What is stochastic quantisation?

Euclidean quantum fields

a particular class of probability measures on $\mathcal{S}'(\mathbb{R}^d)$ introduced in the 70s-80s as a tool to construct models of (bosonic) quantum field theories

$$\int_{\mathscr{S}'(\mathbb{R}^d)} O(\varphi) \nu(\mathrm{d}\varphi) = \frac{1}{Z} \int_{\mathscr{S}'(\mathbb{R}^d)} O(\varphi) e^{-S(\varphi)} \mathrm{d}\varphi,$$

$$S(\varphi) = \int_{\mathbb{R}^d} \frac{1}{2} |\nabla \varphi(x)|^2 + \frac{1}{2} m^2 |\varphi(x)|^2 + V(\varphi(x)) \mathrm{d}x$$

for some non-linear function $V: \mathbb{R} \to \mathbb{R}_{\geq 0}$

ill-defined representation

- large scale problems: the integral in $S(\phi)$ extends over all the space, sample paths not expected to decay at infinity in any way.
- small scale problems: sample paths are not expected to be functions, but only distributions, the quantity $V(\varphi(x))$ does not make sense.

some history

- \triangleright Construct rigorously QM models which are compatible with special relativity, (finite speed of signals and Poincaré covariance of Minkowski space \mathbb{R}^{n+1}).
- \triangleright Quantum field theory (QM with ∞ many degrees of freedom)
- \triangleright Constructive QFT program ('70-'80): hard to find models of such axioms. Examples in \mathbb{R}^{1+1} were found in the '60. Glimm, Jaffe, Nelson, Segal, Guerra, Rosen, Simon, and many others...
- \triangleright Euclidean rotation: $t \rightarrow it = x_0$ (imaginary time). $\mathbb{R}^{n+1} \rightarrow \mathbb{R}^d$ Minkowski \rightarrow Euclidean
- > Osterwalder-Schrader theorem : gives precise condition to perform the passage to/from Euclidean space (OS axioms for Euclidean correlation function).
- \triangleright High point of EQFT: construction of Φ_3^4 (Euclidean version of a scalar field in \mathbb{R}^{2+1} Minkowski space). $(\Phi_3^4)_{\Lambda}$ Glimm ('69). Glimm, Jaffe. Feldman ('74), Y.M.Park ('75) $(\Phi_3^4)_{\mathbb{R}^3}$ Feldman, Osterwalder ('76). Magnen, Senéor ('76). Seiler, Simon ('76)

 \triangleright Other constructions of Φ_3^4 . Benfatto, Cassandro, Gallavotti, Nicolò, Olivieri, Presutti, Scacciatelli ('80) Brydges, Fröhlich, Sokal ('83) Battle, Federbush ('83) Williamson ('87) Balaban ('83) Gawedzki, Kupiainen ('85) Watson ('89) Brydges, Dimock, Hurd ('95)

Gaussian free field (GFF)

 \triangleright simplest example of EQFT. We take a Gaussian measure μ on $\mathscr{S}'(\mathbb{R}^d)$ with covariance

$$\int \varphi(x)\varphi(y)\mu(d\varphi) = G(x-y) = \int_{\mathbb{R}^d} \frac{e^{ik(x-y)}}{m^2 + |k|^2} \frac{dk}{(2\pi)^d} = (m^2 - \Delta)^{-1}(x-y), \quad x, y \in \mathbb{R}^d$$

and zero mean. Reflection positive, Eucl. covariant and regular. This is the GFF with mass m > 0.

by this measure can be used to construct a QFT in Minkowski space but unfortunately this theory is free, i.e. there is no interaction.

 \triangleright note that $G(0) = +\infty$ if $d \ge 2$, this implies that the GFF is not a function.

 \triangleright in particular GFF is a distribution of regularity $\alpha = (2-d)/2 - \kappa$ for any small $\kappa > 0$, e.g. locally in the sense of the scale of Besov–Holder spaces $(B_{\infty,\infty}^{\alpha})_{\alpha \in \mathbb{R}}$

non-Gaussian Euclieand fields

1 go on a periodic lattice: $\mathbb{R}^d \to \mathbb{Z}^d_{\epsilon,L} = (\epsilon \mathbb{Z}/2\pi L\mathbb{N})^d$ with spacing $\epsilon > 0$ and side L.

$$\int F(\varphi) \nu^{\varepsilon,L}(\mathrm{d}\varphi) = \frac{1}{Z_{\varepsilon,L}} \int_{\mathbb{R}^{\mathbb{Z}_{\varepsilon,L}^d}} F(\varphi) e^{-\frac{1}{2} \sum_{x \in \mathbb{Z}_{\varepsilon,L}^d} |\nabla_{\varepsilon} \varphi(x)|^2 + m^2 \varphi(x)^2 + V_{\varepsilon}(\varphi(x))} \mathrm{d}\varphi$$

 ϵ is an UV regularisation and L the IR regularisation.

2 choose V_{ε} appropriately so that $v^{\varepsilon,L} \to v$ to some limit as $\varepsilon \to 0$ and $L \to \infty$. E.g. take V_{ε} polynomial bounded below. d = 2,3.

$$V_{\varepsilon}(\xi) = \lambda(\xi^4 - a_{\varepsilon}\xi^2)$$

The limit measure will depend on $\lambda > 0$ and on $(a_{\epsilon})_{\epsilon}$ which has to be s.t. $a_{\epsilon} \to +\infty$ as $\epsilon \to 0$. It is called the Φ_d^4 measure

3 study the possible limit points (uniqueness? non-uniqueness? correlations? description?)

stochastic quantisation

Parisi-Wu ('81) introduced a stationary stochastic evolution associated with the EQF

$$\partial_t \Phi(t,x) = -\frac{\delta S(\Phi(t,x))}{\delta \Phi} + 2^{1/2} \eta(t,x), \quad t \geqslant 0, x \in \mathbb{R}^d,$$

with η space-time white noise

$$\langle \Phi(t,x_1)\cdots\Phi(t,x_n)\rangle = \frac{1}{Z}\int_{\mathscr{S}'(\mathbb{R}^d)} \varphi(t,x_1)\cdots\varphi(t,x_n)e^{-S(\varphi)}d\varphi, \quad t\in\mathbb{R}$$

transport interpretation: the map

$$\eta \mapsto \Phi(t, \cdot)$$

sends the Gaussian measure of the space-time white noise to the EQF measure

an history of stochastic quantisation (personal & partial)

- 1984 Parisi/Wu SQ (for gauge theories)
- 1985 Jona-Lasinio/Mitter "On the stochastic quantization of field theory" (rigorous SQ for Φ_2^4 on bounded domain)
- 1988 Damgaard/Hüffel review book on SQ (theoretical physics)
- 1990 Funaki Control of correlations via SQ (smooth reversible dynamics)
- 1990–1994 Kirillov "Infinite-dimensional analysis and quantum theory as semimartingale calculus", "On the reconstruction of measures from their logarithmic derivatives", "Two mathematical problems of canonical quantization."
- 1993 Ignatyuk/Malyshev/Sidoravichius "Convergence of the Stochastic Quantization Method I,II" [Grassmann variables + cluster expansion]
- 2000 Albeverio/Kondratiev/Röckner/Tsikalenko "A Priori Estimates for Symmetrizing Measures..." [Gibbs measures via IbP formulas]
- 2003 Da Prato/Debussche "Strong solutions to the stochastic quantization equations"
- 2014 Hairer Regularity structures, local dynamics of Φ_3^4
- 2017 Mourrat/Weber coming down from infinity for Φ_3^4
- 2018 Albeverio/Kusuoka "The invariant measure and the flow associated to $\Phi_3^4...$ "
- 2021 Hofmanova/G. Global space-time solutions for Φ_3^4 and verification of axioms
- 2020-2021 Chandra/Chevyrev/Hairer/Shen SQ for Yang–Mills 2d/3d.

an existence result for Φ_3^4

in Parisi–Wu's approach the SDE is a Langevin equation of the form

$$\frac{\mathrm{d}\Phi(t,x)}{\mathrm{d}t} = -\nabla_{\varphi} S_{\varepsilon}(\Phi(t,x)) + 2^{1/2}\xi(t,x), \quad x \in \Lambda_{\varepsilon,L} = \mathbb{Z}_{\varepsilon,L}^{d}, \quad t \geqslant 0$$

here $\xi(t,x)$ is a space-time white noise \cdot if $\text{Law}(\Phi(t=0)) = v^{\epsilon,L}$ then $\text{Law}(\Phi(t)) = v^{\epsilon,L}$ for all $t \geqslant 0$ \cdot the dynamics give a map $\hat{G}_{\epsilon,L}$ which transform a Gaussian measure into $v^{\epsilon,L}$ \cdot this map passes to the limit as $\epsilon \to 0$ and $L \to \infty$ and is associated to an SPDE in the limit

$$\frac{d\Phi(t,x)}{dt} = -(m^2 - \Delta)\Phi(t,x) - V'(\Phi(t,x))'' + 2^{1/2}\xi(t,x)$$

Theorem. d=3 provided $(a_{\varepsilon})_{\varepsilon}$ is chosen approp. there exist a stationary in space and time solution to the limit SPDE. the law of the solution at any given time is a non-Gaussian EQFT ν (without rotation invariance) with IbP formula:

$$\int \nabla_{\varphi} F(\varphi) \nu(\mathrm{d}\varphi) = \int F(\varphi) (-(m^2 - \Delta)\varphi - \lambda \llbracket \varphi^3 \rrbracket) \nu(\mathrm{d}\varphi).$$

features of stochastic quantisation

the interacting field ϕ is expressed as a function of the Gaussian free field X:

$$\phi(t) = F(X), \quad v = \text{Law}(\phi(t)) = F_*\text{Law}(X) = F_*\text{GFF}$$

- estimates on φ obtained via two ingredients:
 - pathwise PDE estimates for the map F (in weighted Besov spaces)
 - probabilistic estimates for the GFF X
- coupling (ϕ, X)

$$\phi = X + \psi$$

where ψ is a random field which is more regular (i.e. smaller at small scale) than X (link with asymptotic freedom/perturbation theory) note that

$$\nu = \text{Law}(\varphi) \not\ll \text{Law}(X(t)) = \text{GFF}$$

estimates

 \triangleright decomposition: $\phi = X + \psi$

$$\partial_t \psi = \frac{1}{2} \left[(\Delta_x - m^2) \psi - V'(X + \psi) \right]$$

▷ PDE estimates:

$$\|\psi(t)\| \leqslant H(\|X\|)$$

b tightness:

$$\int \|\varphi\|^p \nu(\mathrm{d}\varphi) \lesssim \mathbb{E}\|X\|^p + \mathbb{E}\|\psi(t)\|^p \leqslant \mathbb{E}\|X\|^p + \mathbb{E}[H(\|X\|)^p] < \infty$$

$$\int e^{c\|\phi\|^{\alpha}} \nu(\mathrm{d}\phi) < \infty$$

[Moinat/Weber, Hofmanova/G., Hairer/Steele]

stochastic analysis

In the '40s Ito introduced an *analysis* adapted to stochastic processes of diffusion:

Newton's calculus	Ito's calculus			
planet orbit	object	Markov diffusion		
$(x,y) \in \mathcal{O} \subseteq \mathbb{R}^2$	global description	$P_t(x, \mathrm{d}y)$		
$\alpha(x-x_0)^2 + \beta(y-y_0)^2 = \gamma$		$P_{t+s}(x, dy) = \int P_s(x, dz) P_t(z, dy)$		
t	change parameter	t		
$x(t+\delta t) \approx x(t) + a\delta t + o(\delta t)$	local description	$P_{\delta t}(x, \mathrm{d}y) \approx e^{-\frac{(y-x-b(x)\delta t)a(x)^{-1}(y-x-b(x)\delta t)}{2\delta t}} \frac{\mathrm{d}y}{Z_x(\delta t)^{d/2}}$		
$at + bt^2 + \cdots$	building block	$(W_t)_t$		
$(\ddot{x}(t), \ddot{y}(t)) = F(x(t), y(t))$	local/global link	$dX_t = a(X_t)dW_t + b(X_t)dt$		

> other examples: rough paths, regularity structures, SLE,...

stochastic quantisation as a stochastic analysis?

	stoch, quantisation			
object	EQF			
global description	$\nu \in \operatorname{Prob}(\mathscr{S}'(\mathbb{R}^d))$			
	$\frac{1}{Z}\int_{\mathscr{S}'(\mathbb{R}^d)}O(\varphi)e^{-S(\varphi)}\mathrm{d}\varphi$			
change parameter	t			
local description	$\phi(t+\delta t) \approx \alpha \phi(t) + \beta \delta X(t) + \cdots$			
building block	$(X(t))_t$ $\partial_t X = \frac{1}{2} [(\Delta_x - m^2)X] + \xi$			
local/global link	$\partial_t \phi = \frac{1}{2} [(\Delta_x - m^2) \phi - V'(\phi)] + \xi$			

stochastic analysis of EQFs

parabolic stochastic quantisation

$$\partial_t \Phi(t) = \frac{1}{2} \left[(\Delta_x - m^2) \Phi(t) - V'(\Phi(t)) \right] + \xi(t)$$

[MG, M. Hofmanová · Global Solutions to Elliptic and Parabolic Φ^4 Models in Euclidean Space · Comm. Math. Phys. 2019 | MG, M. Hofmanová · A PDE Construction of the Euclidean Φ_3^4 Quantum Field Theory · Comm. Math. Phys. 2021]

• canonical stochastic quantisation · singular stochastic wave equation

$$\partial_t^2 \phi(t) + \partial_t \phi(t) = \frac{1}{2} [(\Delta_x - m^2) \phi(t) - V'(\phi(t))] + \xi(t)$$

[MG, H. Koch, T. Oh · Renormalization of the two-dimensional stochastic non-linear wave equations · Trans. Am. Math. Soc. 2018 | MG, H. Koch, and T. Oh · Paracontrolled Approach to the Three-Dimensional Stochastic Nonlinear Wave Equation with Quadratic Nonlinearity · Jour. Europ. Math. Soc. 2022]

• elliptic stochastic quantisation · supersymmetric proof (Parisi–Sourlas)

$$-\Delta_z \phi(z) = \frac{1}{2} [(\Delta_x - m^2) \phi(z) - V'(\phi(z))] + \xi(z), \quad z \in \mathbb{R}^2$$

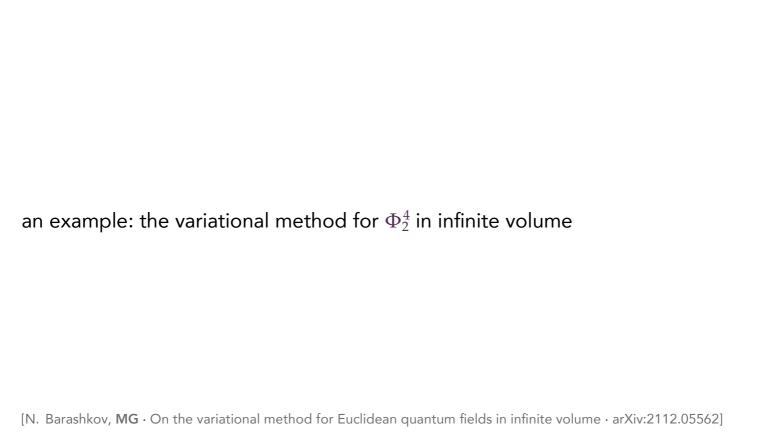
[S. Albeverio, F. De Vecchi, MG · Elliptic Stochastic Quantization · Ann. Prob. 2020]

• variational method \cdot stochastic control problem $\cdot \Gamma$ -convergence

$$\log \int e^{f(\varphi)-S(\varphi)} d\varphi = \inf_{u} \mathbb{E} \left[f(\Phi_{\infty}^{u}) + V(\Phi_{\infty}^{u}) + \frac{1}{2} \int_{0}^{\infty} |u_{s}| ds \right]$$

scale parameter $t \in [0, \infty] \cdot \Phi_t^u = X_t + \int_0^t J_s u_s ds$

[N. Barashkov, $MG \cdot A$ Variational Method for $\Phi_3^4 \cdot Duke Math. Jour. 2020]$



Boué-Dupuis formula

Theorem. Let $(B_t)_{t\geqslant 0}$ be a Brownian motion on \mathbb{R}^n , then for any bounded $F:C(\mathbb{R}_+;\mathbb{R}^n)\to\mathbb{R}$ we have

$$\log \mathbb{E}[e^{F(B_{\bullet})}] = \sup_{u \in \mathbb{H}_a} \mathbb{E}\left[F(B_{\bullet} + I(u)_{\bullet}) - \frac{1}{2} \int_0^{\infty} |u_s|^2 ds\right]$$

with $u: \Omega \times \mathbb{R}_+ \to \mathbb{R}^n$ adapted to B and with

$$I(u)_t \coloneqq \int_0^t u_s \mathrm{d}s.$$

$$\frac{1}{2} \int_0^\infty |u_s|^2 ds \approx H(\text{Law}(B_{\bullet} + I(u)_{\bullet}) | \text{Law}(B_{\bullet})).$$

[M. Boué and P. Dupuis, A Variational Representation for Certain Functionals of Brownian Motion, Ann. Prob. 26(4), 1641–59]

Boué-Dupuis for the d=2 GFF

$$\mathbb{E}[W_t(x)W_s(y)] = (t \wedge s)(m^2 - \Delta)^{-1}(x - y), \quad t, s \in [0, 1].$$

The BD formula gives

$$-\log \int e^{-F(\phi)} \mu(d\phi) = -\log \mathbb{E}[e^{-F(W_1)}] = \inf_{u \in \mathbb{H}_a} \mathbb{E}\Big[F(W_1 + Z_1) + \frac{1}{2} \int_0^1 ||u_s||_{L^2}^2 ds\Big],$$

where

$$Z_t = (m^2 - \Delta)^{-1/2} \int_0^t u_s ds, \qquad u_t = (m^2 - \Delta)^{1/2} \dot{Z}_t$$

$$-\log \mathbb{E}[e^{-F(W_1)}] = \inf_{Z \in H^a} \mathbb{E}[F(W_1 + Z_1) + \mathscr{E}(Z_{\bullet})],$$

with

$$\mathscr{E}(Z_{\bullet}) := \frac{1}{2} \int_{0}^{1} \|(m^{2} - \Delta)^{1/2} \dot{Z}_{s}\|_{L^{2}}^{2} ds = \frac{1}{2} \int_{0}^{1} (\|\nabla \dot{Z}_{s}\|_{L^{2}}^{2} + m^{2} \|\dot{Z}_{s}\|_{L^{2}}^{2}) ds$$

Φ_2^4 in a bounded domain Λ

Fix a compact region $\Lambda \subseteq \mathbb{R}^2$ and consider the Φ_2^4 measure θ_Λ on $\mathscr{S}'(\mathbb{R}^2)$ with interaction in Λ and given by

$$\theta_{\Lambda}(d\phi) := \frac{e^{-\lambda V_{\Lambda}(\phi)} \mu(d\phi)}{\int e^{-\lambda V_{\Lambda}(\phi)} \mu(d\phi)} \qquad \phi \in \mathcal{S}'(\mathbb{R}^2)$$
 (1)

with interaction potential $V_{\Lambda}(\phi) := \int_{\Lambda} \phi^4 - c \int_{\Lambda} \phi^2$. For any $f: \mathcal{S}'(\mathbb{R}^d) \to \mathbb{R}$ (non necessarily linear) let

$$e^{-W_{\Lambda}(f)} := \int e^{-f(\phi)} \theta_{\Lambda}(d\phi).$$

We have the variational representation, $Z = Z_1$, $Z_{\bullet} = (Z_t)_{t \in [0,1]}$:

$$\mathscr{W}_{\Lambda}(f) = \inf_{Z \in H^a} F^{f,\Lambda}(Z_{\bullet}) - \inf_{Z \in H^a} F^{0,\Lambda}(Z_{\bullet})$$

where

$$F^{f,\Lambda}(Z_{\bullet}) := \mathbb{E}[f(W+Z) + \lambda V_{\Lambda}(W+Z) + \mathscr{E}(Z_{\bullet})].$$

renormalized potential

$$V_{\Lambda}(W+Z) = \int_{\Lambda} \left\{ \underbrace{W^4 - cW^2}_{\mathbb{W}^4} + 4 \underbrace{\left[W^3 - \frac{c}{4}W\right]}_{\mathbb{W}^3} Z + 6 \underbrace{\left[W^2 - \frac{c}{6}\right]}_{\mathbb{W}^2} Z^2 + 4WZ^3 + Z^4 \right\}$$

take $c = 12\mathbb{E}[W^2(x)] = +\infty$

$$V_{\Lambda}(W+Z) = \int_{\Lambda} \left\{ 4 \mathbb{W}^3 Z + 6 \mathbb{W}^2 Z^2 + 4WZ^3 + Z^4 \right\} + \cdots$$

$$\mathbb{W}^n \in \mathscr{C}^{-n\kappa}(\Lambda) = B_{\infty,\infty}^{-n\kappa}(\Lambda)$$

Here $B_{\infty,\infty}^{-\kappa}(\Lambda)$ is an Hölder-Besov space. A distribution $f \in \mathcal{F}'(\mathbb{T}^d)$ belongs to $B_{\infty,\infty}^{\alpha}(\Lambda)$ iff for any $n \geqslant 0$

$$\|\Delta_n f\|_{L^\infty} \leqslant (2^n)^{-\alpha} \|f\|_{B^{\alpha}_{\infty,\infty}(\Lambda)}$$

where $\Delta_n f = \mathscr{F}^{-1}(\varphi_n(\cdot)\mathscr{F}f)$ and φ_n is a function supported on an annulus of size $\approx 2^n$. We have $f = \sum_{n \geq 0} \Delta_n f$. If $\alpha > 0$ $B_{\infty,\infty}^{\alpha}(\mathbb{T}^d)$ is a space of functions otherwise they are only distributions.

Euler-Lagrange equation for minimizers

Lemma. There exists a minimizer $Z = Z^{f,\Lambda}$ of $F^{f,\Lambda}$. Any minimizer satisfies the Euler–Lagrange equations

$$\mathbb{E}\left(4\lambda\int_{\Lambda} Z^{3}K + \int_{0}^{1}\int_{\Lambda} (\dot{Z}_{s}(m^{2} - \Delta)\dot{K}_{s})ds\right)$$

$$= \mathbb{E}\left(\int_{\Lambda} f'(W + Z)K + \lambda\int_{\Lambda} (\mathbb{W}^{3} + \mathbb{W}^{2}Z + 12WZ^{2})K\right)$$

for any K adapted to the Brownian filtration and such that $K \in L^2(\mu, H)$.

 \triangleright technically one really needs a relaxation to discuss minimizers, we ignore this all along this talk. the actualy object of study is the law of the pair (\mathbb{W}, \mathbb{Z}) and not the process \mathbb{Z} . (similar as what happens in the Φ_3^4 paper)

apriori estimates

we use polynomial weights $\rho(x) = (1 + \ell |x|)^{-n}$ for large n > 0 and small $\ell > 0$.

Theorem. There exists a constant C independent of $|\Lambda|$ such that, for any minimizer Z of $F^{f,\Lambda}(\mu)$ and any spatial weight $\rho: \Lambda \to [0,1]$ with $|\nabla \rho| \leqslant \epsilon \, \rho$ for some $\epsilon > 0$ small enough, we have

$$\mathbb{E}\left[4\lambda \int_{\Lambda} \rho Z_1^4 + \int_0^1 \int_{\mathbb{R}^2} ((m^2 - \Delta)^{1/2} \rho^{1/2} \dot{Z}_s)^2 ds\right] \leqslant C.$$

Proof. test the Euler–Lagrange equations with $K = \rho Z$ and then estimate the bad terms with the good terms and objects only depending on \mathbb{W} , e.g.

$$\left| \int_{\Lambda} \rho \, \mathbb{W}^{3} Z \right| \leq C_{\delta} \| \mathbb{W}^{3} \|_{H^{-1}(\rho^{1/2})}^{2} + \delta \| Z \|_{H^{1}(\rho^{1/2})}^{2},$$

$$\left| \int_{\Lambda} \rho \, \mathbb{W}^{2} Z^{2} \right| \leq C_{\delta} \| \rho^{1/8} \, \mathbb{W}^{2} \|_{C^{-\epsilon}}^{4} + \delta (\| \rho^{1/4} \, \bar{Z} \|_{L^{4}}^{4} + \| \rho^{1/2} \, \bar{Z} \|_{H^{2\epsilon}}^{2}), \cdots$$

tightness and bounds

$$\mathcal{W}_{\Lambda}(f) = \inf_{Z} F^{f,\Lambda}(Z) - \inf_{Z} F^{0,\Lambda}(Z) = F^{f,\Lambda}(Z^{f,\Lambda}) - F^{0,\Lambda}(Z^{0,\Lambda})$$

Therefore

$$F^{f,\Lambda}(Z^{f,\Lambda}) - F^{0,\Lambda}(Z^{f,\Lambda}) \leq \mathcal{W}_{\Lambda}(f) \leq F^{f,\Lambda}(Z^{0,\Lambda}) - F^{0,\Lambda}(Z^{0,\Lambda})$$

and since, for any g,

$$F^{f,\Lambda}(Z^{g,\Lambda}) - F^{0,\Lambda}(Z^{g,\Lambda}) = \mathbb{E}[f(W + Z^{g,\Lambda}) + \lambda V_{\Lambda}(W + Z^{g,\Lambda}) + \mathcal{E}(Z^{g,\Lambda})]$$
$$-\mathbb{E}[\lambda V_{\Lambda}(W + Z^{g,\Lambda}) + \mathcal{E}(Z^{g,\Lambda})] = \mathbb{E}[f(W + Z^{g,\Lambda})]$$

$$\mathbb{E}[f(W+Z^{f,\Lambda})] \leqslant \mathcal{W}_{\Lambda}(f) \leqslant \mathbb{E}[f(W+Z^{0,\Lambda})]$$

Consequence: tightness of $(\theta_{\Lambda})_{\Lambda}$ in $\mathcal{S}'(\mathbb{R}^2)$ and optimal exponential bounds (cfr. Hairer/Steele)

$$\sup_{\Lambda} \int \exp(\delta \|\phi\|_{W^{-\kappa,4}(\rho)}^4) \theta_{\Lambda}(d\phi) < \infty.$$

Euler-Lagrange equation in infinite volume

moreover

$$\int f(\phi) \,\theta_{\Lambda}(\mathrm{d}\phi) = \mathbb{E}[f(X + Z^{0,\Lambda})]$$

the family $(Z^{f,\Lambda})_{\Lambda}$ is converging (provided we look at the relaxed problem) and any limit point $Z = Z^f$ satisfies a EL equation:

$$\mathbb{E}\left\{\int_{\mathbb{R}^2} f'(W+Z) K + 4\lambda \int_{\mathbb{R}^2} \left[(W+Z)^3 \right] K + \int_0^1 \int_{\mathbb{R}^2} \dot{Z}_s(m^2 - \Delta) \dot{K}_s ds \right\} = 0$$

for any test process K (adapted to \mathbb{W} and to \mathbb{Z}).

a kind of stochastic "elliptic" problem

the stochastic equation

rewrite the EL equation as

$$\mathbb{E}\left\{\int_{0}^{1} \int_{\mathbb{R}^{2}} \left(f'(W_{1} + Z_{1}) + 4\lambda [(W_{1} + Z_{1})^{3}] + \dot{Z}_{s}(m^{2} - \Delta)\right) \dot{K}_{s} ds\right\} = 0$$

then

$$\mathbb{E}\left\{\int_{0}^{1} \int_{\mathbb{R}^{2}} \mathbb{E}\left[f'(W_{1}+Z_{1})+4\lambda[(W_{1}+Z_{1})^{3}]+(m^{2}-\Delta)\dot{Z}_{s}\middle|\mathscr{F}_{s}\right]\dot{K}_{s}ds\right\}=0$$

which implies that

$$(m^2 - \Delta)\dot{Z}_s = -\mathbb{E} \left[f'(W_1 + Z_1) + 4\lambda [(W_1 + Z_1)^3] \middle| \mathcal{F}_s \right]$$

Open questions

- Uniqueness??
- Γ -convergence of the variational description of $\mathcal{W}_{\Lambda}(f)$?

not clear. We lack sufficient knowledge of the dependence on f of the solutions to the EL equations above.

exponential interaction

we can study similarly the model with

$$V^{\xi}(\varphi) = \int_{\mathbb{R}^2} \xi(x) [\exp(\beta \varphi(x))] dx$$

for $\beta^2 < 8\pi$ and $\xi: \mathbb{R}^2 \to [0,1]$ a smooth spatial cutoff function

$$V^{\xi}(W+Z) = \int_{\mathbb{R}^2} \xi(x) \exp(\beta Z(x)) \underbrace{\left[\exp(\beta W(x))\right] dx}_{M^{\beta}(dx)}$$

$$= \int_{\mathbb{R}^2} \xi(x) \exp(\beta Z(x)) M^{\beta}(dx), \quad \text{[Gaussian multiplicative chaos]}$$

BD formula

$$\mathcal{W}^{\xi, \exp}(f) = -\log \int \exp(-f(\phi)) d\nu^{\xi}$$

$$= \inf_{Z \in \mathfrak{H}_a} \mathbb{E} \left[f(W+Z) + \int \xi \exp(\beta Z) dM^{\beta} + \frac{1}{2} \int_0^1 \int ((m^2 - \Delta)^{1/2} \dot{Z}_t)^2 dt \right]$$

 \triangleright the function $Z \mapsto V^{\xi}(W+Z)$ is convex!

variational description of the infinite volume limit

 \triangleright thanks to convexity the EL equations have a unique limit Z in the ∞ volume limit

 \triangleright moreover we have the Γ -convergence of the variational description:

$$\mathcal{W}_{\mathbb{R}^{2}}(f) = \lim_{n \to \infty} \left[-\log \int \exp(-f(\varphi)) d\nu^{\xi_{n}, \exp} \right]$$
$$= \lim_{n \to \infty} \left[\mathcal{W}_{\xi_{n}}(f) - \mathcal{W}_{\xi_{n}}(0) \right] = \inf_{K} G^{f, \infty, \exp}(K)$$

with functional

$$G^{f,\infty,\exp}(K) = \mathbb{E}\Big[f(W+Z+K) + \underbrace{\int \exp(\beta Z)(\exp(\beta K) - 1)dM^{\beta} + \mathcal{E}(K)}_{\geqslant 0}\Big]$$

which depends via Z on the infinite volume measure for the exp interaction.

stochastic analysis of Grassmann variables

EQF with Fermion fields involve anti-commuting variables (Grassmann algebras)

$$\psi_1\psi_2 = -\psi_2\psi_1$$

there is a notion of Grassmann Gaussian variables (and Brownian motion)

$$\mathbb{E}[\psi_1 \cdots \psi_n] = \sum_{\text{pairs}(i,j)} (-1)^{\#} \mathbb{E}[\psi_i \psi_j]$$

stochastic analysis on Grassmann algebras and stochastic quantisation of fermionic EQFs

[S. Albeverio, L. Borasi, F. De Vecchi, MG · Grassmannian stochastic analysis and the stochastic quantization of Euclidean Fermions · preprint 2021]

some papers

- MG and M. Hofmanová. "A PDE Construction of the Euclidean Φ_3^4 Quantum Field Theory." Communications in Mathematical Physics 384 (1): 1–75 (2021). https://doi.org/10.1007/s00220-021-04022-0.
- S. Albeverio, F. C. De Vecchi, and MG, `Elliptic Stochastic Quantization', *Annals of Probability* 48, no. 4 (July 2020): 1693–1741, https://doi.org/10.1214/19-AOP1404.
- S. Albeverio et al., `Grassmannian Stochastic Analysis and the Stochastic Quantization of Euclidean Fermions' (2020) arXiv:2004.09637
- MG, H. Koch, and T. Oh, `Renormalization of the Two-Dimensional Stochastic Non-linear Wave Equations', Transactions of the American Mathematical Society, 2018, 1, https://doi.org/10.1090/tran/7452.
- N. Barashkov and MG, `A Variational Method for Φ_3^4 ', *Duke Mathematical Journal* 169, no. 17 (November 2020): 3339–3415, https://doi.org/10.1215/00127094-2020-0029.
- N. Barashkov and MG, `The Φ_3^4 Measure via Girsanov's Theorem', E.J.P 2021 (arXiv:2004.01513).
- N. Barashkov's PhD thesis, University of Bonn, 2021.
- N. Barashkov and MG. On the Variational Method for Euclidean Quantum Fields in Infinite Volume (2021) arXiv:2112.05562
- N. Barashkov, 'A Stochastic Control Approach to Sine Gordon EQFT (2022) arXiv:2203.06626

thanks.