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Euclidean Fermions

Fermions: quantum particles satisfying Fermi-Dirac statistics (i.e. living in the anti-
symmetric tensor of one-particle states).

EQFT: Wick rotation of QFT. t - t=it, R’x R —» R?*! Euclidean space. Wightman
functions — Schwinger functions.
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i K. Osterwalder and R. Schrader. Euclidean Fermi fields and a Feynman-Kac formula for
Boson-Fermions models. Helvetica Physica Acta, 46:277-302, 1973.

Euclidean fermion fields ¢, form a Grassmann algebra

Putpp=—Ppho (Pi=0).




Schwinger functions

> Schwinger functions are given by a Berezin integral on A=GA ({, 1)
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> Under (-)c the variables 1|),1I) are “Gaussian” (Wicks' rule):

(WP(x1)P(x20))c= Z (=1 (xea)W(xe@))) e - (W (Xo20-1)) P (X 20-1)) ) C



probability, algebraically

[> a non-commutative probability space (4, w) is given by a C*-algebra 4 and a
state w, a linear normalized positive functional on A (i.e. w(aa*)>0).

> a random variable is in algebra homomorphism into A

15 L. Accardi, A. Frigerio, and J. T. Lewis. Quantum stochastic processes. Kyoto Uni-

versity. Research Institute for Mathematical Sciences. Publications, 18(1):97-133, 1982.
10.2977/prims/1195184017

example. (classical) random variable with values on a manifold 7?
oS wlLr
fEL™(M;C)->X(f)EA=L"((}C), X(fg)=X(f)X(g), X(f)=X(f)"

algebraic data: A4 =L"(();C), w(a) = [ a(w)P(dw), X € Hom,(L=(Ab), ).



Grassmann probability

> random variables with values in a Grassmann algebra A are algebra homomorph-
isms

G (V)=Hom(A, A4)

The embedding of AV into 4 allows to use the topology of 4 to do analysis
on Grassmann algebras.

dev)(X,Y):=IIX=Ylgw)y= sup [IX(v)—=Y(0)ll.4,

veV,vly=1

analogy. Gaussian processes in Hilbert space. Abstract Wiener space. "a con-
venient place where to hang our (analytic) hat on”.



Back to QFT: IR & UV problems

QFT requires to consider the formula

Oy, h)e”" )
(e=V )y

O, ey =2

with local interaction
Vi d) = P(),H(x))dx
and singular covariance kernel (due to reflection positivity)

P)Py) <clx—yl™

this gives an ill-defined representation
. large scale (IR) problems
- small scale (UV) problems

well understood in the constructive QFT literature (Gawedzki, Kupiainen, Lesniewski,
Rivasseau, Seneor, Magnen, Feldman, Salmhofer, Mastropietro, Giuliani,...)



stochastic quantisation

Parisi-Wu ('81) introduced a stationary stochastic evolution associated with the EQF

3S(D(tx))

QD (1) = ———

+212q(t,x), t=0,xeRY,

with 1] space-time white noise

1 _
(D (t,x1)---DP(t,x,)) :ffmd) o(t,x1)---@(x)e 5 Pdg,  tER.

transport interpretation: the map

- P(t,-)

sends the Gaussian measure of the space-time white noise to the EQF measure

> many recent progresses for Bosonic theories starting with the work of Hairer on
®3 | many kinds of stochastic quantisations: parabolic, hyperbolic, elliptic, variational



What about stochastic quantisation for Grassmann measures?

1> Ignatyuk/Malyshev/Sidoravichius | “Convergence of the Stochastic Quantization Method
I,L11”, 1993. [Grassmann variables + cluster expansion]

weak topology + solution of equations in law + infinite volume limit but no removal
of the UV cutoff

*

15> “Grassmannian stochastic analysis and the stochastic quantization of Euclidean Fermions”
| joint work with Sergio Albeverio, Luigi Borasi, Francesco C. De Vecchi. ArXiv:2004.09637
(PTRF)

algebraic probability viewpoint + strong solutions via Picard interation + infinite
volume limit but no removal of the UV cutoff

5 "Stochastic Quantization of Subcritical Grassmann Measures with forward-backward SDEs”
| joint work with Francesco C. De Vecchi and Luca Fresta. (work in progress)

alg. prob. + forward-backward SDE + infinite volume limit & removal of IR cutoff
in the whole subcritical regime



Grassmann stochastic analysis

> filtration (%;);>0, conditional expectation w;: A — A,
w(ABC)=Aw{B)C, A,Ce A,
> Brownian motion (B;);>o with B, % (V)
W(Bi(v)Bs(w)) =(v,Cw)(tAs), t,s=20,0,weV.

IB; — Bl S |t —s]*/2.
> lto formula

t
¥, =¥, + jo B (¥)du+X, w(X,®X,)=Cir

Wu(Fi(¥)) = wu(F(¥) + [ @J[0Fu(¥) + ZF,(¥,)]du,

1
%.Fu=5D¢Fu+ (B, DF,)



the forward-backward SDE

let ¥ be a solution of
d¥,=C, w,(DV(¥7))ds+dX,, s€[0,T], ¥=0.

where (X;); is Gaussian martingale with covariance w(X;® X;) =C;,s. Then

w<eV<XT)>w(e V(‘FT>> =1
and
_ w(0(Xne ™) _ 0@’ W,
w(O(¥7)) = w(ewxr)) B <ev<¢>>cT
for any O.

> this FBSDE provides a stochastic quantisation of the Grassmann Gibbs measure
along the interpolation (X;); of its Gaussian component.



the backwards step

let F; be such that F=DV. By Ito formula
Bs:=ws(DV(¥7)) = ws(Fr(Y¥r))

=F.(¥,) + JFT w| <8uFu(‘Pu) + lDZC-uFu(‘Pu) +(B., CuDFu(‘Pu)>>

> du

w

=F.(¥,) + f "o _<8uFU(‘Pu) + %ch-uFu(‘Pu) +(B., CuDFu(\Pu») |du

letting R; =B, — F,(¥;) we have now the forwards-backwards system

¥, = [ Cs (Fo(¥:) +Ry)ds + X,
Ri= [ w0 [Qu(¥.)]du+ [ w,][(R,, C,DF,(¥,))]du

t t
with

1 .
Qu:= auFu + EDéuFu +(F,,C,DFE,)



solution theory

> standard interpolation for C.. = (1 + Ag:)7%?, v<d/2. x€C™(R,), compactly
supported around 0:

Cri= (1+Ar)"" 2 (27#(=Agr1)),  ICIgr~1~ S22 ICI %111 S 2%
> the system
¥, = [ Cs (Fo(¥:) + Ry)ds + X,

Ri= [ wi[Qu(¥.)]du+ [ wi(R, C.DF,(¥,))]du

t

can be solved by standard fixpoint methods for small interaction, uniformly in the
volume since X stays bounded as long as T < co:

I Xl (rey S 27

> decay of correlations can be proved by coupling different solutions (Funaki '96).

> limit T — oo requires renormalization when y&[0,d/2].



relation with the continuous RG

if we take F such that Q=0 we have R=0 and then

¥,= [ ¢ (F(¥))ds+X,,
with

1 .
auFu + iDélFu +(F,,C,DF,)=0, Fr=DV.

define the effective potential V; by the solution of the HJB equation

1 .
0.V + ED%HVU +(DV,,C,DV,y=0, Vy=V.

then F; =DV, and the FBSDE computes the solution of the RG flow equation along
the interacting field.

> so far a full control of the Fermionic HJB equation has not been achieved (work
by Brydges, Disertori, Rivasseau, Salmhofer,...). Fermionic RG methods rely on a
discrete version of the RG iteration.



approximate flow equation

thanks for the FBSDE we are not bound to solve exactly the flow equation and we
can proceed to approximate it.

> linear approximation. take

1
9.F,+5D¢F,=0, Fr=DV.

this corresponds to Wick renormalization of the potential V:

¥, = [ Cs (F(¥,) +Ry)ds + X,
Rf - ftT wt[<Fll(qju)/CuFu<qju)>]du + fT wt[<Ru1 CuDFu(\Pu)>]du

t

the key difficulty is to show uniform estimates for
T .
J; wt[<Fu(lPu)/ CuFu(lPu)”du

as T — co. we cannot expect better than ||V, ~ || X/]| ~ 20,



polynomial truncation

a wiser approximation is to truncate the equation to a (large) finite polynomial
degree

1 .
0,F., + EDZC-”FM +I1<k(F,,C,DF,)=0

where 1<y denotes projection on Grassmann polynomials of degree <K and take

F(p)=) F e

k<K

With this approximation one can solve the flow equation and get estimates

2(0(—E>k)t
k

with x =3B, p=d/2—-y, provided the initial condition F; =DV is appropriately renor-
malized.



‘ FBSDE in the full subcritical regime

with the truncation I1x we have

Y= fot C, (Fs(Y¥s) +R,)ds + X,
R = [ @ [ITsk(F,, C,DE,) (¥,) ]du+ [ wi[(R,, C.DF,(¥,))]du
but now observe that

1% = 1XA 27 [F e s 2 0P

which is exponentially small for k large as long as v <d/4 (full subcrititcal regime).

now the term

J;T wt[H>K<FLLI CuDFu> (\Pu>]du

can be controlled uniformly as T — oo and also the full FBSDE system. (!)
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