"Quantum many body system and interacting particles" · Münster · June 2022

Towards stochastic quantisation of Euclidean Fermions

Massimiliano Gubinelli · University of Bonn (IAM & HCM)

[made with TeXmacs]

Euclidean Fermions

Fermions: quantum particles satisfying Fermi–Dirac statistics (i.e. living in the antisymmetric tensor of one-particle states).

EQFT: Wick rotation of QFT. $t \to \tau = it$, $\mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^{d+1}$ Euclidean space. Wightman functions \to Schwinger functions.

$$\Psi, \Psi^* \to \psi, \bar{\psi}.$$

INF K. Osterwalder and R. Schrader. Euclidean Fermi fields and a Feynman-Kac formula for Boson-Fermions models. *Helvetica Physica Acta*, 46:277–302, 1973.

Euclidean fermion fields $\psi, \bar{\psi}$ form a Grassmann algebra $\psi_{\alpha}\psi_{\beta} = -\psi_{\beta}\psi_{\alpha}$ ($\psi_{\alpha}^2 = 0$).

Schwinger functions

 \triangleright Schwinger functions are given by a Berezin integral on $\Lambda = GA(\psi, \bar{\psi})$

$$\langle O(\psi,\bar{\psi})\rangle = \frac{\int d\psi d\bar{\psi} O(\psi,\bar{\psi})e^{-S_E(\psi,\bar{\psi})}}{\int d\psi d\bar{\psi}e^{-S_E(\psi,\bar{\psi})}} = \frac{\langle O(\psi,\bar{\psi})e^{-V(\psi,\bar{\psi})}\rangle_C}{\langle e^{-V(\psi,\bar{\psi})}\rangle_C}$$
$$S_E(\psi,\bar{\psi}) = \frac{1}{2}(\psi,C\bar{\psi}) + V(\psi,\bar{\psi}) \quad \langle O(\psi,\bar{\psi})\rangle_C = \frac{\int d\psi d\bar{\psi} O(\psi,\bar{\psi})e^{-\frac{1}{2}(\psi,C\bar{\psi})}}{\int d\psi d\bar{\psi}e^{-\frac{1}{2}(\psi,C\bar{\psi})}}$$

 \triangleright Under $\langle \cdot \rangle_C$ the variables $\psi, \overline{\psi}$ are "Gaussian" (Wicks' rule):

$$\langle \psi(x_1) \cdots \psi(x_{2n}) \rangle_{\mathcal{C}} = \sum_{\sigma} (-1)^{\sigma} \langle \psi(x_{\sigma(1)}) \psi(x_{\sigma(2)}) \rangle_{\mathcal{C}} \cdots \langle \psi(x_{\sigma(2n-1)}) \psi(x_{\sigma(2n-1)}) \rangle_{\mathcal{C}}$$

probability, algebraically

▷ a non-commutative probability space (\mathcal{A}, ω) is given by a C^* -algebra \mathcal{A} and a state ω , a linear normalized positive functional on \mathcal{A} (i.e. $\omega(aa^*) \ge 0$).

 \triangleright a random variable is in algebra homomorphism into \mathscr{A}

L. Accardi, A. Frigerio, and J. T. Lewis. Quantum stochastic processes. Kyoto University. Research Institute for Mathematical Sciences. Publications, 18(1):97–133, 1982. 10.2977/prims/1195184017

example. (classical) random variable with values on a manifold *M*?

$$\Omega \xrightarrow{X} \mathscr{M} \xrightarrow{f} \mathbb{R}$$

 $f \in L^{\infty}(\mathcal{M}; \mathbb{C}) \to X(f) \in \mathcal{A} = L^{\infty}(\Omega; \mathbb{C}), \qquad X(fg) = X(f)X(g), \quad X(f^*) = X(f)^*.$

algebraic data: $\mathscr{A} = L^{\infty}(\Omega; \mathbb{C}), \, \omega(a) = \int_{\Omega} a(\omega) \mathbb{P}(d\omega), \, X \in \operatorname{Hom}_{*}(L^{\infty}(\mathscr{M}), \mathscr{A}).$

Grassmann probability

 \vartriangleright random variables with values in a Grassmann algebra Λ are algebra homomorphisms

 $\mathscr{G}(V) = \operatorname{Hom}(\Lambda, \mathscr{A})$

The embedding of ΛV into \mathcal{A} allows to use the topology of \mathcal{A} to do analysis on Grassmann algebras.

$$d_{\mathscr{G}(V)}(X,Y) := \|X - Y\|_{\mathscr{G}(V)} = \sup_{v \in V, |v|_{v} = 1} \|X(v) - Y(v)\|_{\mathscr{A}},$$

analogy. Gaussian processes in Hilbert space. Abstract Wiener space. "a convenient place where to hang our (analytic) hat on".

Back to QFT: IR & UV problems

QFT requires to consider the formula

$$\langle O(\psi,\bar{\psi})\rangle_{C,V} = \frac{\langle O(\psi,\bar{\psi})e^{-V(\psi,\bar{\psi})}\rangle_C}{\langle e^{-V(\psi,\bar{\psi})}\rangle_C}$$

with local interaction

$$V(\psi,\bar{\psi}) = \int_{\mathbb{R}^d} P(\psi(x),\bar{\psi}(x)) dx$$

and singular covariance kernel (due to reflection positivity)

 $\langle \bar{\psi}(x)\psi(y)\rangle \propto |x-y|^{-\alpha}$

this gives an ill-defined representation

- large scale (IR) problems
- small scale (UV) problems

well understood in the constructive QFT literature (Gawedzki, Kupiainen, Lesniewski, Rivasseau, Seneor, Magnen, Feldman, Salmhofer, Mastropietro, Giuliani,...)

stochastic quantisation

Parisi-Wu ('81) introduced a stationary stochastic evolution associated with the EQF

$$\partial_t \Phi(t,x) = -\frac{\delta S(\Phi(t,x))}{\delta \Phi} + 2^{1/2} \eta(t,x), \quad t \ge 0, x \in \mathbb{R}^d,$$

with η space-time white noise

$$\langle \Phi(t,x_1)\cdots\Phi(t,x_n)\rangle = \frac{1}{Z} \int_{\mathscr{S}'(\mathbb{R}^d)} \varphi(t,x_1)\cdots\varphi(t,x_n) e^{-S(\varphi)} d\varphi, \quad t \in \mathbb{R}.$$

transport interpretation: the map

$$\eta \mapsto \Phi(t, \cdot)$$

sends the Gaussian measure of the space-time white noise to the EQF measure

 \triangleright many recent progresses for Bosonic theories starting with the work of Hairer on Φ_3^4 | many kinds of stochastic quantisations: parabolic, hyperbolic, elliptic, variational

What about stochastic quantisation for Grassmann measures?

Ignatyuk/Malyshev/Sidoravichius | "Convergence of the Stochastic Quantization Method I,II", 1993. [Grassmann variables + cluster expansion]

weak topology + solution of equations in law + infinite volume limit but no removal of the UV cutoff

*

" Grassmannian stochastic analysis and the stochastic quantization of Euclidean Fermions" | joint work with Sergio Albeverio, Luigi Borasi, Francesco C. De Vecchi. ArXiv:2004.09637 (PTRF)

algebraic probability viewpoint + strong solutions via Picard interation + infinite volume limit but no removal of the UV cutoff

"Stochastic Quantization of Subcritical Grassmann Measures with forward-backward SDEs" joint work with Francesco C. De Vecchi and Luca Fresta. (work in progress)

alg. prob. + forward-backward SDE + infinite volume limit & removal of IR cutoff in the whole subcritical regime

Grassmann stochastic analysis

 \triangleright filtration $(\mathcal{A}_t)_{t \ge 0}$, conditional expectation $\omega_t: \mathcal{A} \to \mathcal{A}_t$,

 $\omega_t(ABC) = A\omega_t(B)C, \quad A, C \in \mathcal{A}_t.$

 \triangleright Brownian motion $(B_t)_{t \ge 0}$ with $B_t \in \mathscr{G}(V)$

$$\omega(B_t(v)B_s(w)) = \langle v, Cw \rangle(t \wedge s), \quad t, s \ge 0, v, w \in V.$$

$$||B_t - B_s|| \leq |t - s|^{1/2}.$$

 \triangleright Ito formula

$$\Psi_{t} = \Psi_{0} + \int_{0}^{t} B_{u}(\Psi_{u}) du + X_{t}, \qquad \omega(X_{t} \otimes X_{s}) = C_{t \wedge s}$$
$$\omega_{s}(F_{t}(\Psi_{t})) = \omega_{s}(F_{s}(\Psi_{s})) + \int_{s}^{t} \omega_{s}[\partial_{u}F_{u}(\Psi_{u}) + \mathscr{L}F_{u}(\Psi_{u})] du,$$
$$\mathscr{L}_{u}F_{u} = \frac{1}{2}D_{\dot{C}_{u}}^{2}F_{u} + \langle B_{u}, DF_{u} \rangle$$

the forward-backward SDE

let $\boldsymbol{\Psi}$ be a solution of

$$d\Psi_s = \dot{C}_s \,\omega_s(\mathrm{D}V(\Psi_T)) ds + dX_s, \qquad s \in [0, T], \quad \Psi_0 = 0.$$

where $(X_t)_t$ is Gaussian martingale with covariance $\omega(X_t \otimes X_s) = C_{t \wedge s}$. Then

 $\omega(\mathrm{e}^{V(X_T)})\omega(\mathrm{e}^{-V(\Psi_T)})=1$

and

$$\omega(O(\Psi_T)) = \frac{\omega(O(X_T)e^{V(X_T)})}{\omega(e^{V(X_T)})} = \frac{\langle O(\psi)e^{V(\psi)}\rangle_{C_T}}{\langle e^{V(\psi)}\rangle_{C_T}}$$

for any O.

 \triangleright this FBSDE provides a stochastic quantisation of the Grassmann Gibbs measure along the interpolation $(X_t)_t$ of its Gaussian component.

the backwards step

let F_t be such that $F_T = DV$. By Ito formula $B_s := \omega_s (DV(\Psi_T)) = \omega_s (F_T(\Psi_T))$ $= F_s(\Psi_s) + \int_s^T \omega_s \left[\left(\partial_u F_u(\Psi_u) + \frac{1}{2} D_{\dot{C}_u}^2 F_u(\Psi_u) + \langle B_u, \dot{C}_u DF_u(\Psi_u) \rangle \right) \right] du$ $= F_s(\Psi_s) + \int_s^T \omega_s \left[\left(\partial_u F_u(\Psi_u) + \frac{1}{2} D_{\dot{C}_u}^2 F_u(\Psi_u) + \langle B_u, \dot{C}_u DF_u(\Psi_u) \rangle \right) \right] du$

letting $R_t = B_t - F_s(\Psi_s)$ we have now the forwards-backwards system

$$\begin{cases} \Psi_t = \int_0^t \dot{C}_s \left(F_s(\Psi_s) + R_s \right) ds + X_t, \\ R_t = \int_t^T \omega_t \left[Q_u(\Psi_u) \right] du + \int_t^T \omega_t \left[\langle R_u, \dot{C}_u DF_u(\Psi_u) \rangle \right] du \end{cases}$$

with

$$Q_{u} := \partial_{u}F_{u} + \frac{1}{2}D_{\dot{C}_{u}}^{2}F_{u} + \langle F_{u}, \dot{C}_{u}DF_{u} \rangle$$

solution theory

▷ standard interpolation for $C_{\infty} = (1 + \Delta_{\mathbb{R}^d})^{\gamma - d/2}$, $\gamma \leq d/2$. $\chi \in C^{\infty}(\mathbb{R}_+)$, compactly supported around 0:

 $C_t := (1 + \Delta_{\mathbb{R}^d})^{\gamma - d/2} \chi(2^{-2t}(-\Delta_{\mathbb{R}^d})), \qquad \|\dot{C}\|_{\mathscr{L}(L^{\infty}, L^{\infty})} \leq 2^{2\gamma - d}, \|\dot{C}\|_{\mathscr{L}(L^1, L^{\infty})} \leq 2^{2\gamma}$

⊳ the system

$$\begin{cases} \Psi_t = \int_0^t \dot{C}_s \left(F_s(\Psi_s) + R_s \right) ds + X_t, \\ R_t = \int_t^T \omega_t \left[Q_u(\Psi_u) \right] du + \int_t^T \omega_t \left[\langle R_u, \dot{C}_u DF_u(\Psi_u) \rangle \right] du \end{cases}$$

can be solved by standard fixpoint methods for small interaction, uniformly in the volume since X stays bounded as long as $T < \infty$:

 $\|X_t\|_{L^{\infty}(\mathbb{R}^d)} \lesssim 2^{\gamma t}.$

▷ decay of correlations can be proved by coupling different solutions (Funaki '96). ▷ limit $T \rightarrow \infty$ requires renormalization when $\gamma \in [0, d/2]$.

relation with the continuous RG

if we take *F* such that Q = 0 we have R = 0 and then

$$\Psi_t = \int_0^t \dot{C}_s \left(F_s(\Psi_s) \right) \mathrm{d}s + X_t,$$

with

$$\partial_u F_u + \frac{1}{2} D_{\dot{C}_u}^2 F_u + \langle F_u, \dot{C}_u D F_u \rangle = 0, \quad F_T = DV.$$

define the effective potential V_t by the solution of the HJB equation

$$\partial_u V_u + \frac{1}{2} D_{\dot{C}_u}^2 V_u + \langle DV_u, \dot{C}_u DV_u \rangle = 0, \quad V_T = V.$$

then $F_t = DV_t$ and the FBSDE computes the solution of the RG flow equation along the interacting field.

 \triangleright so far a full control of the Fermionic HJB equation has not been achieved (work by Brydges, Disertori, Rivasseau, Salmhofer,...). Fermionic RG methods rely on a discrete version of the RG iteration.

approximate flow equation

thanks for the FBSDE we are not bound to solve exactly the flow equation and we can proceed to approximate it.

> linear approximation. take

$$\partial_u F_u + \frac{1}{2} D_{C_u}^2 F_u = 0, \qquad F_T = DV.$$

this corresponds to Wick renormalization of the potential V:

$$\begin{cases} \Psi_t = \int_0^t \dot{C}_s \left(F_s(\Psi_s) + R_s \right) ds + X_t, \\ R_t = \int_t^T \omega_t \left[\langle F_u(\Psi_u), \dot{C}_u F_u(\Psi_u) \rangle \right] du + \int_t^T \omega_t \left[\langle R_u, \dot{C}_u DF_u(\Psi_u) \rangle \right] du \end{cases}$$

the key difficulty is to show uniform estimates for

 $\int_{t}^{T} \omega_{t} [\langle F_{u}(\Psi_{u}), \dot{C}_{u}F_{u}(\Psi_{u})\rangle] \mathrm{d}u$

as $T \to \infty$. we cannot expect better than $\|\Psi_t\| \approx \|X_t\| \approx 2^{\gamma t}$.

polynomial truncation

a wiser approximation is to truncate the equation to a (large) finite polynomial degree

$$\partial_{u}F_{u} + \frac{1}{2}D_{\dot{C}_{u}}^{2}F_{u} + \prod_{\leqslant K}\langle F_{u}, \dot{C}_{u}DF_{u}\rangle = 0$$

where $\prod_{\leqslant K}$ denotes projection on Grassmann polynomials of degree $\leqslant K$ and take

$$F_t(\psi) = \sum_{k \leqslant K} F_t^{(k)} \psi^{\otimes k}.$$

With this approximation one can solve the flow equation and get estimates

$$|F_t^{(k)}|| \leq \frac{2^{(\alpha-\beta k)t}}{(k+1)^2}, \quad t \ge 0,$$

with $\alpha = 3\beta$, $\beta = d/2 - \gamma$, provided the initial condition $F_T = DV$ is appropriately renormalized.

FBSDE in the full subcritical regime

with the truncation Π_K we have

$$\begin{cases} \Psi_t = \int_0^t \dot{C}_s \left(F_s(\Psi_s) + R_s \right) ds + X_t, \\ R_t = \int_t^T \omega_t \left[\Pi_{>K} \langle F_u, \dot{C}_u DF_u \rangle (\Psi_u) \right] du + \int_t^T \omega_t \left[\langle R_u, \dot{C}_u DF_u (\Psi_u) \rangle \right] du \end{cases}$$

but now observe that

$$\|\Psi_t\| \approx \|X_t\| \lesssim 2^{\gamma t} \qquad \|F_t^{(k)} \Psi_t^{\otimes k}\| \lesssim 2^{(\gamma k - \beta(k-3))t}$$

which is exponentially small for k large as long as $\gamma \leq d/4$ (full subcrititcal regime).

now the term

$$\int_{t}^{T} \omega_{t} [\Pi_{>K} \langle F_{u}, \dot{C}_{u} \mathrm{D} F_{u} \rangle (\Psi_{u})] \mathrm{d} u$$

can be controlled uniformly as $T \rightarrow \infty$ and also the full FBSDE system. (!)

thanks