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Euclidean quantum fields (EQFs)

a particular class of probability measures on .#'(R%):

EQF = regularity + Euclidean invariance + reflection positivity

introduced in the '70-'80 as a tool to constructs models of (bosonic) quantum field theories in
the sense of Wightman via the reconstruction theorem of Osterwalder-Schrader.

_1 —5(¢)
[y OCOVR) =5, O(g)e™"dg,

S(¢) = [, 2 V()2 +3mlg()P+V (p(x))dx

for some non-linear function V:R - R, e.g. a polynomial bounded below, expo-
nentials, trig funcs. ill-defined representation:

- large scale (IR) problems: the integral in S(¢) extends over all the space, sample
paths not expected to decay at infinity in any way.

- small scale (UV) problems: sample paths are not expected to be function, but
only distributions, the quantity V(¢ (x)) does not make sense.



EQFs - history

> Construct rigorously QM models which are compatible with special relativity,
(finite speed of signals and Poincaré covariance of Minkowski space R"*),

> Quantum field theory (QM with co many degrees of freedom)

> Wightman axioms ('60-'70): Hilbert space, representation of the Poincaré group,
fields operators (to construct local observables).

> Constructive QFT program ('70-'80): hard to find models of such axioms. Exam-
ples in R'*! were found in the '60. Glimm, Jaffe, Nelson, Segal, Guerra, Rosen,
Simon, and many others...

> Euclidean rotation: t — it = x, (imaginary time). R""! — R? Minkowski — Euclidean

> Osterwalder-Schrader theorem : gives precise condition to perform the passage
to/from Euclidean space (OS axioms for Euclidean correlation function).

> High point of EQFT: construction of ®3 (Euclidean version of a scalar field in R**!
Minkowski space). (®3), Glimm ('69). Glimm, Jaffe. Feldman ('74), Y.M.Park ('75)
(®3)rs Feldman, Osterwalder ('76). Magnen, Senéor ('76). Seiler, Simon ('76)

> Other constructions of ®3. Benfatto, Cassandro, Gallavotti, Nicold, Olivieri, Presutti, Scacciatelli ('80) Brydges, Froh-

lich, Sokal ('83) Battle, Federbush ('83) Williamson ('87) Balaban ('83) Gawedzki, Kupiainen ('85) Watson ('89) Brydges, Dimock,
Hurd ('95)



Gaussian free field (GFF)

> simplest example of EQFT. We take a Gaussian measure p on %' (R?) with covari-
ance

(x=y)
[o0o0In(de) =01 = [, = (=) =), wy RS

and zero mean. Reflection positive, Eucl. covariant and regular. This is the GFF with
mass m > 0.

> this measure can be used to construct a QFT in Minkowski space but unfortu-
nately this theory is free, i.e. there is no interaction.

> note that G(0) = +oo if d >2, this implies that the GFF is not a function.

> in particular GFF is a distribution of regularity « = (2—4d) /2 —« for any small x>0,
e.g. locally in the sense of the scale of Besov-Holder spaces (B, ..)uer-



non-Gaussian EQFT

> heuristically we want

p AV (9(x))dx
v(de) :TM(dCP)-

@ go on alattice: R? — Z¢= (¢Z)“ with spacing £ >0 and make it periodic Z¢— Z? | =
(Z./27LN).
Se(9)
1

fF((P)US’L(d(p) = 7 Lf y F((P)e—zzxezglLIVa(P(x)l +m-@(x) +Vg(cp(x))dq)
g, R7&L

e is an UV regularisation and L the IR one.

@ choose V, appropriately so that v*— v to some limitas ¢ » 0 and L — co. E.g. take
V. polynomial bounded below (otherwise integrab. problems). d=2,3.

Vs(é) :7\<§4 _asE;Z)

The limit measure will depend on A >0 and on (a.). which has to be s.t. 2. > +o0 as
e —0. Itis called the ®; measure.



® study the possible limit points (uniqueness? non-uniqueness? correlations?
description?)

> for d =2 other choices are possible:

21-1

V@) =AE+ Y 0,8, Ve(®) = accos(BE)
k=0

Ve(€) =accosh(BE),  Ve(§) =acexp(BC)

> for d=3 "only” 4th order (6th order is critical).

> for d =4 all the possible limits are Gaussian (see recent work of Aizenmann-Duminil
Copin, arXiv:1912.07973)



stochastic quantisation

We are interested in limits of quantities like

lim [ g(fi)--(f)v"(de) = [ () @(f,)v(dg)

e—0,L—o0
for arbitrary test functions fi,..., f,€ % (R"). For d=2,3 problem solved in ‘70 —"80
by Glimm, Jaffe, ...

Parisi-Wu, Nelson ('84): introduce a stochastic differential equation (SDE) which has
v as invariant measure.

For clarity we work with v®~. In Parisi-Wu's approach the SDE is a Langevin equation
of the form

dd(t,x) _

G = VeS(P(tX)) +2V5( ),  xEAL =701 t20

Here ¢(t,x) is a space-time white noise.
If Law (@ (t=0)) =v"" then Law (P (t)) =v** forall t >0



an history of stochastic quantisation (personal & partial)

1984 — Parisi/Wu - SQ (for gauge theories)

1985 - Jona-Lasinio/Mitter — “On the stochastic quantization of field theory” (rigorous SQ
for ®3 on bounded domain)

1988 — Damgaard/Hiffel — review book on SQ (theoretical physics)
1990 - Funaki — Control of correlations via SQ (smooth reversible dynamics)

1990-1994 — Kirillov — “Infinite-dimensional analysis and quantum theory as semimartin-
gale calculus”, "On the reconstruction of measures from their logarithmic derivatives”,
“Two mathematical problems of canonical quantization.”

1993 — Ignatyuk/Malyshev/Sidoravichius — “Convergence of the Stochastic Quantization
Method I,I1” [Grassmann variables + cluster expansion]

2000 - Albeverio/Kondratiev/Rockner/Tsikalenko — “A Priori Estimates for Symmetrizing
Measures..."” [Gibbs measures via IbP formulas]

2003 - Da Prato/Debussche — “Strong solutions to the stochastic quantization equations”

2014 — Hairer — Regularity structures, local dynamics of @3

2017 — Mourrat/Weber — coming down from infinity for ®4

2018 - Albeverio/Kusuoka — “The invariant measure and the flow associated to ®3..."
2021 — Hofmanova/G. — Global space-time solutions for ®5 and verification of axioms
2020-2021 — Chandra/Chevyrev/Hairer/Shen — SQ for Yang-Mills 2d/3d.



the dynamics give a map G, ; which transform a Gaussian measure into v©".

this map passes to the limit as ¢ >0 and L - oo and is associated to an SPDE in the
limit

dq) t, 1157l 11

DDA = (2 = )@ (1) =" V(D (1)) + 221 ).

Theorem. d=3 provided (a.). is chosen approp. there exist a stationary in space
and time solution to the limit SPDE and moreover the law of the solution at any

given time in a non-Gaussian EQFT v (without rotation invariance). It satisfies an
IBP formula:

[ VeF(@)v(dg) = [ F(9) (—(m*~ )9~ [¢*])v(de).

[details in Gubinelli-Hofmanova CMP 2021, “A PDE construction...”]



stochastic analysis of EQFs?
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stochastic analysis

> Ito & Deeblin introduced a variety of analysis adapted to the sample paths of a
stochastic process.

> consider a family of kernels (P,),>; on R? satisfying Chapman-Kolmogorov equa-
tion

Piys(x,dy) = f Ps(x,dz)P;(z,dy)

which defines a probability P on C(R 5, R?): the law of a continuous Markov process.

> sample paths have a “tangent” process. lto identified it as a particular Lévy
process: the Brownian motion (W,),.

> stochastic calculus: from the local picture to the global structure via stochastic
differential equation (SDE)

dXt :a<Xt>th + b(Xf)dt



> these are the basic building blocks of stochastic analysis

> like in analysis, the fact that we can consider infinitesimal changes simplify the
analysis and make appear universal underlying objects:

« polynomials — calculus, Taylor expansion

« Brownian motion and its functionals — Ito calculus, stochastic Taylor expansion

to have an analysis we need:
 a change parameter along which consider “change” (time for diffusions)

. a suitable building block for the infinitesimal changes (Brownian motion for

diffusion)

> other examples: rough paths, regularity structures, SLE, ...



Newton's calculus

lto's calculus

planet orbit
(x,y) €O CR?
o(x = x0)" + Py —yo)* ="
t
x(t+40t) ~x(t) +adt+o(dt)

at+bt>+ .-

(&), (1)) =F(x(t),y(t))

Markov diffusion
Pi(x,dy)
Pry(x,dy) = [ P.(x,dz)P(z,dy)
t
Py (x,dy) ~e B — Zx((;ty)d/z
(W)

dXt = a(Xt)th + b(Xt>dt




Ito's calculus

stoch. quantisation

Markov diffusion
Pi(x,dy)

Piys(x,dy) = [ Py(x,dz)P;(z,dy)

t
(y=x=b(x)8t)a(x) "L (y—x—b(x)st) dy
Pét(x, dy) ~ e 28t _Zx(ét)d/zl
(W)

dXt = a(Xt>th + b(Xt>dt

EQF
vEProb(#'(R%)

1 -
7f50’(Rd)O((P>e *Wde

t
G(t+3t) ~adp(t)+POIX(t)+---

(X(t)):
X =3[ (A—m?)X]+¢

00 =[3(A—m)p—V'(§) ]+



varieties of stochastic quantisation

. parabolic stochastic quantisation. the parameter is an additional “fictious”
coordinate t € R, playing the role of a simulation time. The EQF is viewed as
the invariant measure of a Markov process (SDE). Building block is a space-
time white noise. [parisiwy, (Nelson), Jona-Lasinio/Mitter, Kirillov, Funaki, Albeverio/Rickner, Da Prato/Debussche, Hairer,

Catellier/Chouk, Mourrat/Weber, G./Hofmanova, Albeverio/Kusuoka, Chandra/Moinat/Weber, Shen, Garban, many others...]

1 /
9 25[(Ax—m2)¢ —p' ()] +2V7(t,x)
. canonical stochastic quantisation. same as for parabolic, but the evolution takes

place in “phase space” and the SDE is second order in time, giving rise to a
stochastic wave equation. [G./Koch/Oh, Tolomeo, Oh/Robert/Wang]

20+ 0up =1 (A mD)§—p'(9)] 4217



. elliptic stochastic quantisation. the parameter is a coordinate z€ R?. Building
block is a white noise in R™2. An elliptic stochastic partial differential equation
describes the EQF as a function of the white noise. Link with supersymmetry.

[Parisi/Sourlas, Klein/Landau/Perez, Albeverio/De Vecchi/G., Barashkov/De Vecchi]

A (z,%) = o[ (A= m2)(z,) ~ V' (§(2,))] + 217 (2, %)

- variational method. the parameter t >0 is a energy scale. Building block is the
Gaussian free field decomposed along . The EQF is described as the solution
of a stochastic optimal control problem. (earashkovs )

- rg method. the parameter t >0 is a energy scale. Building block is the Gaus-
sian free field decomposed along t. The effective action of the EQF satisfies
an Hamilton—JaCObi—Be”mann equation. [Wilson, Wegner, Polchinski, Salmhofer, Brydges/Kennedy, Mitter,

Gawedzki/Kupiainen, Brydges/Bauerschmidt/Slade, Bauerschmidt/Bodineau, Bauerschmidt/Hofstetter, also many others...]



features of stochastic quantisation

the interacting field ¢ is expressed as a function of the Gaussian free field X:
¢(t)=F(X), v=Law(¢(t))=F.Law(X)=F.GFF

- estimates on ¢ obtained via two ingredients:
- pathwise PDE estimates for the map F (in weighted Besov spaces)

- probabilistic estimates for the GFF X
- coupling (¢, X)
¢=X+19

where 1 is a random field which is more regular (i.e. smaller at small scale) than
X (link with asymptotic freedom/perturbation theory)

note that
v=Law(¢) €« Law (X (t)) =GFF



estimates

> decomposition: ¢ =X+

0p = 5[ (A= m2) g — V' (X +)]
> PDE estimates:

Iy (I <HIXI)
> tightness:

fIICPII’”V(ch) SEIXIP+ Elp(®)IF < EIXIP+ E[H(IXI)"] < oo

> tail-estimates:
Jecllq)ll“‘j(dq)) < 0o

[Moinat/Weber, Hofmanova/G., Hairer/Steele]



properties of the stochastically quantized EQF

CI>§ measure. p(q)) =7\(P4— Cq)z, d = 3. [Hofmanova/G. - CMP 2021]

[> non-gaussianity:
(PP @) =(XXXX)+HXXXP)+ 12(XXYPP), + HXPPY) .+ (PP Ppip),

=4(XXXP).+--- £0

> renormalized cube:
[9°] =1im [(pe x ) —cc(pex 0)] = [X T+ {(IX] ) + X9 4%}

result: [¢°] is not a random variable but a distribution on Cyl(.#'(RR?)).

> Dyson-Schwinger equation (IBP formula for v):

| DyE(9)v(dg) = [ F(){(A—m?)9—A[9]}v(de)



outlook

goal: develop a stochastic analysis of EQFs
(at least for superrenormalizable models)

- identify “building blocks” and describe EQFs (non-perturbatively) in terms of
these simpler objects.

. small scales behaviour/renormalization: well understood in most models in some
of the approaches (see e.g. recent results of Hairer et al. on Yang-Mills fields).

. coercivity (large fields problem) plays a key role for global control and infinite
volume limit. So far, difficult for YM (or even Higgs).

- uniqueness (high or low temp)? still open (in sq) in most models, especially @5 .



some recent literature on SQ for EQF

[I list here some results which apply to the ¢ -0 and L — co. More results are avail-
able on a finite box]

. construction of ®3 by G./Hofmanova (CMP 2021) and IbP formula
- construction of the (exp(p@)), model via elliptic SQ (arXiv:1906.11187)

- construction of Sinh-Gordon d =2 (all axioms) by Barashkov/de Vecchi via elliptic
SQ (arXiv:2108.12664)

. optimal bounds by Hairer/Steele (arXiv:2102.11685)

- some results on phase transition for ®5 by Chandra/Gunaratnam/Weber
(arXiv:2006.15933)

« ongoing work on control of correlations by G./Hofmanova/Rana
- recent paper on perturbation theory for ®3 by Shen/Zhu/Zhu (arXiv:2108.11312)
« work on the N — oo limit of the O(N) model by Shen/Zhu/Zhu



open problems

« how to apply these ideas to gauge theories/geometric models? Higgs model,
Yang-Mills? (nairerzambotti/Chandra/Chevyrevishens..) coercivity not well understood.

« Grassmann fields? (parial progress in Albeverio/Borasi/De Vecchi/G., no renorm yet]

 small coupling regime? (proof of Borel-summability?)

. decay of correlations at high temperature? (some resuits Rana/Hofmanova/G )

- Dyson-Schwinger eq. / IbP formulas determines the measure?
 weak-universality and triviality of models above the critical dimension?

- how to apply these ideas directly in Minkowski space? (i.e. develop a non-com-
mutative stochastic analysis for fields)



thanks.
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some details on the construction of ®3



coupling to the GFF

> we work on A, ; =Z7,. The solution X:R— R"*" to

d&@p:«A&xmw;%m&&@»m+awﬂ&@) xEAe;

with A =m?— A (discrete Laplacian) leaves the measure

VE’L(d(P) — Z—le_erAC’LVa((P(x))ME,L(dq))’ Vg<§> — )\§4 _ Bs§2

invariant. here (B;(x))i>0.ea,, are iid BM and p*" is the GFF (i.e. A4°(0,A™)).
> let Y be the solution of the linear equation (dynamic GFF):

dYt - —A Ytdt + 21/2dBt,

with invariant measure u“". define Z =X — Y which solves a RDE:

dz ,
-Hf:—AL—v4n+ZJ



dz
d—tt = —AZt —_ Vgl(Yt + Zt)

Vi(@)=Ag’ =B
> introduce a polynomial weight p: A= (¢Z) - R
o(x)=(1+¢lx])~°, 0>0,0>0,

> test the equation for Z with p? Z summing over the full lattice A

2dt Z 10(X)Zi(X)P+G(Z) < — )\Z 0(x) (Yi(x)3Z(x) +3Y:(x)?Z, (x)* 4+ 3Y1(x) Z(x)°)

XEAN, xEA,

+B Y () (Ze() YV (x) + Zi(x)?) +Cp Y p(x)Zi(x)?

1/2

G(9) = loVelitz(a,y + M@l + Mo 2@llsa.



weighted estimates

> we have
d
FI0ZilE ) + G(Z0) S Collp™*Yilltsa,) +3G(Z:)

indeed the interaction terms can be estimated as

A <A

Y p()Yi(x)Zi(x)

XEA,

Y ()0 (p(x)2Z,(x))

XEA,

C C
<Al 2Yillzs+ SN 2 Z il S Al Vil + 8G(Zy)

for any small 6> 0.

1t t
10Z:l2ny +7 [ G(Z:)ds <lipZolany +C [ 0V Yol iayds




tightness

[> use a stationary coupling of (Y, Z):
EllpZilIf2(a) = El0Zoll2(a)
SO
1 ¢t 2C rt
EG(Zo) =7 [, EG(Z)ds <= f Ellp"2Y,lIf a)ds = Ellp Yol a)
0 t Jo
Elo" Yol ay=E ) p(x)Yo(x)l*= ) p(x)’EYo(x)I*=C )  p(x)*<

xeA, xeA; xeA,

uniformly in L. from this estimate one can deduce that

1/2

sup f lp q)||f4(Aa)v€'L(dcp) < 00
L

this is a key estimate to take the infinite volume limit since it allows to use tightness
on the family (v¥"); in the topology of local convergence.

it gives also a stationary infinite volume limit coupling to the GFF.



bounds

> the local (or weighted) L7(A.) norms of ¢: R*— R under the measure v have
finite moments:

sup [ llp@llv(dg) < oo
L
forany p>1.

> by working a bit harder one can prove uniform integrability of functions like
exp(llp@ll2). (see Gubinelli-Hofmanova CMP 2021)

> another approach is to use the “coming down from infinity” to remove depen-
dence on the initial condition (see Mourrat-Weber CMP 2017, Gubinelli-Hofmanova
CMP 2020, Moinat-Weber CPAM 2020)



optimal bounds: Hairer/Steele argument

> we want to bound Z; = [¢"®v¥L(dg) for some nice function H(¢) > 0.

> the idea of Hairer/Steele (slightly revisited here) is to consider the new measure

H(¢),,e,L H(@)—Ve(@)
H _ ¢ v (de) _ € e L
p (d([)) - ZH - ZHZ£,L 1”1 (d([))

and observe that by Jensen's:

1= [ e M @eh @yt (dg) = Zy [ e VoM (dg) > Zuexp(— [ H(e)p"(de) )

SO

log Zu< [ H(¢)p"(dg).

> the SQ of p'’ can be used as before to obtain bounds which depends only on the
GFF provided (e.g.) H is controlled by G (with natural hypothesis):

ZPZQH'(¢+<P)‘<Q(¢)+5G(<P), H+ )l < Q) +G (o)



> shifted SQ equation

dZ;

W——Azt V’<Yt+zt>+H’(Yt+Zt>

> bounds + stationary coupling
EG(Zy) = f EG(Z, )ds<—f E{llp"/*Yillfsa) + Q(Ys) }ds = E{llp"*Yollfsay + Q(Yo) }

therefore

| H(@)p"(dg) = B[H(Xo)] = E[H(Yo+Zo)] < C [E{Ip"*Yollfsr) + Q(¥0) }] < co.

example: H(¢@) =1llp@l;/: for 1> 0 small gives the optimal bound

Supjen||pcp||§4va,L(d(P> < oo
L




coupling of two solutions

>let (Z',Y") and (Z?% Y?) be two solutions of the shifted SQ equation. then H =
7'~ 7% solves

QH—AH=Q=—[V'(X") ~V'(X'+ H+K)] =~ [ dtV" (X' + T(H+K))(H+K)

N 7

—~
::G}—X

with K:=Y'—Y?and X'=Y'+Z!. assume that V"' (¢) > —x for some x >0.

> estimates with p(x) =¢ %" e.g. when K=Y'—-Y?is stationary:

EllpH - <e “EllpHolf+C ) p*(x) (EK§(x))"

XEA

« by coupling two different invariant measures via a common dynamics (K=0) one
can show that the two measures are equal. this gives uniqueness.

« one can use noises which coincide in a bounded region () to drive two different
dynamics. in this case K=0 in () and this shows that the two solutions X' and X?
are near inside Q) C Q).

- one can modify this setup to obtain decay of correlations in SQ (work in progress
with Hofmanova and Rana, already used by Funaki in more regular setting).



the small scale limit ¢ = 0 for L fixed

%Zt:(Ae—mz) Zi—V'(Y,+2,), with V,((P):MP?)*‘ﬁ(P-

> renormalized drift term:
V(Y4+Z)=ANZ3=AY34+3AY?Z+3AY!Z?

> pde estimates

19 \
351 ) 2 (=8 [ [IVeZtlz+m2|Zt|2+§|zt|4] <O(YD),
where

Q(Yf):=1+C > IYHIEw,
k=1,2,3
> probabilistic estimates

sup E Q(Y§) < oo,



putting all together

> improving the renormalized apriori estimates with a spatial weight p (+ some
results on weighted Besov spaces) one can prove the same estimates in weighted
spaces:

sup [ (Ipwlis« + IpVEIR+ mIpgI+Mlip* 2GlEs) v (dp x )
e, L

<1+ Csup Z ]E||p°Y§’L'k||I§0km < +o0
&l k=123
(some 0 >0)

> using Hairer/Steele kind of arguments also have uniform exponential bounds of
the form

Supf€m|p(¢+€)”32’4’ysi(d1\l}Xdé) < 00
e, L

for some small 1



construction of ®3

Theorem. Provided d =2 and we take B = —3\c.+ B’ for some constant p' € R
and c, = E[Y{(x)?] then the family (v*"), ; is tight in %' (R?).

Any accumulation point v is regular, RP and translation invariant and satisfies

f e””pq)”éhv(d(p) < oo (1)

for small 1> 0. (no rotation invariance due to lack of uniqueness)

> any limiting measure v is non-Gaussian due to (1) (cfr. Hairer/Steele for d=3).

> we actually construct a stationary coupling (Y, Z) with Y + Z ~v which solves the
system

%Zt: (A—m?*) Z;—ANZ? —AYP +3AY?PZ, +3AY} Z7 + B Y+ B Z,

S Vi= (A=) Yt Bt )

[Detailed construction of the d =3 case in Hofmanova/G. - CMP 2021]



uniqueness?

> the SQ proof of uniqueness sketched on the lattice fails for the renomalized equa-
tion since we do not have anymore convexity (we subtracted an infinite 2nd order
polynomial):

sz(l)_z(Z), YO =—y®@_y

0

EHt:(A—m Af dr )-I-THt] +6Yt[ +THt]+3Yt}Ht+ﬁHt

OPEN PROBLEM

> the “standard” approach to uniqueness of the limit (in certain conditions) is via
correlation inequalities or cluster expansion [see Glimm-Jaffe's book].

> uniqueness in finite volume via Markovian techniques (irreducibility, see e.g.
Hairer-Steele)



renormalized cube

> any limit coupling y(dX xdy) is supported on

€*(p)x (H'(p)NL*(p'?))

more regularity of the second component can be obtained by using parabolic esti-
mates on the equation, essentially one can arrive to 2 + « spatial regularity.

> under the measure y(dX xdy) we have ¢ =X+ ~v and

[(es*CP)3—3Ce(9s*<P)] = [(68*X>3_3Cs(ee*x>] +3[(GS*X>Z_CS] (0% )

A\ 7 A\ 7

' N \\/_/
—[X°] in €%(p) —[X?] in €2(p) -y in H'"(p)

+3 (0. * X) (es*lwz +(95>H|))3

—X in €*(p) ->¢2 in B{1"(p)

— [ X+ {[X?[$ + X >+ °} =: [¢7]

e—0

the terms in the r.h.s are under control as products of Besov functions



integration by parts formula

> at the discrete level we have
[ VoF(@)vH(9) = [ F(@){(Ac=m?)p —A(@® - ) Jv(9)

> estimates and tightness allow to pass to the limit in this equation and obtain an
IBP formula for any accumulation point v

[ Vo F(@)v(@) = [ F(@){o((a=m) ) =91 (/) }v(g)
where appears the renormalized square [¢°] which is well defined under v as
[9°1(f) =lim | [ (6cx @) —3c. [ (Bexg)f]

> Dyson-Schwinger equations for correlation functions by taking F(¢) =

Q(f1) -9 (f):
2 [o()-of)--0(v(e) = [ 9(f)- o) {o((d=m?) /) = Aol () Ju(g)



the variational method for ®3



Boué-Dupuis formula

Theorem. (Let (B;);>, be a Brownian motion on R", then for any bounded F:
C(R,;R") > R we have

log]E[eFUB')]:supIE[F(B.+I(u).)—l ooIuslzds]
ueH, 2Jo

with u: (O x R, — R" adapted to B and with

I(u):= f()t uds.

%fooo lug>ds ~H(Law(B,+1(u),)[Law(B,)).

M. Boué and P. Dupuis, “A Variational Representation for Certain Functionals of Brownian
Motion', The Annals of Probability 26, no. 4: 1641-59 https:/doi.org/10.1214/a0p/1022855876




Boué—Dupuis for the =2 GFF

E[W,(x)W.(y)] = (tAs)(m*=A) " (x—vy), tse[0,1].

The BD formula gives

—log j o~ F(®) n(de) =—log ]E[e_F(Wl)] = inf ]E[F(Wl +7Z1) +%f01 ||u5||%zds],

ueH,
where
Zi=(m*—A)"? f(: uds, u,=(m*=N)"?2,
—log E[e~F(")] = inf E[F(W:+Z1)+%(Z.)],
CHe
with

1 r1 : 1 1 : :
E(Z) =5 | N2 =A) 22 Eds = [ (V2 +mAZJE)ds



®3 in a bounded domain A

Fix a compact region A @ R? and consider the ®; measure 0, on .#'(RR?) with inter-
action in A and given by

e "W yu(dg)

/ 2
Fe@yag) P ?

OA(do) :=

with interaction potential Vy(¢) := qu)4—cqu>2. Forany f:.%'(R%) — R (non neces-
sarily linear) let

e—%(f)::fe—f@) Oa(d).

We have the variational representation, Z =21, Z.= (Z;)ic[0,17:

Wi(f) = inf F/X(Z,) — inf F**(Z,)

ZeH" ZeH"
where

FINZY)=E[f(W+Z)+AVA(W+2Z)+E(Z,)].




renormalized potential

—%] zz+4wz3+z4}

~~ N———
W3 W2

VAW+2) = {w4—cw2+4[w3—%w] Z+6|W?
—— | )

take c =12E[W?(x)] = +oo
VA(W+2Z) = fA (4W3Z 4+ 6W2Z2 + 4WZ2 4+ 2%} 4.
W"e €™ (A) =BJ"S(A)

Here BZ.(A) is an Holder-Besov space. A distribution f € .#'(T?) belongs to
B, o (A) iff forany n>0

1Al < (27) I fllss, . (a)

where A,f =% (¢,(-)Ff) and @, is a function supported on an annulus of size ~2".
We have f=3" _ Af. Ifa>0 B% ..(T%) is a space of functions otherwise they are

only distributions.



Euler-Lagrange equation for minimizers

Lemma. There exists a minimizer Z =7/" of F/*, Any minimizer satisfies the
Euler-Lagrange equations

(474 z31<+f j A)K;)ds)

(fAf W+Z)K+)\L\ W3+WZZ+12WZ2)K>

for any K adapted to the Brownian filtration and such that K€ L*(u, H).

> technically one really needs a relaxation to discuss minimizers, we ignore this all
along this talk. the actualy object of study is the law of the pair (W,Z) and not the

process Z. (similar as what happens in the ®3 paper)



apriori estimates

we use polynomial weights p(x) = (1+ ¢|x|)™" for large n >0 and small ¢ > 0.

Theorem. There exists a constant C independent of |A| such that, for any mini-
mizer Z of F/*(11) and any spatial weight p: A — [0,1] with [Vp|<ep for some & >0
small enough, we have

E(ML 0Z+ fol fRz ((m? —A)1/2p1/225)2d5> <C.

Proof. test the Euler-Lagrange equations with K= pZ and then estimate the bad
terms with the good terms and objects only depending on W, e.g.

[ 0 W3Z| < ClW B o + 8121 ),

[ oW22 <Cillp" S W+ 3(lp" 4 Zitks+ lp 2 2, -




tightness and bounds

Wi(f) = inf F/NZ) —inf FONZ) =F/ N2/ —FONZON)
Therefore

Ff,A(Zf,A) _FO,A(Zf,A) <Wi(f) <Ff,A(Zo,A) _FO,A(Z0,A>
and since, for any g,

FIANZ8™) —FONZEM) =E[f(W+Z8™) + N VAW +Z8M) + € (Z8M) ]

—E[AVA(W+ZEN + E(Z8M ] =E[f(W + 28]

E[f(W+Z/"M]STA(S) SE[f(W+ZY)]

Consequence: tightness of (0,), in .#'(RR?) and optimal exponential bounds (cfr.
Hairer/Steele)

sup [ exp(3lPly-v+()) 0r(d) < .
A



Euler-Lagrange equation in infinite volume

The family (Z/*) is also converging (provided we look at the relaxed problem) and
any limit point Z = Z/ satisfies a EL equation:

E{ [ FW+2)K+an [ [W+2°)K+ [ [ Z(m*~A)Kds}=0

for any test process K (adapted to W and to Z).

a new kind of stochastic “elliptic” problem

Open questions
« Uniqueness??
« I'-convergence of the variational description of %/ (f)?

not clear. We lack sufficient knowledge of the dependence on f of the solutions
to the EL equations above.




large deviations in infinite volume

For any f: #'(R”?) - R (non necessarily linear) let %} (f) be defined by:

e—%%’*(f)::fe—f@) GZ(dq)).
where

aeh(@) =exp( ~VA(@) )ar' (@) =exp( 3 [ [9°] )i (9

and 1", is the Gaussian measure with covariance i1(m*—A)~".

Theorem. Any accumulation point 0" of 0 satisfies a Laplace principle with rate
function

J(@)=A[ otde+ [ p(m*—A)pdr.
That is

lim %" (f) =inf {(f()+] ()}




exponential interaction

we can study similarly the model with
Vi(e)= [, &) [exp(Bo(x))dx

for B? <8 and &: R*— [0,1] a smooth spatial cutoff function.

VEW+2) = [ E(x)exp(BZ(x))[exp(BW (x))]dx

M@E@

:,[RZ c(x)exp(BZ(x))MP(dx),  [Gaussian multiplicative chaos]

BD formula

WEe(f) = —log [ exp(—f(¢))dvf
_ infE[f(W+Z)+f§exp([5Z)dM5+%folf((mZ—A)l/ZZt)Zdt]

VASIH P

> the function Z— V&(W +Z) is convex!



thanks.



variational description of the infinite volume limit

> thanks to convexity the EL equations have a unique limit Z in the oo volume limit

> moreover we have the I'-convergence of the variational description:

Wil ) = lim [ ~log [ exp(=f(¢))dv* ]

=tim [, (f) - W3,(0)] =inf G~ (K)

n—oo

with functional

fowfeXP(K):E[f(w+z+1<)+fexp(52)(exp(f)1<)—1)dMﬁ+5<1<)]

7

5

which depends via Z on the infinite volume measure for the exp interaction.



