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Euclidean quantum fields

a particular class of probability measures on .#’(R") introduced in the 70s-80s as a
tool to construct models of (bosonic) quantum field theories

_1 ~5(¢)
[ OOV =] O(g)e™*Pdg,

S(¢) = [, 2 V()2 +3mlg()P+V (p(x))dx

for some non-linear function V:R - R

ill-defined representation

- large scale problems: the integral in S(¢) extends over all the space, sample
paths not expected to decay at infinity in any way.

- small scale problems: sample paths are not expected to be functions, but only
distributions, the quantity V(¢ (x)) does not make sense.



some history

> Construct rigorously QM models which are compatible with special relativity,
(finite speed of signals and Poincaré covariance of Minkowski space R"*),

> Quantum field theory (QM with co many degrees of freedom)

> Wightman axioms ('60-'70): Hilbert space, representation of the Poincaré group,
fields operators (to construct local observables).

> Constructive QFT program ('70-'80): hard to find models of such axioms. Examples
in R'*! were found in the '60. Glimm, Jaffe, Nelson, Segal, Guerra, Rosen, Simon,
and many others...

> Euclidean rotation: t — it = x, (imaginary time). R""! — R? Minkowski — Euclidean

> Osterwalder-Schrader theorem : gives precise condition to perform the passage
to/from Euclidean space (OS axioms for Euclidean correlation function).

> High point of EQFT: construction of ®3 (Euclidean version of a scalar field in R**!
Minkowski space). (®3), Glimm ('69). Glimm, Jaffe. Feldman ('74), Y.M.Park ('75)
(®3)rs Feldman, Osterwalder ('76). Magnen, Senéor ('76). Seiler, Simon ('76)

> Other constructions of ®3. Benfatto, Cassandro, Gallavotti, Nicold, Olivieri, Presutti, Scacciatelli ('80) Brydges, Froh-

lich, Sokal ('83) Battle, Federbush ('83) Williamson ('87) Balaban ('83) Gawedzki, Kupiainen ('85) Watson ('89) Brydges, Dimock,
Hurd ('95)



‘ Gaussian free field (GFF)

> simplest example of EQFT. We take a Gaussian measure 1 on .#°'(R?) with cov-
ariance

v dk
kI? (270)4

[oownde)=cer—y) =, o )iy, xyer

and zero mean. Reflection positive, Eucl. covariant and regular. This is the GFF with
mass m > 0.

> this measure can be used to construct a QFT in Minkowski space but unfortu-
nately this theory is free, i.e. there is no interaction.

> note that G(0) = +oc if d>2, this implies that the GFF is not a function.

> in particular GFF is a distribution of regularity « = (2—4d) /2 —« for any small x>0,
e.g. locally in the sense of the scale of Besov-Holder spaces (B, ..).cr



‘ non-Gaussian Euclieand fields

@ go on a periodic lattice: R? — Z¢ | = (¢Z /2tLN)“ with spacing ¢ >0 and side L.
, SSL(P) .
p(q,)e—%zxezg TP () Vo) g

[ F@vet(do) =

LY R

e is an UV regularisation and L the IR regularisation.

@ choose V, appropriately so that v" — v to some limitas ¢ = 0 and L — co. E.g. take
V. polynomial bounded below. d=2,3.

Vs(é) :7\<§4 _as(§2>

The limit measure will depend on A >0 and on (a.). which has to be s.t. 2. > +o0 as
e — 0. Itis called the ®; measure

® study the possible limit points (uniqueness? non-uniqueness? correlations?
description?)



stochastic quantisation

Parisi-Wu ('81) introduced a stationary stochastic evolution associated with the EQF

35(D (1))

9D (tx) = =

+212q(t,x), t=0,xeRY,

with 1] space-time white noise

1 _
(@ (t,x1)---D(t,x,)) =§ff,(w) o(t,x1)---@(Lx)e 5 Pdg,  teR

transport interpretation: the map

- P(t,-)

sends the Gaussian measure of the space-time white noise to the EQF measure




an history of stochastic quantisation (personal & partial)

« 1984 - Parisi/Wu - SQ (for gauge theories)

« 1985 — Jona-Lasinio/Mitter — “On the stochastic quantization of field theory” (rigorous SQ
for ®3 on bounded domain)

« 1988 — Damgaard/Huffel — review book on SQ (theoretical physics)
« 1990 - Funaki — Control of correlations via SQ (smooth reversible dynamics)

« 1990-1994 - Kirillov — “Infinite-dimensional analysis and quantum theory as semimartin-
gale calculus”, “On the reconstruction of measures from their logarithmic derivatives”,
“Two mathematical problems of canonical quantization.”

« 1993 - Ignatyuk/Malyshev/Sidoravichius — “Convergence of the Stochastic Quantization
Method 11" [Grassmann variables + cluster expansion]

« 2000 - Albeverio/Kondratiev/Réckner/Tsikalenko — “A Priori Estimates for Symmetrizing
Measures..."” [Gibbs measures via IbP formulas]

« 2003 - Da Prato/Debussche - “Strong solutions to the stochastic quantization equations”
. 2014 — Hairer — Regularity structures, local dynamics of ®3

« 2017 — Mourrat/Weber — coming down from infinity for ®3

. 2018 — Albeverio/Kusuoka — “The invariant measure and the flow associated to ®3..."

. 2021 — Hofmanova/G. — Global space-time solutions for ®5 and verification of axioms
« 2020-2021 — Chandra/Chevyrev/Hairer/Shen — SQ for Yang-Mills 2d/3d.



an existence result for @3

in Parisi-Wu's approach the SDE is a Langevin equation of the form

dd(t,x)

T =—V,Se(P(t,x)) +2V%(t,x), xEAL=ZL;, t=0

here ¢(t,x) is a space-time white noise - if Law (®(t=0)) =v“Lthen Law (D (t)) =v**
for all t >0 - the dynamics give a map G, ; which transform a Gaussian measure into
v&E . this map passes to the limit as ¢ — 0 and L — oo and is associated to an SPDE in
the limit

dd(t,x)

== (=)D (1 x) ="V (D(x)" + 212 (1 x)

Theorem. d =3 provided (a.). is chosen approp. there exist a stationary in space
and time solution to the limit SPDE. the law of the solution at any given time is a
non-Gaussian EQFT v (without rotation invariance) with IbP formula:

[ VeF(@)v(de) = [ F() (= (m* = A)p = A[¢])u(dg).

[details in Gubinelli-Hofmanova CMP 2021, “A PDE construction...”]




features of stochastic quantisation

the interacting field ¢ is expressed as a function of the Gaussian free field X:
¢(t)=F(X), v=Law(¢(t))=F.Law(X)=F.GFF

- estimates on ¢ obtained via two ingredients:
- pathwise PDE estimates for the map F (in weighted Besov spaces)

- probabilistic estimates for the GFF X
- coupling (¢, X)
¢=X+19

where 1 is a random field which is more regular (i.e. smaller at small scale) than
X (link with asymptotic freedom/perturbation theory)

note that
v=Law(¢) €« Law (X (t)) =GFF



estimates

> decomposition: =X+ 1
1 /
Ip=7[(De=m*)p =V (X +1)]
> PDE estimates:

Iy (I < HCIXI)
> tightness:

f lplPv(de) SEIXIP+ Elp(H)IP < EIXIF+ E[H(IX)"] < oo

> tail-estimates:

Jec”q)““\/(d(p) < oo

[Moinat/Weber, Hofmanova/G., Hairer/Steele]



stochastic analysis

In the '40s Ito introduced an analysis adapted to stochastic processes of diffusion:

Newton's calculus lto's calculus
planet orbit Markov diffusion
(x,y) €O CR? Py (x,dy)
o(x = x0) "+ B(y —yo)* ="y Piis(x,dy) = [ Py(x,dz)Py(z,dy)
t t

x(t+8t) ~x(t) +adt +o(5t) Py(x, dy) ~e “”"‘"Z’("Wiiz1“”““"””%

at+bt>+--- (W),
(X(t),5(t)) =F(x(t),y(t)) dX;=a(X,)dW;+ b(X;)dt

> other examples: rough paths, regularity structures, SLE, ...



stochastic quantisation as a stochastic analysis?

stoch. quantisation

EQF
vEProb(¥#'(RY))
%ff,(Rd)O(q))e_S(‘P)d(p
t
G(t+0t) ~adp(t) +POIX(t)+---

(X(t)):
X =5[(A,—m?)X]+C

Aip=5[(De=m2p—V'($)] +E



stochastic analysis of EQFs

. parabolic stochastic quantisation

3.0(1) = [ (A,—m)p(t) ~ V' (9()] +E(1)

[MG, M. Hofmanové - Global Solutions to Elliptic and Parabolic ®* Models in Euclidean Space - Comm. Math. Phys.
2019 | MG, M. Hofmanové - A PDE Construction of the Euclidean ®3 Quantum Field Theory - Comm. Math. Phys. 2021]

- canonical stochastic quantisation - singular stochastic wave equation

OFP(t) + 0 (t) = %[(Ax— m*)$(t) = V' ($())]+E(t)

[MG, H. Koch, T. Oh - Renormalization of the two-dimensional stochastic non- linear wave equations - Trans. Am. Math.
Soc. 2018 | MG, H. Koch, and T. Oh - Paracontrolled Approach to the Three-Dimensional Stochastic Nonlinear Wave
Equation with Quadratic Nonlinearity - Jour. Europ. Math. Soc. 2022]



. elliptic stochastic quantisation - supersymmetric proof (Parisi-Sourlas)

~Ap(@) = 5[ (A=) p(x) = V' (9(2)] +E(2), zER?

[S. Albeverio, F. De Vecchi, MG - Elliptic Stochastic Quantization - Ann. Prob. 2020]
- variational method - stochastic control problem - I'-convergence
@) -5@) g =i u wy g 1
logje de=inf E| f(P%) + V(D) +§f0 luglds
u

scale parameter € [0, 0] - CID,}‘:Xt+fOt]Susds

[N. Barashkov, MG - A Variational Method for ®3 - Duke Math. Jour. 2020]



an example: the variational method for @3 in infinite volume

[N. Barashkov, MG - On the variational method for Euclidean quantum fields in infinite volume - arXiv:2112.05562]



Boué-Dupuis formula

Theorem. Let (B;);>o be a Brownian motion on R", then for any bounded F:C(R ;
R") - R we have

log E[e"®)] = supIE[F(B. +1(u),) —% OOO Ius|2d5]
ueH,

with u: O x R, — R" adapted to B and with

I(u);:= Jot uds.

%J:O lu |*ds ~ H(Law (B, +1(u).)|Law(B,)).

[M. Boué and P. Dupuis, A Variational Representation for Certain Functionals of Brownian Motion, Ann. Prob. 26(4), 1641-59]



Boué-Dupuis for the d =2 GFF

E[W,(x)W.(y)] = (tAs)(m*=A) " (x—vy), tse[0,1].

The BD formula gives

—log f o~ F(®) n(de) =—log ]E[e‘F(Wl)] = inf ]E[F(Wl +7Z1) +%f01 ||u5||%zds],

ueH,
where
Zi=(m*—A)"? fot uds, u,=(m*=N)"?Z,
—log E[e~F(")] = inf E[F(Wi+Z1)+%(Z.)],
CHr
with

1 1 : 1 1 : :
8(Za) =5 [ 10m?=8) 22 kds =5 [ (IVZJE+m2IZJR)ds



®; in a bounded domain A

Fix a compact region A @ R* and consider the ®; measure 0, on .#'(RR?) with inter-
action in A and given by

e MW p(dg)

OA(d¢):= [e M@y (d )

o€ P (R?) (1)

with interaction potential Vy(¢) := qu>4—cqu>2. Forany f:.#'(R%) — R (non neces-
sarily linear) let

o~ VAP .= f e/ @0, (do).

We have the variational representation, Z =71, Z.= (Z;)ic[0,17:

Wi(f) = inf F/**(Z,) — inf FO*(Z,)

ZeH" ZEeH"
where

FIMNZ)=E[f(W+Z)+AVA(W+2Z)+E(Z.)].




renormalized potential

c

VA(W+7Z) = fA {w4—cw2+4[w3—5w] z+6[w2 6] ZZ+4WZ3+Z4}

4
W4 —~ - S ——
WE W2

take c = 12E[W?(x)] = +oo
VA(W+Z) = fA [AW3Z + 6WZ2 1 4WZ3 + Z4) +- .
W"re € (A) =BIJ'E(A)

Here BZ*.(A) is an Holder-Besov space. A distribution f € .%'(T?) belongs to
B, (A) iff forany n>0

1Al < (27) 7N flls, ()

where A, f =% "'(¢,(-)Ff) and ¢, is a function supported on an annulus of size ~2".
We have f=) _(Af. If «>0 B% (T7) is a space of functions otherwise they are

only distributions.



Euler-Lagrange equation for minimizers

Lemma. There exists a minimizer Z =7/ of F/*. Any minimizer satisfies the
Euler-Lagrange equations

IEJ<4)\fA z31<+f01 fA (Zs(mz—A)Ks)ds>
- E(fAf’(W+Z)K+7\fA(W3+W22+12WZ2)K>

for any K adapted to the Brownian filtration and such that K€ L*(u, H).

> technically one really needs a relaxation to discuss minimizers, we ignore this all
along this talk. the actualy object of study is the law of the pair (W,Z) and not the
process Z. (similar as what happens in the ®3 paper)



apriori estimates

we use polynomial weights p(x) = (1+ ¢|x|) ™" for large n>0 and small ¢ >0.

Theorem. There exists a constant C independent of |A| such that, for any minim-
izer Z of F/*(11) and any spatial weight p: A — [0,1] with [Vp|<ep for some ¢ >0
small enough, we have

E[47[ pzi+ [ [ (Gm2-a)2p 22 )ds|<C.

Proof. test the Euler-Lagrange equations with K= pZ and then estimate the bad
terms with the good terms and objects only depending on W, e.g.

[ 0 W2 Z| < ClIW3IR iy + B1Z1 R,

[ oW2Z2| < ColloS W2+ 8(lp"* ZIlts + oV Z1e), -



tightness and bounds

WA(f) =inf FN(Z) —inf FON(Z) = A (ZIR) — PN (20
Therefore

Ff,A(Zf,A) _ Fo,A(Zf,A) <L) < Ff,A(Zo,A) _ FOA(ZOA)
and since, for any g,

FINZ8™) —FONZ8™M) =E[f(W+Z8™) + A VAW + Z8M) + E(Z8M) ]

—E[AVA(W+Z8N + E(Z8M ] =E[f(W + 28]

E[f(W+Z'"™]KWA(F) SE[f(W+Z°Y)]

Consequence: tightness of (04), in #'(R?) and optimal exponential bounds (cfr.
Hairer/Steele)

sup | exp (3l Iy 0a(d) < co.
A



Euler-Lagrange equation in infinite volume

moreover

[ £(9) 0a(d9) = E[F(X +20M)]

the family (Z/), is converging (provided we look at the relaxed problem) and any
limit point Z =7/ satisfies a EL equation:

E{fsz’(W+Z)K+4AfR2H(W+Z)3HK+f01 fRZZS(mZ—A)KSds}:O

for any test process K (adapted to W and to 7).

a kind of stochastic “elliptic” problem




‘ the stochastic equation

rewrite the EL equation as

E{fol [ (F Wi+ Z0) +4N[ (W1 + Z0)°] +Z.(m* ~ A) ) Kids} =0
then

E{fol [ B[/ (Wit Z0) +4A[(Wi+ Z0)°] + (2 = D)Z,

F.|Kds} =0
which implies that

(m*=N)Zy=—E| f' (W1 +Z1) +4A[(W1 + Z1)°] | %]

Open questions
« Uniqueness??
. I'-convergence of the variational description of %/, (f)?

not clear. We lack sufficient knowledge of the dependence on f of the solutions
to the EL equations above.




exponential interaction

we can study similarly the model with
Vi(g)= [, &) [exp(Bo(x))dx

for B2 <87 and &: R*— [0,1] a smooth spatial cutoff function

VEW+2) = [ E(x)exp(BZ(x))[exp(BW (x))]dx

M@E@

:IRZ ¢(x)exp(BZ(x))MP(dx), [Gaussian multiplicative chaos]

BD formula

WES(f) = —log [ exp(—f(¢))dvf
_ infE[f(W+Z)+f§exp([5Z)dMB+%folf((mz—A)l/ZZt)zdt]

ZES,

> the function Z+— V(W +Z) is convex!



variational description of the infinite volume limit

> thanks to convexity the EL equations have a unique limit Z in the oo volume limit

> moreover we have the I'-convergence of the variational description:

Wil ) = lim [ ~log [ exp(=f(¢))dv* ]

=tim [, (f) - W3,(0)] =inf G P (K)

n—oo

with functional

fowfeXP(K):E[f(w+z+1<)+fexp(52)(exp(f)1<)—1)dMﬁ+5<1<)]

R
>0

which depends via Z on the infinite volume measure for the exp interaction.



stochastic analysis of Grassmann variables

EQF with Fermion fields involve anti-commuting variables (Grassmann algebras)

1o = -y

there is a notion of Grassmann Gaussian variables (and Brownian motion)

E[¢r--pa]= Y (=D*E[pa]

pairs(i,j)
stochastic analysis on Grassmann algebras and stochastic quantisation of fermionic

EQFs

[S. Albeverio, L. Borasi, F. De Vecchi, MG - Grassmannian stochastic analysis and the stochastic quantization of Euclidean
Fermions - preprint 2021]
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