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Universality in stochastic processes 2/23

We are concerned here with large scale effective description of microscopic random phenomena.

White noise (CLT, Donsker’s Invariance principle, ...)

e 7: R — R a stationary random field under suitable assumptions (e.g. strong mixing,
integrability) with law .

e Weak topology: 1(¢) = [dxp(x)n(x) for a sufficiently large class of .

e Scaling transformation 7.(z) = e ~%/?n(z / ): keeps variance unchanged for 7() but not
mean.

Let e the law of . —m, m. =~ ¥2E(n(z)) — p, then
e, m.— Vp,c as € — 0,

where 7, . is the law of the white noise £ with intensity ¢ and mean p:

B(£(p)) = p / p(@)dr,  Var(&(p)) =c / o(z)%dz.



Other random scaling limits 3/23

The description of random non-gaussian scaling limits is less clear:

> Infinitely divisible distributions, Hierarchical models

> Ferromagnetic critical point in d =2, 3 short range spin systems

> Large scale behaviour of d=1,2, 3, ... interface models in equilibrium or not
> Interacting Euclidean quantum fields

> ...

There are a number of problems in science which have,
as a common characteristic, that complex microscopic
behavior underlies macroscopic effects.

In simple cases the microscopic fluctuations average
out when larger scales are considered, and the averaged
quantities satisfy classical continuum equations. Hydro-
dynamics is a standard example of this, where atomic
fluctuations average out and the classical hydrodynamic
equations emerge. Unfortunately, there is a much more
difficult class of problems where fluctuations persist out
to macroscopic wavelengths, and fluctuations on all inter-
mediate length scales are important too.

In this last category are the problems of fully developed
turbulent fluid flow, critical phenomena, and elementary-
particle physics. The problem of magnetic impurities in
nonmagnetic metals (the Kondo problem) turns out also
to be in this category.
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Wilson's Renormalisation Group 4/23

A theoretical framework for the description of these more general scaling limits is provided by
Wilson's RG

The renormalization group and critical phenomena*

Kenneth G. Wilson

Laboratory of Nuclear Studies, Cornell University, Ithaca, New York 14853

The possible types of cooperative behavior, in the renormalization group picture, are deter-
mined by the possible fixed points 3* of r. Suppose for example that there are three fixed points
3, Hg, and H¥. Then one would have three possible forms of cooperative behavior. If a particu-
lar system has an initial interaction ¥, one has to construct the sequence I(,, ¥, etc. in order to
find out which of ¥} , 3§, or 3(# gives the limit of the sequence. If 3} is the limit of the
sequence, then the cooperative behavior resulting from 3, will be the cooperative behavior
determined by #£. In this example the set of all possible initial interactions ¥y would divide into
three subsets (called “domains™), one for each fixed point. Universality would now hold separately
for each domain. See section 12 for further discussion.

This is how one derives a form of universality in the renormalization group picture. It is not so
bold as previous formulations [9]. Experience with soluble examples of the renormalization group
transformation for critical phenomena shows that it generally has a number of fixed points, so one
has to define domains of initial Hamiltonians associated with each fixed point, and only within a
given domain is the critical behavior independent of the initial interaction.
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RG fixpoints describe scaling limits 5/23

>>Rescaling, analysing how the theory changes from scale to scale, give
rise to a dynamical system

>>Basins of attractions are universality classes, all the systems display
similar large scale behaviour
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Gaussian fixpoint and its universality class 6/23
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Unstable directions out of the Gaussian fixpoints (may) go to other
(IR) fixpoints.

This hints to the possibility of introducing class of models which
describe these fixpoints as (universal) perturbations of Gaussian
models.

The trajectory describes perfect theories where rescaling implies only
a change of parameters.



1d interface growth 7/23
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KPZ universality class 8/23
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Dynamic Scaling of Growing Interfaces
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A model is proposed for the evolutior of the profile of a growing interface. The deterministic
growth is solved exactly, and exhibits nontrivial relaxation patterns. The stochastic version is stud-
ied by dynamic renormalization-group techniques and by mappings to Burgers’s equation and to a
random directed-polymer problem. The exact dynamic scaling form obtained for a one-dimensional
interface is in excellent agreement with previous numerical simulations. Predictions are made for

more dimensions.

PACS numbers: 05.70.Ln, 64.60.Ht, 68.35.Fx, 81.15.Jj

Many challenging problems are associated with
growth patterns in clusters' and solidification fronts.?
Several models have been proposed recently to
describe the growth of smoke and colloid aggregates,
flame fronts, tumors, etc.! It is generally recognized
that the growth process occurs mainly at an ‘‘active”’
zone on the surface of the cluster, with interesting
scaling properties.> However, a systematic analytic
treatment of the static and dynamic fluctuations of the
growing interface has been lacking so far.

In this paper we propose a model for the time evolu-
tion of the profile of a growing interface, and examine

The interface profile, suitably coarse-grained, is
described by a height #(x,t). As usual, it is con-
venient to ignore overhangs so that 4 is a single-valued
function of x. The simplest nonlinear Langevin equa-
tion for a local growth of the profile is given by'?

%=Vv2h +%(Vh)2+n(x,t). (1

The first term on the right-hand side describes relaxa-
tion of the interface by a surface tension v. The
second term is the lowest-order nonlinear term that
can appear in the interface growth equation, and is




RG perspective on KPZ 9/23

The KPZ equation defines a one-parameter

family of models
\\ dth = Ah + A[(Vh)? — oo] + &

Gauss ¢———— KPZ KPZ

0 > Diffusive rescaling
] // he(t,z)=e'2n(t/e% x /) — e~/ ?m

> A =0 : Gaussian fixpoint

> A\ grows under scaling (relevant direction)

TASEP

Othe = Aho+ X V2(Vh)2+ €

Eden
> \— oo : KPZ fixpoint equivalent to

/ PZ
6th5:5Ah5+>\(Vh5)2+ \/5557 0 — 0. BD /\s\\ \

> Recent results by Matetski, Quastel, Remenik on the law
of the KPZ fixpoint as integrable system.




Constructive KPZ theory 10/23

> The KPZ equation is the (unique?) critical trajectory exiting the Gaussian fp.

> Precise mathematical description of this trajectory has been a longstanding mathematical
problem moreover it is interesting to characterise models which can lead to KPZ) under scaling
(weak—universality).

> Bertini and Giacomin (1996) provided a construction of this critical trajectory via a particular
family of stochastic discrete models (WASEP,,),cr and a suitable rescaling transformation R..

> «v is a asymmetry parameter (inducing large scale flux of particles) whose influence “grows”
under rescaling.

R-WASEP; — Gaussian model, R-WASEP _1/2, — KPZ)
> KPZ, is identified via Hopf-Cole transformation:
h=log Z, O =7¢&

where the Stochastic Heat equation is interpreted in Ito sense (martingale theory).

> This trick does seldom work. Without more flexible description of KPZ, is it difficult to prove
convergence.



A rigorous meaning for the KPZ equation 11/23

> Hairer (2013, 2014) devised a successful approach to give an intrinsic meaning to the KPZ
equation. This allows a rigorous description of the (KPZ,), random fields solving

Oth = Ah+ \[(Vh)? — o] + €.

The random field 7 is described in terms of the Gaussian fixpoint 0, X = AX + &.

e Rough paths, regularity structures (Hairer)
h(z) —h(y) =X (2) = X (y) + Y (z,y) + ' (2)Z(z, y) + O|x — y|*/**)
e Paracontrolled distributions (G, Imkeller, Perkowski)
Aih=AX 4+ AY 4+ (Agi _1h) A Z 4+ O(273/29)
e Energy solutions/martingale problem (Jara, Gongalves, G., Perkowski)

dh(t) — Ah(t)dt —dB(t) =dM(t),  dB(t)=lim [(Vp, * k)% — C,dt

e Other approaches: Renormalization group (Kupiainen), Otto & Weber approach...



The Hairer—Quastel invariance principle 12/23

> Hairer and Quastel proved (2015) that scaling limits of random fields HQ(F', 1, L) solution to
Oth=Ah+ F(Vh)+n
on a periodic domain of size L, converges to KPZ:
R.HQ(e'Y?F,n,e L) - KPZ)
where )\ is a function of F', whenever F' is polynomial and 7) short range Gaussian field. (NB:

proper recentering of the scaling transformation is needed.)

> Regularity structures/Paracontrolled distributions analysis of scaling limits of particle systems
is still a difficult problem. The expansion requires a precise control of the dynamics (but see
recent results by Matetski and Quastel)

> Goncalves—Jara energy solutions allow to prove convergence to KPZ) for a large class of
microscopic particle models, always in the same weak asymmetric regime.

> This and other results obtained via integrable models confirms the heuristic picture that there
are no other relevant fixpoint for interface growth in 1d. The KPZ fixpoint describes the large
scale dynamics of growing interfaces.



Wilson—Fisher fixed point 13/23

> Scalar fields in d = 3 dimensions can be used to describe (mesoscopic) magnetization in
ferromagnetic system or (Euclidean) scalar quantum fields in 2 + 1 dimensions: we are looking
for a non—gaussian fixpoint of the RG, the Wilson—Fisher fixed point.

> The relevant family I'(11) of centered Gaussian models has covariance
EX(2)X(y)]=(-A+p) " (z,y)

> Under rescaling R. which fixes I'(0) the parameter . grows: R.I'(;) =T (¢~ ?u), leading to
the high temperature fixpoint 11— oo, where correlations are absent in the macroscopic scale.

> A class of perturbations of the models I'( 1) is given in terms of a pathwise dynamic picture:
promote X (x) to a time dependent random field satisfying the Langevin equation

OX=—(-A+p)X+¢
and introduce the family of dynamic Ginzburg—Landau models DGL(V’, ) of the form
o =Ap=V'(¢)+1

where V' is an odd function (we want to preserve the ¢ <> —p symmetry).



Two relevant directions 14/23

> Scaling transformation
pe(t ) =720t/ x)e),  me(t,x) =" n(t/e%x/e),
> Equation for R.DGL(V', n) =DGL(¢2V'(e'/?.), n.)
Oupe = Dipe — =52V (1202) + 1)
> If V(o) =a1p+azp>+ - then
e=52V(cV20) = e 2a1 0 4+ e Lag® + Oagp® + elarpT + -

> Two relevant directions, associated to ¢ and ¢
e Direction ¢ points towards the high temperature (HT) fixpoint
e Direction ? points in a new direction — Wilson—Fisher (WF) fixpoint

In order to construct the critical trajectory to WF we need to avoid to be attracted by HT.



Constuction of the scaling limit 15/23

> Allow for general family (F.). of interactions to be tuned while rescaling.
Lue(t,x)=—e 2 F(e?u.(t, ) + ne(t, )
> Expand around the Gaussian model and parametrize F via chaos expansion wrt. Y.

ong:nsa Ve =Y, 4+ ug,

Fe(fﬁ)::Fe(I)_fOe flem_fQ HQZUO-YLS ans ZEO—YE)

n>3

> Introduce constants (with &™) za(m_5>/2ﬁém>(el/2}/€))

g . / ,QSPS(@E[@(”@EJ@] LY = e g, / P(@)[Cy s,

1 A 1 1
= 2d€\§+3d6\<y.



Convergence result 16/23

> Assume

a) (F.)e CC(R) and supe >, _ [0FFc(x)| < Ceclle,

b) the vector A. = AV, A A2 \B)y c R4

e Yile Y ite v 7te

)\553) — 8_1f3,€ AS) — 5_2]01,5_35_1(15\%/
)\(2) _ 8_3/2f2€ )\g)) _ 5_5/2]”06—5_3/2]‘"2gdg\K/—?)e_lch;@—Se_lgl;@

g

has a finite limit A= (A(?, A A2 AB)) e R* as ¢ — 0.

Theorem The family of random fields (u.). converge in law and locally
in time to a limiting random field w()\) in the space Cp% —'/2=%(T?).

The law of u()\) depends only on the value of \ and not on the other details of the nonlinearity
or on the covariance of the noise term.

> The limit manifold (u(\))x contains the critical trajectory from I'(0) to WF. Called also the
dynamic ®3 model with parameter vector \ € R*.

> Proven for Pol/Gaussian by Hairer and Xu (2016), for Pol/Non-Gauss by Xu and Shen. Non-
pol/Gaussian Furlan, G. (2017).



Hapern—Huang directions 17/23

> Halpern and Huang theorized
about possible non-polynomial rel-

evant and asymptotically free direc-
Kenneth Halpern and Kerson Huang

Department of Physics and Center for Theoretical Physics, Laboratory for Nuclear Science, Massachusetts Institute of Technology, H h G H f
Cambridge, Massachuseits 02139 tions at the Gaussian P.
(Received 1 July 1994)

We search for alternatives to the trivial ¢* field theory by considering nonpolynomial potentials.
Such theories are renormalizable when the natural cutoff dependences of the coupling constants are 2
taken into account. We find a continuum of fixed points, which includes the well-known Gaussian F (u) O( eXp (Cd (d —_ 2>u )
fixed point. The fixed-point density has a maximum at a location corresponding to a theory with
a Higgs boson mass of approximately 2700 GeV. The Gaussian fixed point is UV stable in some

directions in the extended parameter space. Along such directions we obtain nontrivial asymptotically
free theories.

VOLUME 74, NUMBER 18 PHYSICAL REVIEW LETTERS 1 May 1995

Fixed-Point Structure of Scalar Fields

PACS numbers: 11.10.Hi, 11.10.Kk, 11.10.Lm

> The status of this proposal is not clear to me, some objection moved by Morris & C.

e Halpern, Kenneth, and Kerson Huang. “Halpern and Huang Reply:" Physical Review Letters 77, no. 8 (August
19, 1996): 1659-1659.

"N

e Morris, Tim R. “Comment on “Fixed-Point Structure of Scalar Fields".” Physical Review Letters 77, no. 8
(August 19, 1996): 1658—1658.

e Bridle, I. Hamzaan, and Tim R. Morris. “Fate of Nonpolynomial Interactions in Scalar Field Theory.” Physical
Review D 94, no. 6 (September 28, 2016): 065040.

> Rigorous techniques can help to rule out such directions (my current guess).



Scheme of proof 18/23

> Taylor expansion

Pu. = o — O — )y, — %cp%g - %cp%g ~ R.(v.)

_5_3/2f0,6 - 5_1]01,5(}/5 + Us) — 5_1/2]02,5([[}/52}] + 27}5}/5 + U?).

> Stochastic driving terms

2y, = o), Vo= el [V,
vV o= La0 v o= Ve —a ¥,
AN v ¥y Yoyvoa Yy 0 Y
Vo= e v v Yorvoa ¥
Vo = Za), A SRR GREV A4

}/ETECT%|T|—/£ Y. 9 YET }/6\/' Yav YS\V Ys\K/ Ys\ﬁ/ }é\ﬁ/ }/6\@
7] —10 [—1/2] 1| -1]1/2] 0 [ 0 | 0 |[-1/2




Paracontrolled Ansatz 19/23

02/’05 — _}/e\v - Y;V - 3Y€VU€ — 31/5; ’Ug _ Yegvsg
_5_5/2f0,5 - 5_2fl,€ (ng + Us) - 8_3/2f2,€ (2}/6 Ve + U?) - RE(Ué‘)

> Paracontrolled Ansatz (a change of unknowns v. — v?)

Uez_Ye\V_};eY_gUe{YeY—l_vga SO€:U€+}/55\V

> Renormalized products

Yv<>’l)€ = Uz«:Yev — Ve < }/&:v 3 Ve d \<I/ \§/Y55 + &5\@ + &5\@>

= vg>K;V—léYV—K;YV—3%1@\@%3%\”—3m—m1(vg,ﬁ,1@v>
voVe  m vt d Yoy v v Yoy v Y
vV = v mw_wﬂg
Y. ov? = Yo+ 2d€\§vg — YV o(Y )2 -2 (VoYe Ve 4 Vi 2



Convergence of the stochastic terms 20/23

Y. — Y(A)
R AR AR A A S AN S G 4

Y(A):= ()\(3)7 )\(3))(7 >\(3)XV, A(Q)XV, )\(3)X\Y7 ()\(3))2X\</, (A(B))QX\@’ A(B)A(Q)X\@, ()\(3))2)(\%/)

ZX = £
xVv = [X3],
xV = [Xx2?],

AqX\K/ = Aq(X\VoX)Z/ [X21X¢ e, ¢

17<2

ax ¥ s a0 g Y oxv)— [ 0= XD e

Ax ¥ /C (= I IXEIIXED a6 [ 186X (45,7 - 2) = AX (1,2 P@) [Ox (5,0

S, x



Partial chaos expansion 21/23

> Malliavin calculus D, d, L=—6D, Q7 :=][;_, (k—L)~*

(m) - (m+k)> K (mtn); ®
k=0
n—1
— Z +k— 5)/2mk—|)fm+k: gﬂykc]]+5 (Q (ID + )h® )

> BDG-like estimates

Hfg MCHLP(Q
[o%=m [ QT P RE T | ooy < [1QT™ [ 2RET ] s

< SEIn DRI [ PRE T e Loy SIS O RE T e sl
S S 20 RETT RE T pea-m e per || e

S e MR sy e e 1= g e ]

< efC olle 2<I>(4)‘ LP(Q)Hs_%@(C/ Q)!<h<,h<'>\4_m!ucu<'\}%

S _€5fc,c' 5_5‘1’24)| me)H‘g_%q)(c%)‘ me)“hc’h</>’3_m+5‘“m<”%’



Second order trees (elements) 22/23

> Partial contractions for products of local operators

q’(go)q)(é) _ IE[<I>(O)<I>(2)}+5Q D(CI>(O)CI>(2))
q)(l)q)(l) _ E[CI>(1)<I><1 ] +6Q: D(<I>(1)<I>(1))
(CO)CD(C? _ ]E[q)(O)q)(l ] 48[ JoD(® (O)®<1))]+52Q DQ(CI)(O)(I)<1))
— E[® (C)q)(l)H_Y“ [¢(1)¢(1)}+Y(C) [<I>(O)<I>(2)]+52Q2D2(<I>(0)<1>(1))

> Partial expansion for contractions

m n 3'2 — 3—m 3—n 3! — 3—m7n & (N
[ <Cl )@22)} - (3 m)|(3 n) (8 1f3 5) ]E[[[Y ,C1 ]][[Y ,Co ]]]+(3_m)'5 1f3,€EH[Y;5,Cl ]](I)(CQ)]
3' — —nm A (M z(m)z(n
—{_(3_,”/)1(€ 1f3’5E[[[Y€?:C2 HCI)(Q )} +]E[CI)(C1 )CI)(C2)}7

> Control of remainders
RIS
= Sm(QPeIhE™O (QFEAE)

rta . » » By
= Z Cq,qw,igl—i_ 2 15m—i—n—q—r(<@?1+tr_iz(cl)h%m+r z) @?ig_f(é“g)h?;qu Z>H®q+7‘_i)
(q,r,9)€I
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