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Euclidean Fermions

Fermions: quantum particles satisfying Fermi–Dirac statistics (i.e. living in the anti-
symmetric tensor of one-particle states).
EQFT: Wick rotation of QFT. t→τ = it, ℝd× ℝ→ℝd+1 Euclidean space. Wightman
functions → Schwinger functions.

Ψ,Ψ∗ →ψ,ψ̄.

☞ K. Osterwalder and R. Schrader. Euclidean Fermi fields and a Feynman-Kac formula for
Boson-Fermions models. Helvetica Physica Acta, 46:277–302, 1973.

Euclidean fermion fields ψ, ψ̄ form a Grassmann algebra
ψαψβ =−ψβψα (ψα

2 =0).



Schwinger functions

⊳ Schwinger functions are given by a Berezin integral on Λ=GA(ψ, ψ̄)

⟨O(ψ, ψ̄)⟩= ∫dψdψ̄ O(ψ, ψ̄)e−SE(ψ,ψ̄)

∫dψdψ̄e−SE(ψ,ψ̄) = �O(ψ, ψ̄)e−V(ψ,ψ̄)�C
�e−V(ψ,ψ̄)�C

SE(ψ, ψ̄)= 1
2(ψ,C ψ̄)+V(ψ, ψ̄) ⟨O(ψ, ψ̄)⟩C= ∫dψdψ̄O(ψ, ψ̄)e−1

2(ψ,Cψ̄)

∫dψdψ̄ e−1
2(ψ,Cψ̄)

⊳ Under ⟨⋅⟩C the variables ψ,ψ̄ are “Gaussian” (Wicks' rule):

⟨ψ(x1)⋅ ⋅ ⋅ψ(x2n)⟩C=�
σ

(−1)σ⟨ψ(xσ(1))ψ(xσ(2))⟩C⋅ ⋅ ⋅⟨ψ(xσ(2n−1))ψ(xσ(2n−1))⟩C



probability, algebraically

⊳ a non-commutative probability space (𝒜, ω) is given by a C∗-algebra 𝒜 and a
state ω, a linear normalized positive functional on 𝒜 (i.e. ω(aa∗)⩾0).

⊳ a random variable is in algebra homomorphism into 𝒜
☞ L. Accardi, A. Frigerio, and J. T. Lewis. Quantum stochastic processes. Kyoto Uni-
versity. Research Institute for Mathematical Sciences. Publications, 18(1):97–133, 1982.
10.2977/prims/1195184017

example. (classical) random variable with values on a manifold ℳ?

Ω →→→→→→→→→
X

ℳ→→
f

ℝ

f ∈L∞(ℳ;ℂ)→X( f)∈𝒜=L∞(Ω;ℂ), X( fg)=X( f)X(g), X( f ∗)=X( f)∗.

algebraic data: 𝒜=L∞(Ω;ℂ), ω(a)=∫Ωa(ω)ℙ(dω), X∈Hom∗(L∞(ℳ),𝒜).



Grassmann probability

⊳ random variables with values in a Grassmann algebra Λ are algebra homomorph-
isms

𝒢(V)=Hom(Λ,𝒜)

The embedding of ΛV into 𝒜 allows to use the topology of 𝒜 to do analysis
on Grassmann algebras.

d𝒢(V)(X,Y)≔ ‖X−Y‖𝒢(V)= sup
v∈V,|v|V=1

‖X(v)−Y(v)‖𝒜,

analogy. Gaussian processes in Hilbert space. Abstract Wiener space. “a con-
venient place where to hang our (analytic) hat on”.



Back to QFT: IR & UV problems

QFT requires to consider the formula

⟨O(ψ, ψ̄)⟩C,V = �O(ψ, ψ̄)e−V(ψ,ψ̄)�C
�e−V(ψ,ψ̄)�C

with local interaction

V(ψ, ψ̄)=�
ℝd

P(ψ(x), ψ̄(x))dx

and singular covariance kernel (due to reflection positivity)

⟨ψ̄(x)ψ(y)⟩∝ |x−y|−α

this gives an ill-defined representation
• large scale (IR) problems
• small scale (UV) problems

well understood in the constructive QFT literature (Gawedzki, Kupiainen, Lesniewski,
Rivasseau, Seneor, Magnen, Feldman, Salmhofer, Mastropietro, Giuliani, . . . )



stochastic quantisation

Parisi–Wu ('81) introduced a stationary stochastic evolution associated with the EQF

∂tΦ(t,x)=−δS(Φ(t,x))
δΦ +21/2 η(t,x), t⩾0,x∈ℝd,

with η space-time white noise

⟨Φ(t,x1)⋅ ⋅ ⋅Φ(t,xn)⟩= 1
Z�

𝒮′(ℝd)
φ(t,x1)⋅ ⋅ ⋅φ(t,xn)e−S(φ)dφ, t∈ℝ.

transport interpretation: the map

η↦Φ(t, ⋅)

sends the Gaussian measure of the space-time white noise to the EQF measure

⊳ many recent progresses for Bosonic theories starting with the work of Hairer on
Φ3

4 |many kinds of stochastic quantisations: parabolic, hyperbolic, elliptic, variational



What about stochastic quantisation for Grassmann measures?

☞ Ignatyuk/Malyshev/Sidoravichius | “Convergence of the Stochastic Quantization Method
I,II”, 1993. [Grassmann variables + cluster expansion]

weak topology + solution of equations in law + infinite volume limit but no removal
of the UV cutoff

*
☞ “Grassmannian stochastic analysis and the stochastic quantization of Euclidean Fermions”
| joint work with Sergio Albeverio, Luigi Borasi, Francesco C. De Vecchi. ArXiv:2004.09637
(PTRF)

algebraic probability viewpoint + strong solutions via Picard interation + infinite
volume limit but no removal of the UV cutoff

☞ “Stochastic Quantization of Subcritical Grassmann Measures with forward-backward SDEs”
| joint work with Francesco C. De Vecchi and Luca Fresta. (work in progress)

alg. prob. + forward-backward SDE + infinite volume limit & removal of IR cutoff
in the whole subcritical regime



Grassmann stochastic analysis

⊳ filtration (𝒜t)t⩾0, conditional expectation ωt:𝒜→𝒜t,

ωt(ABC)=Aωt(B)C, A,C∈𝒜t.

⊳ Brownian motion (Bt)t⩾0 with Bt∈𝒢(V)

ω(Bt(v)Bs(w))= ⟨v,Cw⟩(t∧ s), t, s⩾0,v,w∈V.

‖Bt−Bs‖≲ |t− s|1/2.

⊳ Ito formula

Ψt=Ψ0 +�
0

t
Bu(Ψu)du+Xt, ω(Xt⊗Xs)=Ct∧s

ωs(Ft(Ψt))=ωs(Fs(Ψs))+�
s

t
ωs[∂uFu(Ψu)+ℒFu(Ψu)]du,

ℒuFu= 1
2DĊu

2 Fu+ ⟨Bu,DFu⟩



the forward-backward SDE

let Ψ be a solution of

dΨs= Ċs ωs(DV(ΨT))ds+dXs, s∈[0,T], Ψ0 =0.

where (Xt)t is Gaussian martingale with covariance ω(Xt⊗Xs)=Ct∧s. Then

ω(eV(XT))ω(e−V(ΨT))=1

and

ω(O(ΨT))= ω(O(XT)eV(XT))
ω(eV(XT))

= ⟨O(ψ)eV(ψ)⟩CT

⟨eV(ψ)⟩CT

for any O.

⊳ this FBSDE provides a stochastic quantisation of the Grassmann Gibbs measure
along the interpolation (Xt)t of its Gaussian component.



the backwards step

let Ft be such that FT =DV. By Ito formula

Bs≔ωs(DV(ΨT))=ωs(FT(ΨT))

=Fs(Ψs)+�
s

T
ωs��∂uFu(Ψu)+ 1

2DĊu

2 Fu(Ψu)+ ⟨Bu, ĊuDFu(Ψu)⟩��du

=Fs(Ψs)+�
s

T
ωs��∂uFu(Ψu)+ 1

2DĊu

2 Fu(Ψu)+ ⟨Bu, ĊuDFu(Ψu)⟩��du

letting Rt=Bt−Fs(Ψs) we have now the forwards-backwards system

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{ Ψt=∫0

t Ċs (Fs(Ψs)+Rs)ds+Xt,

Rt=∫t
T ωt[Qu(Ψu)]du+∫t

T ωt[⟨Ru, ĊuDFu(Ψu)⟩]du
with

Qu≔∂uFu+ 1
2DĊu

2 Fu+ ⟨Fu, ĊuDFu⟩



solution theory

⊳ standard interpolation for C∞ = (1 + Δℝd)γ−d/2, γ ⩽ d/2. χ ∈C∞(ℝ+), compactly
supported around 0:

Ct≔(1+Δℝd)γ−d/2χ(2−2t(−Δℝd)), ‖Ċ‖ℒ(L∞,L∞)≲22γ−d, ‖Ċ‖ℒ(L1,L∞)≲22γ

⊳ the system

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{ Ψt=∫0

t Ċs (Fs(Ψs)+Rs)ds+Xt,

Rt=∫t
T ωt[Qu(Ψu)]du+∫t

T ωt[⟨Ru, ĊuDFu(Ψu)⟩]du

can be solved by standard fixpoint methods for small interaction, uniformly in the
volume since X stays bounded as long as T<∞:

‖Xt‖L∞(ℝd)≲2γt.

⊳ decay of correlations can be proved by coupling different solutions (Funaki '96).
⊳ limit T→∞ requires renormalization when γ∈[0,d/2].



relation with the continuous RG

if we take F such that Q=0 we have R=0 and then

Ψt =�
0

t
Ċs (Fs(Ψs))ds+Xt,

with

∂uFu+ 1
2DĊu

2 Fu+ ⟨Fu, ĊuDFu⟩=0, FT =DV.

define the effective potential Vt by the solution of the HJB equation

∂uVu+ 1
2DĊu

2 Vu+ ⟨DVu, ĊuDVu⟩=0, VT =V.

then Ft=DVt and the FBSDE computes the solution of the RG flow equation along
the interacting field.
⊳ so far a full control of the Fermionic HJB equation has not been achieved (work
by Brydges, Disertori, Rivasseau, Salmhofer, . . . ). Fermionic RG methods rely on a
discrete version of the RG iteration.



approximate flow equation

thanks for the FBSDE we are not bound to solve exactly the flow equation and we
can proceed to approximate it.
⊳ linear approximation. take

∂uFu+ 1
2DĊu

2 Fu=0, FT =DV.

this corresponds to Wick renormalization of the potential V:

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{ Ψt=∫0

t Ċs (Fs(Ψs)+Rs)ds+Xt,

Rt=∫t
T ωt[⟨Fu(Ψu), ĊuFu(Ψu)⟩]du+∫t

T ωt[⟨Ru, ĊuDFu(Ψu)⟩]du

the key difficulty is to show uniform estimates for

�
t

T
ωt[⟨Fu(Ψu), ĊuFu(Ψu)⟩]du

as T→∞. we cannot expect better than ‖Ψt‖≈ ‖Xt‖≈2γt.



polynomial truncation

a wiser approximation is to truncate the equation to a (large) finite polynomial
degree

∂uFu+ 1
2DĊu

2 Fu+Π⩽K⟨Fu, ĊuDFu⟩=0

where Π⩽K denotes projection on Grassmann polynomials of degree ⩽K and take

Ft(ψ)= �
k⩽K

Ft
(k)ψ⊗k.

With this approximation one can solve the flow equation and get estimates

�Ft
(k)�⩽ 2(α−βk)t

(k+1)2 , t⩾0,

with α=3β, β=d/2−γ, provided the initial condition FT=DV is appropriately renor-
malized.



FBSDE in the full subcritical regime

with the truncation ΠK we have

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{ Ψt=∫0

t Ċs (Fs(Ψs)+Rs)ds+Xt,

Rt=∫t
T ωt[Π>K⟨Fu, ĊuDFu⟩(Ψu)]du+∫t

T ωt[⟨Ru, ĊuDFu(Ψu)⟩]du

but now observe that

‖Ψt‖≈ ‖Xt‖≲2γt �Ft
(k)Ψt

⊗k�≲2(γk−β(k−3))t

which is exponentially small for k large as long as γ⩽d/4 (full subcrititcal regime).

now the term

�
t

T
ωt[Π>K⟨Fu, ĊuDFu⟩(Ψu)]du

can be controlled uniformly as T→∞ and also the full FBSDE system. (!)



thanks






