t) —v(s) =Xis(v(s)) +O(|t = s*7),  v(0)=wug

Regularization by modulation. In the non-modulated case it is known that there cannot
be a continous flow for a« <—1/2on T and a < —3/4 on RR.

> Global solutions thanks to the L? conservation and smoothing for oz > 0 or an adaptation
of the I-method for —3/2<a<0and a>—p/(3 —27).

> NLS: 1d, global solutions for « >0 and p >1/2. 2d, local solutions for o> 1/2.

> Global solutions for 1d NLS with o > 0 come from a smoothing effect of the non—linearity
which is due to the irregularity of the driving function.



Strichartz estimates

A different line of attack to the modulated Schrédinger equation comes from the application
of the following Strichartz type estimate which can be proved under the same p-irregularity
assumption.

LRI Let T >0, p € (2,5],p>min (2 — 2, 1) then there exists a finite constant

2 p
Cw.17>0 and v*(p) > 0 such that the following inequality holds:

for all v € L'([0,T], L%(R)).

< Cow TP Y| L1011, L2®R))
LP([0,T], L27(R))

/' US(U2) gy d s

0

> In the deterministic case the Strichartz estimate does not have the factor of 7" in the
critical case p=>5. This is a sign of a mild regularization effect of the noise.

REIGETL @A Similar path—wise statements (in w) holds true for averaging lemmas in kinetic

equations with irregular perturbations (similar to the results of Lions—Perthame—Souganidis
in the Brownian case).



Application of Strichartz estimates

As an application we obtain global well-posedness for the modulated NLS equation with
generic power nonlinearity i e: N'(¢) = |¢|* ¢: (Debussche—de Bouard, Debussche—Tsutsumi)

LGRS Let e (1,4], p=p+1, p>min(1,3/2 — %) and u’ € L*(R) then there
exists T* >0 and a unique v € LP([0,T], L??(R)) such that the following equality holds:

t
= Ug““u0+i/ U2(U2) 1 (|ug|P ug) ds
0

for all t € [0,T*]. Moreover we have that || u;||r2®)= || vol||L2(r) and then we have a global
unique solution u € LY, ([0, +00), L?P(R)) and u € C([0, +00), L*(R)). If u® € HY(R) then

loc

we C(]0,00), HY(R)).



Thanks.



