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Part | - Euclidean QFTs & stochastic analysis




EQFs — for mathematicians

an EQFT is a prob. measure 11 on .#'(R?) satisfying Osterwalder-Schrader axioms

1. Regularity: [¢||. is some norm on F'(RY) and ¢ >0
Sl
ff,(m e u(de) <eo
2. Euclidean covariance: the Euclidean group G (rotations R + translations /)
[ F@@®-+m)u(de)= [ | F(9)u(dg)
3. Reflection positivity: Let 0(x1,...x;) = (—x1,%s,...,x;) €ER?, then

| F(60)F(0)n(dg) >0




Quantum
Physics

s Springer-Verlag
| | New York Heidelberg Berlin

535 pages 348 pages



‘ Gaussian free field

GFF - simplest example of EQF - Gaussian measure 1 on .#'(R?) s.t.

(=) 4k
m? + [k|? (271)¢

[o)emnde)=Gx—y)=_ - = (=N (x-y), xyER

and zero mean - m >0 is the mass - G(0) = +oo if d >2: not a function - distribution
of regularity

x<(2—d)/2

[> can be used to construct a QFT but the theory is free: no interaction

variation - fractional Laplacian covariance s& (0,1)

[o@ewIn(de)= [ (a—8)"(x-y)p(da) = (m*+(~4)) " (x—y)

+



interactions?

what about non-Gaussian EQFs? hard!

® idea: try to maintain the “Markovianity” of the GFF i - heuristically

p AV (0(x))dx
v(de) =————nu(dg),

with A=A, UOBA, and V:R — R so that

[ VeGdr= | Vie@)dx+ [ V((09)(x)dx

+

= Reflection positivity holds:

- F(00) e nV @9Ndxp o, [iV(e())dx
[ FOg)F(9)v(dg) = [ L L) 1(dg) >0,

&= unfortunately (even if we can make sense of it) will not be translation invariant -
we need A — R



‘ non-Gaussian Euclieand fields

@ go on a periodic lattice: R? - Z? | = (¢ Z /2nLN)? with spacing € >0 and side L
, SSL(P) .
F(@)e 2T et 0P Hm0 (P +V(9() 4

[ F@vet(do) =

LY R

e is an UV regularisation and L the IR regularisation

O choose V. appropriately so that v — v to some limit as ¢ =0 and L —» « - e.g.
take V. polynomial bounded below (d=2,3)

Vs(é) :7\<§4_as(§2>
the limit measure will depend on A >0 and on (4.). which has to be s.t. 2, >+ as
e—>0

© study the possible limit points [the ®; measure] - uniqueness? non-uniqueness?
correlations? description?



stochastic quantisation

Parisi-Wu ('81) introduced a stationary stochastic evolution associated with the EQF

9P (1 x) = _55(q§g,x)) +n(tx), t20xeR’

with 1] space-time white noise

1 _
(@ (t,x1)---D(t,x,)) =§ff,(w) o(t,x1)---@(Lx)e 5 Pdg,  teR

transport interpretation: the map
'YNYI'_)CD(t/'> ~V

sends the Gaussian measure of the space-time white noise v to the EQF v




what is stochastic quantisation?




‘ analysis
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Data aequatione quotcunque fluentes quantitates involvente, fluxiones invenire; et vice versa (Newton)

[Given an equation involving any number of fluent quantities to find the fluxions, and vice versa]



diffusion processes

The word “random” comes from a French hunting term: “randon” designates
the erratic course of the deer which zigzags trying to escape the dogs. The
word also gave “randonnée” (hiking) in French.




Ito's idea

lto arrived to his calculus while trying to understand Feller's theory of diffusions
as an evolution in the space of probability measures and he introduced stochastic

differential equations to define a map (the Ito map) which send Wiener measure to
the law of a diffusion.

Bt Xt




stochastic analysis

[...] there now exists a reasonably well-defined amalgam of prob-
abilistic and analytic ideas and techniques that, at least among the
cognoscenti, are easily recognized as stochastic analysis. Nonetheless,
the term continues to defy a precise definition, and an understanding
of it is best acquired by way of examples.

(D. Stroock, “Elements of stochastic calculus and analysis ”, Springer,
2018)

nowadays: Ito integral, Ito formula, stochastic differential equations, Girsanov's formula,
Doob's transform, stochastic flows, Tanaka formula, local times, Malliavin calculus, Skorokhod
integral, white noise analysis, martingale problems, rough path theory...
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analysis vs. stochastic analysis

Newton's calculus lto's calculus
planet orbit object Markov diffusion
(x,y) e@ g RZ global description Pt(x, dy)
x(x—x0)*+ By —vo)* =" Pys(x,dy) = [ Pi(x,dz)Pi(z,dy)
t change parameter t
X(t + 5t> =~ x<t> + a ot + O(ét) local description P@t (X, dy) ~e <y7X7b(X>6t)a(;§’_ mexm}%

at+bt*+--- building block (Wi):

(X(t),y(t)) =F(x(t),y(t)) localiglobal link dX;=a(X;)dW;+b(X;)dt

= other examples: rough paths, regularity structures, SLE, ...



stochastic quantisation as a stochastic analysis

Ito's calculus

Markov diffusion

Pt(xl dy)

Piys(x,dy) = [ Ps(x,dz)Pi(z,dy)

t
(y=x=b(x)8)a() " (y-x—b(x)1) dy
P(St (X, dy) ~e 2o Zx(ét)d/z
(W),

dXt = l;l(Xt)th + b(Xt)dt

stoch. quantisation

EQF
_f O(@)e~5@d
7)1 (ryC\P P

) OF
<F((P) ;(;P)-l- 5<(;P>>:O

object

global description

change parameter t

local description

(X(£)):
X =3[ (A—m?)X]+¢

building block

local/global link

G (t+8t) () + POX(H) + -

Ap=5[(Ae—m2p—V'($)] +E



Part Il - the flow equation method for the fractional ®3

[P. Rinaldi, MG - Stochastic quantisation of the fractional ®3 Euclidean quantum field in the full subcritical regime - WIP]



fractional ®; model

probability measure v,y on QO p={@: Té - R}, Ty = (e(Z/MZ))", e>0, MEN

vea(de) =R ZEEE T dot

Sl =¢ T [ 3900(-809(0) + S+

xETgM

* m>0 mass, A >0 coupling constant, r.>0 mass renormalization

Theorem. Letd=3andse (3/4,1]. There exists a choice of the sequence of mass

renormalisations (7.).-o, with r.=7.(\) - +co as ¢ — 0, such that

— (Vem)em is a tight family of probability measure on .#'(R?) as M — oo and ¢ — 0




stochastic quantisation

finite system of SDEs for ¢ “™: A, ;> R, A, =R x T,
[at + mz + (—A€>S](P(S’M) + }\(q)(s,M))?) — 7 (P(s,M) — 21/ZC(S,M)
A>0,7.>0 - €M) space-time white noise

E[SM (t )8 M (s,9)]=0(t=5)e"Licy, (1), (5,y) EAcy

3 stationary solution ¢ &™) s.t. Law (M (1)) =v, y for all tER

> PDE estimates in weighted Sobolev spaces + positivity of the fractional Laplacian

— tightness of (¢p“")),; = 3 of sub-sequential limits as M — oo



> any accum. point ¢ is solution in A,:=R x (¢Z)? of an co system of SDEs

[0 4+m% 4 (=A)*]d© + A (¢ )2 —r, &) =C©

> subcriticality : at small scales the non-linear term is a perturbation of the linear
part of the equation with the white-noise source - $*) behaves like the solution X ()
of the linear equation

[0, +m2+ (=A)]X© =g

w as £ —» 0 X© has distributional limit in Besov spaces of regularity <s—d /2.



scale decomposition

Ber=0+m>+ (=A)° - FE(P) i= —AMP> + 7. P+ E© - (J,) scale decomposition J;=1d
FH =F(9") = 95=]0" = Bepr=](F($"))

(F$)oe1): C(Ae) = £ (A,) family of smooth functionals s.t. Ff =F¢,

Fi(¢9) =Fi(p3) 4R Ri: / [BeFS(95) + DES(95)- (36p%) do
n

for any choice of (F¢)ocpo1, (¢}, Ri)yue(oq) satisfies

sq)u_]u(l: ((P}i)_i_R )
Ri= [ H5(¢5)do+ [ [DF§(95)- GoR¢]do
with

HE(P) := 9,FE() + DFE(Y) -Go FE (1)




[ (fractional) PDE estimates

Theorem. let
foi= 0o+ (—=A) o + A3,

then for 11 large enough, there exists an universal constant C >0,

llplllz < 1+ Al

where

Ipllz~ sup [o]Voll,  lfllka~ sup [o]If]

oce(ji,1) ce(p 1)




[1 estimates for the flow decomposition

Theorem. Let (¢,R) be solution of

c%q)u:]u(l:u(q)u) +Ru)
Ry= [, Ho(¢o)do + [ [DFe(o) -GoR,]dr
Let (F,), be s.t.,
llo = JoFo (o) = (=AP3)llle < [HILCe (T +IRpIN™ + (1 + IplD B Wllle],

for some (non-random) M, (>0 and random Cr almost surely finite together with
some suitable estimates for H,($,) and DF,(¢,).

Then there exists a (random) j.€ (0,1) such that

liolllz <1, i~ JuRullly 5 < 1.




[ appoximate effective force

Theorem. There exists a random functional (F}),c(,) satisfying the boundary
condition

Fi(p) =—Ap*—rcp+3
and the bound

llo = JoFo ($o) = (=AYl < [REILCr (1NN + (T + Il 2 Ll ]

where Cy=|[F*| is a finite random constant together with some suitable estim-
ates for

H,(¢o) := 9,FS + DFE -G, FE

and DF,(¢,) such that, for any large p,

sup E[IF*|IP] < oo

e>0




1 random flow equation

> look for approximate solutions to
0,F;+DF,-(GyF,)=0, F,=F

in the space of polynomial in the fields

> write F, = ZkFc(,k), where we denote with F") the component of degree k
D () (z) = JAkF(k)(z;zl,...,zk)‘P(z1)---‘P(zk)dzl- .dzy,  zEA
> also derivatives of the field: ¥/(z;) := 9"¥(z,) (jet bundle)

FOW)(z) = Z FAv 0 (zozy oz ) A (21) - - W (2 )dzs - - -dzt.
A

> example:

Yi(z) = IAB 83 (2;21,20,23) ¥ (21) ¥ (22) ¥ (23)dz1dzpd 23



norms

approximate the equation letting

¢ ¢
Fo=) Fl 0 F M+ DRI LGE =0
=0 ¢'=0

Fe= L9 for a=(¢,A,...,Ay), F*:= (F ) aeca,0e01)

||Fa|| =sup jAk |F[F]/<A1 ..... Ak)(Z;le o /Zk> |le- . 'de

zEN

IFY)| := sup[ sup [[0]]_[“]||F3||W] [a]:=—oa+5¢(a)+Bk(a) +]A(a)]

ac? | o=2nu=0
(for suitable parameters «, p and 6 to be fixed) - this means bounds of the form

IFS o S IF| [o]t™



cumulants

cumulants of (F%), ~» deterministic kernels (¥ “), defined by

.szulan(Fal,"‘,Fa”), aeA:{(al,...,an):akeﬂ,néN}

_ 1/n(a)
IF A :=sup | sup [o] NFL0

acA |o=2u=0

l[a]=—p+06n(a)+dL(a)+PK(a)+|A(a)|

Theorem. Kolmogorov-type argument: from estimates on the norm ||| to
those on ||[F¥|| as

{E[IE*MI" " < 14




Duch's flow equation

Lemma. Cumulants satisfy a flow equation

809?011 = Z J%g(ém 9?017) + Z %g,c(car gab/ 9?06)/
b b,c

[[U]]_[a]”J%g(Gm 9?019) ||u,c7 < [[U]]—[b]—lngng”%m

[o] 7B (Go, FE, Ff) o S [0 TN FL N ol Pl o

[P. Duch - Renormalization of singular elliptic stochastic PDEs using flow equation - arXiv:2201.05031]



classification of cumulants

the structure of the flow equation for cumulants propagates estimates of the form

Y4
*

\)
%

\)
%

sup [o] 1 Fflyo<oo = 1FL e S [o]™
oZu

irrelevant cumulants~a[a] > 0: the flow equation can be solved backwards
starting from the final condition at o =1.

relevant cumulants~[a] <0: the flow equation cannot be integrated close to
o=1;

—use the only freedom we have: fine tuning of the final condition

F($) =AM’ + 7. p +C

marginal cumulants~[a = ]0: we shall handle them as the irrelevant.



relevant cumulants

& relevant cumulants - 7 s.t.
[a]=—p+6n(a)+dL(a)+PK(a)+|A(a)|<0

— the only relevant cumulant is 1, (F:9™")

& 1 (FL'™Y is a non-local object ! but the only freedom we have is the fine tuning
a constant (r)!

# Taylor expansion

W)(z) = [{F "z w(zndzl
- ZA:0<|A|<1 aA fA o <0>(Z?Zl)(zl—Z>Ad21+

+) i< cAfol dthF([f](O)(z;zQ (z1—2)4 " (z+t(z,—z))dz;

— we have local terms + some non-local remainder terms




localisation

£\ modify the flow equation by introducing the operators

(LE)(¥) = )y Y Y@ @G- %CGz)da+ Y F(Y)

b:k(b)=1 A:0<IAI<1 b:k(b)#1

(RF,))(Y) = Z Z CAJ dtf FLONO (22 ) (21 = 2) AW A (2 + H(z1 — 2) )dz

bek(b)=1 A:1<|AI<2

9:Fs+ (L+R)[DF, - (GoFo)1=0= 8, Ff =Y, Ap(Co, FE)+ Y, . Bire(Go, FE, F5)
¥ same estimates + relevant cumulant i, (FL”) now local by construction

~>H constants (74),50 such that

k1 (FLIO (2, 2)) = E(FLO(2,20)) =rfd(z — z1).



inductive procedure

solve and estimate the flow equation by induction over ¢

1/n(a)
M,:= sup |sup[o] “NFAlL, | <oo
aL(a)<t | o2
start with My < oo - assume M, < o and take %" with L(a)=¢+1

= for %, irrelevant ([a] > 0) = solve the equation backwards from the final condi-
tion " =0:
1
=],

nia 1 nia
= 1P e SCM; @[]l dy s Clo] vy

o

Y ALG, F +Z%bc wFLF, C)]dn
b

this shows that we cannot do like that for [a] <O0...



= for %, relevant ([a] <0) = solve the equation forwards by fixing r/,"" to be some
arbitrary value at some reference scale pp<1

o
[oT N F sy < ol + [o] 1] ju 199 Fifly, ord”
|rf+1| + [[O.]]—[a]CMn(ﬁl>+1fU [[O_l]][a]—ldo_l
Ho

S |r€+1| + CM”(”)"'l

N

Lemma.

1/n(a 7
IF4 = sup [sup[[cr]]_[”]ll?'ﬁllu,g] @~ M, < C(1+My)* <

a:L(a)<{N(a)SN Lo2p

= this complete the proofs of uniform apriori estimates on the SPDE — tightness



summary

interplay of techniques

PDEs & Renormalization Group @ Stochastic Analysis

\)
%

PDEs

> coercive a priori estimates to deal with the so-called large field problem

* Renormalization Group

S

> flow equation for the effective force + handling of renormalization;

Y4
*

Stochastic Analysis

> flow Equation for cumulants + Kolmogorov argument

= insensitive of how close we are to the critical case

& renormalisation conditions as good boundary conditions when solving the flow
equation

= no need of requiring small coupling constant




the end



Boué-Dupuis formula

Theorem. Let (B;);>o be a Brownian motion on R", then for any bounded F:C(R ;
R") - R we have

log E[e"®)] = supIE[F(B. +1(u),) —% OOO Ius|2d5]
ueH,

with u: O x R, — R" adapted to B and with

I(u);:= Jot uds.

%J:O lu |*ds ~ H(Law (B, +1(u).)|Law(B,)).

[M. Boué and P. Dupuis, A Variational Representation for Certain Functionals of Brownian Motion, Ann. Prob. 26(4), 1641-59]



Boué-Dupuis for the d =2 GFF

E[W,(x)W.(y)] = (tAs)(m*=A) " (x—vy), tse[0,1].

The BD formula gives

—log f o~ F(®) n(de) =—log ]E[e‘F(Wl)] = inf ]E[F(Wl +7Z1) +%f01 ||u5||%zds],

ueH,
where
Zi=(m*—A)"? fot uds, u,=(m*=N)"?Z,
—log E[e~F(")] = inf E[F(Wi+Z1)+%(Z.)],
CHr
with

1 1 : 1 1 : :
8(Za) =5 [ 10m?=8) 22 kds =5 [ (IVZJE+m2IZJR)ds



®; in a bounded domain A

Fix a compact region A @ R* and consider the ®; measure 0, on .#'(RR?) with inter-
action in A and given by

e MW p(dg)

OA(d¢):= [e M@y (d )

o€ P (R?) (1)

with interaction potential Vy(¢) := qu>4—cqu>2. Forany f:.#'(R%) — R (non neces-
sarily linear) let

o~ VAP .= f e/ @0, (do).

We have the variational representation, Z =71, Z.= (Z;)ic[0,17:

Wi(f) = inf F/**(Z,) — inf FO*(Z,)

ZeH" ZEeH"
where

FIMNZ)=E[f(W+Z)+AVA(W+2Z)+E(Z.)].




renormalized potential

c

VA(W+7Z) = fA {w4—cw2+4[w3—5w] z+6[w2 6] ZZ+4WZ3+Z4}

4
W4 —~ - S ——
WE W2

take c = 12E[W?(x)] = +oo
VA(W+Z) = fA [AW3Z + 6WZ2 1 4WZ3 + Z4) +- .
W"re € (A) =BIJ'E(A)

Here BZ*.(A) is an Holder-Besov space. A distribution f € .%'(T?) belongs to
B, (A) iff forany n>0

1Al < (27) 7N flls, ()

where A, f =% "'(¢,(-)Ff) and ¢, is a function supported on an annulus of size ~2".
We have f=) _(Af. If «>0 B% (T7) is a space of functions otherwise they are

only distributions.



Euler-Lagrange equation for minimizers

Lemma. There exists a minimizer Z =7/ of F/*. Any minimizer satisfies the
Euler-Lagrange equations

IEJ<4)\fA z31<+f01 fA (Zs(mz—A)Ks)ds>
- E(fAf’(W+Z)K+7\fA(W3+W22+12WZ2)K>

for any K adapted to the Brownian filtration and such that K€ L*(u, H).

> technically one really needs a relaxation to discuss minimizers, we ignore this all
along this talk. the actualy object of study is the law of the pair (W,Z) and not the
process Z. (similar as what happens in the ®3 paper)



apriori estimates

we use polynomial weights p(x) = (1+ ¢|x|) ™" for large n>0 and small ¢ >0.

Theorem. There exists a constant C independent of |A| such that, for any minim-
izer Z of F/*(11) and any spatial weight p: A — [0,1] with [Vp|<ep for some ¢ >0
small enough, we have

E[47[ pzi+ [ [ (Gm2-a)2p 22 )ds|<C.

Proof. test the Euler-Lagrange equations with K= pZ and then estimate the bad
terms with the good terms and objects only depending on W, e.g.

[ 0 W2 Z| < ClIW3IR iy + B1Z1 R,

[ oW2Z2| < ColloS W2+ 8(lp"* ZIlts + oV Z1e), -



tightness and bounds

WA(f) =inf FN(Z) —inf FON(Z) = A (ZIR) — PN (20
Therefore

Ff,A(Zf,A) _ Fo,A(Zf,A) <L) < Ff,A(Zo,A) _ FOA(ZOA)
and since, for any g,

FINZ8™) —FONZ8™M) =E[f(W+Z8™) + A VAW + Z8M) + E(Z8M) ]

—E[AVA(W+Z8N + E(Z8M ] =E[f(W + 28]

E[f(W+Z'"™]KWA(F) SE[f(W+Z°Y)]

Consequence: tightness of (04), in #'(R?) and optimal exponential bounds (cfr.
Hairer/Steele)

sup | exp (3l Iy 0a(d) < co.
A



Euler-Lagrange equation in infinite volume

moreover

[ £(9) 0a(d9) = E[F(X +20M)]

the family (Z/), is converging (provided we look at the relaxed problem) and any
limit point Z =7/ satisfies a EL equation:

E{fsz’(W+Z)K+4AfR2H(W+Z)3HK+f01 fRZZS(mZ—A)KSds}:O

for any test process K (adapted to W and to 7).

a kind of stochastic “elliptic” problem




‘ the stochastic equation

rewrite the EL equation as

E{fol [ (F Wi+ Z0) +4N[ (W1 + Z0)°] +Z.(m* ~ A) ) Kids} =0
then

E{fol [ B[/ (Wit Z0) +4A[(Wi+ Z0)°] + (2 = D)Z,

F.|Kds} =0
which implies that

(m*=N)Zy=—E| f' (W1 +Z1) +4A[(W1 + Z1)°] | %]

Open questions
* Uniqueness??
* ['-convergence of the variational description of %/, (f)?

not clear. We lack sufficient knowledge of the dependence on f of the solutions
to the EL equations above.




exponential interaction

we can study similarly the model with
Vi(g)= [, &) [exp(Bo(x))dx

for B2 <87 and &: R*— [0,1] a smooth spatial cutoff function

VEW+2) = [ E(x)exp(BZ(x))[exp(BW (x))]dx

M@E@

:IRZ ¢(x)exp(BZ(x))MP(dx), [Gaussian multiplicative chaos]

BD formula

WES(f) = —log [ exp(—f(¢))dvf
_ infE[f(W+Z)+f§exp([5Z)dMB+%folf((mz—A)l/ZZt)zdt]

ZES,

> the function Z+— V(W +Z) is convex!



variational description of the infinite volume limit

> thanks to convexity the EL equations have a unique limit Z in the oo volume limit

> moreover we have the I'-convergence of the variational description:

Wil ) = lim [ ~log [ exp(=f(¢))dv* ]

=tim [, (f) - W3,(0)] =inf G P (K)

n—oo

with functional

fowfeXP(K):E[f(w+z+1<)+fexp(52)(exp(f)1<)—1)dMﬁ+5<1<)]

R
>0

which depends via Z on the infinite volume measure for the exp interaction.



end



Part lll - the FBSDE for Grassmann measures




Euclidean Fermions

Fermions: quantum particles satisfying Fermi-Dirac statistics

EQFT: Wick rotation of QFT. t - t=it, R’x R —» R?*! Euclidean space. Wightman
functions — Schwinger functions.

Y, ¥ -,

6= K. Osterwalder and R. Schrader. Euclidean Fermi fields and a Feynman-Kac formula for
Boson-Fermions models. Helvetica Physica Acta, 46:277-302, 1973.

Euclidean fermion fields ¢, form a Grassmann algebra

Putpp=—Ppho (Pi=0).




Schwinger functions

> Schwinger functions are given by a Berezin integral on A=GA (), 1)

[ dpdd Oy, p)e W) (O, p)eV BB
Oy, = — _ = _
O, $) fdt])dt[)e‘SE(LP’q’) <6—V<LP,LP)>C

i o\, —2(H,CP)
(0, CH) + VW, B) (O, §))e=t 9O ple *
[ dpdp o2 (WCY)

N —

SE(P,P) =

> Under (-)c the variables 1|),1I) are “Gaussian” (Wicks' rule):

(WP(x1)P(x20))c= Z (=1 (xea)W(xe@))) e - (W (Xo20-1)) P (X 20-1)) ) C



algebraic probability

[> a non-commutative probability space (4, w) is given by a C*-algebra 4 and a
state w, a linear normalized positive functional on A (i.e. w(aa*)>0).

> a random variable is an algebra homomorphism into A4

6% L. Accardi, A. Frigerio, and J. T. Lewis. Quantum stochastic processes. Kyoto Uni-

versity. Research Institute for Mathematical Sciences. Publications, 18(1):97-133, 1982.
10.2977/prims/1195184017

example. (classical) random variable X with values on a manifold /?
oS wlLr
fEL™(M;C)->X(f)EA=L"((}C), X(fg)=X(f)X(g), X(f)=X(f)"

algebraic data: A4 =L"(();C), w(a) = [ a(w)P(dw), X € Hom,(L=(Ab), ).



Grassmann probability

> random variables with values in a Grassmann algebra A are algebra homomorph-
isms

G (V)=Hom(AV, A4)

The embedding of AV into 4 allows to use the topology of 4 to do analysis
on Grassmann algebras.

dev)(X,Y):=IIX=Ylgw)y= sup [IX(v)—=Y(0)ll.4,

veV,vly=1

analogy. Gaussian processes in Hilbert space. Abstract Wiener space. "a con-
venient place where to hang our (analytic) hat on”.



back to QFT: IR & UV problems

QFT requires to consider the formula (Fermionic path integral)

(O, p)e" W)y
< LPtl))>

O, P))ey=

with local interaction

Vi, §) = [ P(9(x), (x))dx

and singular covariance kernel (due to reflection positivity)

P)P(y)) o< |x —y[™

this gives an ill-defined representation
*« large scale (IR) problems
* small scale (UV) problems

well understood in the constructive QFT literature (Gawedzki, Kupiainen, Lesniewski,
Rivasseau, Seneor, Magnen, Feldman, Salmhofer, Mastropietro, Giuliani,...)



what about stochastic quantisation for Grassmann measures?

6% |gnatyuk/Malyshev/Sidoravicius | “Convergence of the Stochastic Quantization Method
I,L11”, 1993. [Grassmann variables + cluster expansion]

weak topology + solution of equations in law + infinite volume limit but no removal
of the UV cutoff

*

6% “Grassmannian stochastic analysis and the stochastic quantization of Euclidean Fermions”
| joint work with Sergio Albeverio, Luigi Borasi, Francesco C. De Vecchi. arXiv:2004.09637
(PTRF)

algebraic probability viewpoint + strong solutions via Picard interation + infinite
volume limit but no removal of the UV cutoff

6% “A stochastic analysis of subcritical Euclidean fermionic field theories” | joint work with
Francesco C. De Vecchi and Luca Fresta. arXiv:2210.15047

alg. prob. + forward-backward SDE + infinite volume limit & removal of IR cutoff
in the whole subcritical regime



Grassmann stochastic analysis

> filtration (%;);>0, conditional expectation w;: A — A,
w(ABC)=Aw{B)C, A,Ce A,
> Brownian motion (B;);>o with B, % (V)
W(Bi(v)Bs(w)) =(v,Cw)(tAs), t,s=20,0,weV.

IB; — Bl S |t —s]*/2.
> lto formula

t
¥, =¥, + jo B (¥)du+X, w(X,®X,)=Cir

Wu(Fi(¥)) = wu(F(¥) + [ @J[0Fu(¥) + ZF,(¥,)]du,

1
%.Fu=5D¢Fu+ (B, DF,)



the forward-backward SDE

[joint work with Francesco C. De Vecchi and Luca Fresta]

let ¥ be a solution of
d¥,=C, ws(DV(¥7))ds+dX,, s€[0,T], ¥=0.
where (X;); is Gaussian martingale with covariance w(X;® X;) =C;,s. Then
w(e’ M) w(e V) =1

and

_ w(O(Xr)e"™X) — (O(h)e” W),
(U(O(\PT>> - w(eV<XT>) - <€v<¢)>CT

for any O.

> this FBSDE provides a stochastic quantisation of the Grassmann Gibbs measure
along the interpolation (X;); of its Gaussian component



the backwards step

let F; be such that F=DV. By Ito formula
Bs:=ws(DV(¥7)) = ws(Fr(Y¥r))

=F.(¥,) + JFT w| <8uFu(‘Pu) + lDZC-uFu(‘Pu) +(B., CuDFu(‘Pu)>>

> du

w

=F.(¥,) + f "o _<8uFU(‘Pu) + %ch-uFu(‘Pu) +(B., CuDFu(\Pu») |du

letting R; =B, — F,(¥;) we have now the forwards-backwards system

¥, = [ Cs (Fo(¥:) +Ry)ds + X,
Ri= [ w0 [Qu(¥.)]du+ [ w,][(R,, C,DF,(¥,))]du

t t
with

1 .
Qu:= auFu + EDéuFu +(F,,C,DFE,)



solution theory

> standard interpolation for C.. = (1 + Ag:)"™2, v<d/2. x €C>(R,), compactly
supported around 0:

Cri=(1+Ar)" X (27%(=AR1)),  ICHzw~1~) S2* % IC 2w S 2%

~

> the system
¥, = [ Cs (Fo(¥:) +Ry)ds + X,
Rt — ftT wt[Qu<qju> ]du + fT wt[<Rur CuDFu<qju)>]du

t

can be solved by standard fixpoint methods for small interaction, uniformly in the
volume since X stays bounded as long as T < co:

Xl ey S 27

> decay of correlations can be proved by coupling different solutions (Funaki '96).

> limit T — oo requires renormalization when y&[0,4/2].



relation with the continuous RG

if we take F such that Q=0 we have R=0 and then

Y= [ CL(F(%)ds +X,
with

1 .
auFu + iDélFu +(F,,C,DF,)=0, Fr=DV.

define the effective potential V; by the solution of the HJB equation

1 .
0.V + ED%HVU +(DV,,C,DV,y=0, Vy=V.

then F;, =DV, and the FBSDE computes the solution of the RG flow equation along
the interacting field.

> so far a full control of the Fermionic HJB equation has not been achieved (work
by Brydges, Disertori, Rivasseau, Salmhofer,...). Fermionic RG methods rely on a
discrete version of the RG iteration.



approximate flow equation

thanks for the FBSDE we are not bound to solve exactly the flow equation and we
can proceed to approximate it.

> linear approximation. take

1
9.Fy+5DeF,=0, Fr=DV.

this corresponds to Wick renormalization of the potential V:

¥, = [ Cs (Fs(¥s) +Ro)ds + X,
Ri= [ @ [(Fu(¥.), CiFu(¥.))]du+ [ wi[(R,, C.DF,(¥,))]du

t

the key difficulty is to show uniform estimates for
T :
J; wt[<Fu(qju>/ CuFu<qju>>]du

as T — co. we cannot expect better than ||V, ~ || X/]| ~ 20,



polynomial truncation

a better approximation is to truncate the equation to a (large) finite polynomial
degree

1 .
0,F., + EDZC-”FM +I1<k(F,,C,DF,)=0

where 1<y denotes projection on Grassmann polynomials of degree <K and take

F(p)=) F e

k<K

With this approximation one can solve the flow equation and get estimates

2(0(—E>k)t
k

with x =3B, p=d/2—-y, provided the initial condition F; =DV is appropriately renor-
malized.



‘ FBSDE in the full subcritical regime

with the truncation I1x we have

Y= fot C, (Fs(Y¥s) +R,)ds + X,
R = [ @ [ITsk(F,, C,DE,) (¥,) ]du+ [ wi[(R,, C.DF,(¥,))]du
but now observe that

1% = 1XA 27 [F e s 2 0P

which is exponentially small for k large as long as v <d/4 (full subcrititcal regime).

now the term

J;T wt[H>K<FLLI CuDFu> (\Pu>]du

can be controlled uniformly as T — oo and also the full FBSDE system. (!)



thanks



