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prologue
the origins



Itô's original paper

(Japanese version 1942, M.A.M.S. 1951)





H. Föllmer, “On Kiyosi Itô's Work and its Impact” (Gauss prize laudatio 2006)

In 1987 Kiyosi Itô received the Wolf Prize in Mathematics. The laudatio states
that “he has given us a full understanding of the infinitesimal development of
Markov sample paths. This may be viewed as Newton's law in the stochastic
realm, providing a direct translation between the governing partial differential
equation and the underlying probabilistic mechanism. Its main ingredient is the
differential and integral calculus of functions of Brownian motion. The resulting
theory is a cornerstone of modern probability, both pure and applied”.



yet. . .

But when Kiyosi Itô came to Princeton in 1954, at that time a stronghold of probability theory
with William Feller as the central figure, his new approach to diffusion theory did not attract
much attention. Feller was mainly interested in the general structure of one-dimensional
diffusions with local generator

F= d
dm

d
ds

motivated by his intuition that a “one-dimensional diffusion traveler makes a trip in accor-
dance with the road map indicated by the scale function s and with the speed indicated by
the measure m” [ . . . ]



Ito's brillant idea

Brownian motion

Bt
diffusion process

X• =Φ(B•)

dXt=b(Xt)dt+σ(Xt)dBt

stochastic differential
equations

⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒
Φ

“universal source of noise”



stochastic analysis today

[...] there now exists a reasonably well-defined amalgam of probabilistic and
analytic ideas and techniques that, at least among the cognoscenti, are easily
recognised as stochastic analysis. Nonetheless, the term continues to defy a pre-
cise definition, and an understanding of it is best acquired by way of examples.
[D. Stroock, “Elements of stochastic calculus and analysis ”, Springer, 2018]

Nowadays: Ito integral, Ito formula, stochastic differential equations, Girsanov's formula, Doob's transform,
stochastic flows, Tanaka formula, local times, Malliavin calculus, Skorokhod integral, white noise analysis,
martingale problems, rough path theory...



act I
the quest for equations



Euclidean quantum fields

Feynman–Kac formula / non-perturbative path integral formulation of QFTs

ν(dφ)= exp[−S(φ)]𝒟φ
Z , φ∈𝒮′(ℝd)

S(φ)= 1
2�

ℝd
(|∇φ(x)|2 +m2φ(x)2)dx+ �

ℝd
V(φ(x))dx

V(φ)=λφ4 + ⋅ ⋅ ⋅, λcos(βφ), λcosh(βφ), λexp(βφ), ⋅ ⋅ ⋅, d=1,2, 3

σ-models, gauge theories

(Markovian) probability measure ν on 𝒮′(ℝd) ⋅ natural generalisations of diffusion processes
introduced in the '70 in the context of the constructive QFT program

Clay Millennium problem: prove existence of non-Abelian Euclidean quantum Yang–Mills
theory in d=4



Gaussian free field

⊳ GFF ⋅ simplest example of EQFT ⋅ Gaussian measure μ on 𝒮′(ℝd) s.t.

� φ(x)φ(y)μ(dφ)=G(x−y)=�
ℝd

eik(x−y)

m2 + |k|2
dk

(2π)d
=(m2 −Δ)−1(x−y), x,y∈ℝd

and zero mean ⋅ m>0 is the mass ⋅ G(0)=+∞ if d⩾2: not a function ⋅ distribution of regularity

α<(2−d)/2

⊳ can be used to construct a QFT but the theory is free: no interaction



the standard recipe for non-Gaussian Euclidean fields

➊ go on a periodic lattice: ℝd→ℤε,L
d =(εℤ/2πLℕ)d with spacing ε>0 and side 2πL

�F(φ)νε,L(dφ)= 1
Zε,L

�
ℝℤε,L

d
F(φ)e− 1

2εd∑
x∈ℤε,L

d |∇εφ(x)|2+m2φ(x)2+Vε(φ(x))
zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz z}|{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{ {Sε(φ)

dφ

ε is an UV regularisation and L the IR regularisation

➋ choose Vε appropriately so that νε,L → ν to some limit as ε → 0 and L→ ∞. E.g. take Vε
polynomial bounded below. d=2,3.

Vε(ξ)=λ(ξ4 − aεξ2)

The limit measure will depend on λ>0 and on (aε)ε which has to be s.t. aε →+∞ as ε→0. It
is called the Φd

4 measure.

➌ study the possible limit points [the Φd
4 measure] ⋅ ask interesting questions: uniqueness?

non-uniqueness? decay of correlations? intrinsic description?



some models

⊳ d= 1 ⋅ time-reversal symmetric, translation invariant, Markov diffusions. the generator is
given by an implicit expression involving the ground state Ψ of the Hamiltonian H

ℒ=∇ logΨ⋅∇+ 1
2Δ H=−Δ+x2 +V(x).

⊳ d=2 ⋅ various choices (aε →+∞)

Vε(ξ)=λξ2l+ �
k=0

2l−1

ak,εξk, Vε(ξ)= aεcos(βξ)

Vε(ξ)= aεcosh(βξ), Vε(ξ)= aεexp(βξ)

⊳ d=3 ⋅ “only” 4th order (6th order is critical)

⊳ d=4 ⋅ all the possible limits are Gaussian (see Aizenmann–Duminil Copin)



stochastic analysis of Euclidean fields

⟹
solution map of an SPDE

e−1
2∫ξCξDξ e−∫φAφ+V(φ)

Z Dφ
Gaussian measure

source of noise
Euclidean QFT

(S)PDE theory

stochastic quantisation map

φ=Φ(ξ)

∂tϕ=−(m2 −Δx)ϕ−V′(ϕ)+ cξ,
(apriori estimates, geometry)

systematic use of tools from PDE theory, recent advances in singular PDEs, renormalization
group ideas coupled with pathwise analysis



stochastic equations for the free Gaussian free field

Gaussian free field μ : 𝔼[φ(x)φ(y)]=(m2 −Δ)−1(x−y) . ξ white noise

❶ “Gaussian map”:

φ(x)=(m2 −Δ)−1/2ξ(x), (m2 −Δ)φ(x)=(m2 −Δ)1/2ξ(x), x∈ℝd

❷ Stochastic mechanics (Nelson):

∂x0φ(x0, x̄)=−(m2 −Δ x̄)1/2φ(x0, x̄)+ξ(x0, x̄), x0 ∈ℝ, x̄∈ℝd−1

❸ Parabolic stochastic quantization (Parisi–Wu):

φ(x)∼ϕ(t,x) ∂tϕ(t,x)=−(m2 −Δx)ϕ(t,x)+ cξ(t,x), t∈ℝ,x∈ℝd

❹ Elliptic stochastic quantization (Parisi–Sourlas):

φ(x)∼ϕ(z,x) (−Δz)ϕ(z,x)=−(m2 −Δx)ϕ(z,x)+ cξ(z,x), z∈ℝ2,x∈ℝd



stochastic equations for non-Gaussian EQFTs (V≠0)

❶ Shifted Gaussian map (Albeverio/Yoshida) [does not have the right properties!]

(m2 −Δ)φ(x)+V ′(φ(x))=(m2 −Δ)1/2ξ(x), x∈ℝd

❷ Stochastic mechanics (Nelson): ground-state transformation [implicit!]

∂x0φ(x0, x̄)= [∇φ(x0,x̄) log Ψ(φ)]+ξ(x0, x̄), x0 ∈ℝ, x̄∈ℝd−1

❸ Parabolic stochastic quantization (Parisi–Wu): Langevin diffusion

φ(x)∼ϕ(t,x) ∂tϕ(t,x)=−(m2 −Δx)ϕ(t,x)−V ′(ϕ(t,x))+ cξ(t,x), t∈ℝ,x∈ℝd

❹ Elliptic stochastic quantization (Parisi–Sourlas):

φ(x)∼ϕ(z,x) (−Δz)ϕ(z,x)=−(m2 −Δx)ϕ(z,x)−V ′(ϕ(z,x))+ cξ(z,x), z∈ℝ2,x∈ℝd



an (pre)history of (Langevin) stochastic quantisation (personal & partial)

� 1981 ⋅ Parisi/Wu – stochastic quantisation for gauge theories (SQ)
� 1985 ⋅ Jona-Lasinio/Mitter ⋅ “On the stochastic quantization of field theory” (rigorous SQ for Φ2

4 on
bounded domain)

� 1988 ⋅ Damgaard/Hüffel ⋅ review book on SQ (theoretical physics)
� 1990 ⋅ Funaki ⋅ Control of correlations via SQ (smooth reversible dynamics)
� 2003 ⋅ Da Prato/Debussche ⋅ “Strong solutions to the stochastic quantization equations”
� 2014 ⋅ Hairer – Regularity structures, local dynamics of Φ3

4

� 2017 ⋅ Mourrat/Weber ⋅ global solutions for Φ2
4, coming down from infinity for Φ3

4

� 2018 ⋅ Albeverio/Kusuoka ⋅ “The invariant measure and the flow associated to Φ3
4 . . .”

� 2021 ⋅ Hofmanova/G. – Global space-time solutions for Φ3
4 and verification of axioms

� 2022 . Hairer/Steele – “optimal” tail estimates
� 2020–2021 ⋅ Chandra/Chevyrev/Hairer/Shen ⋅ SQ for Yang–Mills 2d/3d (local theory)



act II
some challenges for the stochastic analysts



global solutions & properties EQFTs

� sine–Gordon

V ′(φ)=λsin(βφ)

� σ-models in d=1
(e.g. dynamics of a loop u:𝕋→ℳ on a manifold ℳ)

∂tu=Δu+ g(u)(∇u⊗∇u)+h(u)ξ, u:ℝ+ ×𝕋→ℳ

� Abelian and non-Abelian gauge theories (and Higgs)
d=2,3

{{{{{{{{{{{{{{{{ ∂tA=ΔA+ gA∇A+ gAAA+ eφ∇φ+ξ
∂tφ=Δφ+ eA∇φ+ eAAφ+λ|φ|2φ+ξ



elliptic stochastic quantisation

[S. Albeverio, F. C. De Vecchi, MG ⋅ Elliptic Stochastic Quantization ⋅ Ann. Prob. 2020 | The elliptic stochastic quantization
of some two dimensional Euclidean QFTs. ⋅ Ann. Inst. H. Poincaré, PS, 2021]

From an idea of Parisi–Sourlas: supersymmetric proof

(m2 −Δy)ϕ(y)+V ′(ϕ(y))=ξ(y), y∈ℝd+2

❶ Change of variables . T(ϕ)=ξ

Law(ϕ)=T∗
−1Law(ξ)≈exp�−1

2�
ℝd+2

|(m2 −Δy)ϕ(y)+V ′(ϕ(y))|2dy�det(DT(ϕ))𝒟ϕ

≈exp[−𝒮]𝒟(ϕ,ω,ψ)

𝒮=−1
2∫ω(y)2dy+∫[(m2−Δy)ϕ(y)+V ′(ϕ(y))]ω(y)dy+∫ψ̄(z)[(m2−Δy)+V ′′(ϕ(y))]ψ(y)dy

ψ, ψ̄ are Grassmann fields (ψψ̄=−ψ̄ψ) – relation with non-commutative probability



𝒮=−1
2∫ω(y)2dy+∫[(m2−Δy)ϕ(y)+V ′(ϕ(y))]ω(y)dy+∫ψ̄(z)[(m2−Δy)+V ′′(ϕ(y))]ψ(y)dy

❷ The superfield

Φ(Y)=Φ(y, θ, θ̄)=ϕ(y)+θψ̄(y)+θ̄ψ(y)+θθ̄ω(y), dY=dydθdθ̄, Y∈ℝd+2|2

ΔY=Δy+∂θ∂θ̄,

𝒮= 1
2�

ℝd+2|2
[Φ(Y)(m2 −ΔY)Φ(Y)+V(Φ(Y))]dY

V(Φ(Y))=V(φ(y))+V ′(φ(y))(θψ̄(y)+θ̄ψ(y)+θθ̄ω(y))−V ′′(φ(y))ψ̄(y)ψ(y)θθ̄

Law(ϕ)≈ Πϕ�
marginal

exp�−1
2�

ℝd+2|2
[Φ(Y)(m2 −ΔY)Φ(Y)+V(Φ(Y))]dY�𝒟Φ

❸ Supersymmetric localization . z∈ℝ2

Law(ϕ(z, ⋅))≈ exp�−4π
2 �

ℝd
[φ(x)(m2 −Δx)φ(x)+V(φ(x))]dx�𝒟φ



integration by parts formulas

Q: how to characterize an Euclidean field?

a physically motivated approach . IbP formulas (see Schwinger–Dyson equations)

�
𝒮′(ℝd) [[[[[[ δ

δφ − δS
δφ(φ)]]]]]]F(φ)ν(dφ)=0, ∀F in some nice class

[[[[[[ δ
δφ − δS

δφ(φ)]]]]]]≈ eS(φ) δ
δφe−S(φ)

⊳ existence of solutions, uniqueness? Note: related to generator of the Langevin dynamics

[[[[[[ δ
δφ − δS

δφ(φ)]]]]]]δF(φ)
δφ =ℒF.

very little is known mathematically. [(in finite dim) V. I. Bogachev, N. V. Krylov, and M. Röckner . Elliptic
and Parabolic Equations for Measures . Russian Mathematical Surveys (2009)]

Euclidean fields add substantial problems. [A. I. Kirillov . On the Reconstruction of Measures from
Their Logarithmic Derivatives . Izvestiya: Mathematics (1995)]



differential characterization of the exp(βφ)2 model

[F. C. De Vecchi, MG and M. Turra . A Singular Integration by Parts Formula for the Exponential Euclidean
QFT on the Plane . arXiv (2022)]

Heuristically

�
𝒮′(ℝd) [[[[[[ δ

δφ −(m2 −Δ+λ⟦exp(βφ)⟧)]]]]]]F(φ)ν(dφ)=0, ∀F∈𝒞

Rigorously

lim
ε→0

�
𝒮′(ℝd) [[[[[[ δ

δφ −(m2 −Δ+λcεexp(β(ρε ∗φ)))]]]]]]F(φ)ν(dφ)=0.

Key idea . identify a class of ν sufficiently similar to the GFF μGFF via a coupling

W(ν,μGFF)=inf
Π

� ‖φ−ψ‖∗2 Π(dφ,dψ)

where φ∼ν, ψ∼GFF and φ−ψ is more regular. ⇒ Existence and uniqueness in

{ν:W(ν,μGFF)<∞}.

The problem is open for other models, e.g. Φ2,3
4



act III
a new class of equations



a new class of equations for Euclidean fields

Goal . identify a rigorous framework to analyse Euclidean fields

Let φ∞ be a random field on ℝd, possibly distributional.

❶ We endow it with a decomposition over scales (φa)a⩾0 where φa is a description of φ∞
including fluctuations at scales larger than 1/a. φa→φ∞ as a→∞ and a↦φa is continuous in
some topology over smooth fields.

❷ Let (ℱa)a the filtration generated by φa. An observable is a martingale wrt. this filtration.
The observable (𝒪a)a is supported on a set U⊆ℝd if

𝒪a− �̂�a(φa, ∇φa, ⋅ ⋅ ⋅)→0, as a→∞

where �̂�a is a functional of φa which depends on the fields only on a 1/a-enlargement of the
set U. A field of observables x∈ℝd↦(𝒪a(x))a is local if 𝒪a(x) is supported on {x} for all x.

E.g. if φ∞ is a function:

𝒪a(x)=𝔼[φ∞(x)|ℱa]



❸ We assume that the scale dynamics of (φa)a is given by an Itô diffusion:

dφa=Bada+dMa, d⟨M⊗M⟩a=Da
2da

with adapted drift Ba and diffusivity “matrix” Da
2. We want that the dynamics is specified only

in terms of features of φ∞ “brought back” to the scale a. So we postulate:
a) the existence of local observables for the “microscopic” drift ( fa)a⩾0 and for the “micro-

scopic” diffusivity (Σa
2)a⩾0

b) that the characteristics Ba,Da
2 of the diffusion at scale a are given by some spatial averaging

of the microscopic characteristics:

Ba= Ċafa, Da
2 = Ċa

1/2Σa
2Ċa

1/2

where (Ca)a are spatial averaging operators at scale a and Ċa=∂aCa. E.g.

(Caf )(x)=�
ℝd

adχ(a(x−y)) f (y)dy

where χ:ℝd→ℝ is a mass one, positive and positive definite function with support on the
unit ball. Note that we could allow also random averaging: Ca=Ca(φa).



Wilson–Ito diffusions

[I. Bailleul, I. Chevyrev, MG. Wilson–Ito diffusions. arXiv (July 2023)]

Definition. A Wilson–Ito diffusion (φa)a is the solution of the SDE

dφa= Ċafada+ Ċa
1/2ΣadWa, a⩾0

where W is a cylindrical Brownian motion, fa, Σa
2 are local observables for the microscopic

drift and diffusivity and Ca is a local averaging operator at scale a.
It describes the random field φ∞.

Covariant under change of scales . A=A(a), φ̃a≔φA(a) then C̃a=CA(a) and

dφ̃a= C̃a
˙ fA(a)da+ Ċ̃a

1/2 ΣA(a)dW̃a,

where W̃ is a cylindrical Brownian motion.

Trivial example . fa=0, Σa=1. Then φ∞ =∫0
∞Ċa

1/2dWa is a white noise, so in general the solu-
tions are distributions.



are there non-trivial examples?

approximation strategy . fix some A> 0 and functional FA and solve the forward-backward
SDE:

dϕa= Ċa𝔼a[FA(ϕA)]da+ Ċa
1/2dWa, a∈(0,A).

where 𝔼a=𝔼[∗|ℱa]. Try to send A→∞ and at the same time make FA more and more local.

coherent germs . another approach is to “guess” the drift fa≈Fa(φa) where Fa is the “germ”

fa=Fa(φa)+Ra

then we have a forward–backwards system for (φa,Ra):

{{{{{{{{{{{{{{{{{{{{{{{{
dϕa= Ċa(Fa(φa)+Ra)da+ Ċa

1/2dWa,
Ra=𝔼a[∫a

∞ ℒbFb(φb)db+∫a
∞ DFb(φa)ĊbRbdb]

ℒb=∂b+ 1
2ΔĊb

+FbĊbD

Fully open problem in generality . I know very little about it . (some examples later)



a linear force

assume

fa=𝔼a[−Aϕ∞]+𝔼a[h(ϕ∞)]

where A is a positive linear operator, e.g. A=m2 −Δ. Then, with C∞,a≔C∞ −Ca

ϕ∞ =ϕa+�
a

∞
Ċa(𝔼a[−Aϕ∞]+𝔼a[h(ϕ∞)])da+�

a

∞
Ċa

1/2dWa

𝔼a[ϕ∞]=ϕa−C∞,aA𝔼a[ϕ∞]+C∞,a𝔼a[h(ϕ∞)]

Let ψa≔(1+C∞,aA)−1ϕa then ψ∞ =ϕ∞ and

dψa= Q̇a𝔼a[h(ψ∞)]da+ Q̇a
1/2dWa, Q̇a≔∂a(A−1(1+C∞,aA)−1)

the Gaussian field

Xa
Q≔�

0

a
Q̇c

1/2dWc

has covariance Q∞−Q0 =(1+A)−1, i.e. is a GFF when A=m2 −Δ.



gradient Wilson–Ito diffusions

assume now also that h(ψ∞)= −DV∞(ψ∞), and let (Va)a⩾0 be the solution to the Polchinski
equation (HJB)

∂aVa− 1
2DVaQ̇aDVa+ 1

2Q̇aD2Va=0

then one can prove that

𝔼a[h(ψ∞)]=−𝔼a[DV∞(ψ∞)]=−DVa(ψa)

and by performing Doob's h-transform with dℚ= e−V0(0)+Va(ψa)dℙ also that

𝔼ℙ[G(ψa)] = 𝔼ℚ�G(ψa)eV0(0)−Va(ψa)�=𝔼ℙ�G(Xa
Q)eV0(0)−Va(Xa

Q)�

=
𝔼ℙ�G�Xa

Q�e−V∞(X∞
Q)�

𝔼ℙ�e−V∞(X∞
Q)�

for any nice function G. In particular the law of ψ∞ is given by the Gibbs measure

ν∞(dψ)= e−V∞(ψ)μQ∞(dψ)
∫e−V∞(ψ)μQ∞(dψ)

.



Euclidean fields as Wilson–Ito fields

the class of Wilson–Itô fields comprises as a particular case the Euclidean quantum fields
constructed as perturbations of a Gaussian field. They are obtained by solving Polchinski
FBSDEs of the form

dψa=−Q̇a𝔼a[DV∞(ψ∞)]da+ Q̇a
1/2dWa.

optimal control formulation . Let ua ≔ −Q̇a
1/2𝔼a[DV∞(ψ∞)], test it with adapted (va)a and

integrate:

𝔼��
0

∞
⟨va,ua⟩da+��

0

∞
Q̇a

1/2vada,DV∞(ψ∞)��=0.

It is the first-order condition for the minimisation of the functional

Ψ(u)≔𝔼�V∞(ψ∞
u )+ 1

2�
0

∞
⟨ua,ua⟩da�

over all adapted controls (ua)a⩾0, where

ψa
u≔�

0

a
Q̇b

1/2ubdb+�
0

a
Q̇b

1/2 dWb,

is the controlled process.



rigorous results

while Wilson–Ito fields are very young, we have already established some results in the same
flavour by looking at FBSDE or at the stochastic control formulation of Euclidean fields.

J N. Barashkov and MG . A Variational Method for Φ3
4 . Duke Mathematical Journal (2020)

J N. Barashkov and MG . The �3
4 Measure via Girsanov's Theorem . EJP (2021)

J N. Barashkov's PhD thesis . University of Bonn (2021)
J N. Barashkov and MG . On the Variational Method for EuclideanQuantum Fields in Infinite Volume, Prob.

Math. Phys. (2023+)
J N. Barashkov . A Stochastic Control Approach to Sine Gordon EQFT . arXiv (2022)
J R. Bauerschmidt, M. Hofstetter . Maximum and Coupling of the Sine-Gordon Field . Ann. Prob. (2022)
J F. C. De Vecchi, L. Fresta, and MG . A stochastic analysis of subcritical Euclidean fermionic field theories

. arXiv (2022)
J N. Barashkov, T. S. Gunaratnam, M. Hofstetter . Multiscale Coupling and the Maximum of φ2

4 Models on
the Torus . arXiv (2023)

J R. Bauerschmidt, T. Bodineau, B. Dagallier . Stochastic Dynamics and the Polchinski Equation: An Intro-
duction . arXiv (2023)

J MG and S. J. Meyer . An FBSDE for Sine–Gordon up to 6π. In preparation.



some remarks on Wilson–Ito diffusions

� our the working hypothesis is that Wilson–Ito diffusions are natural mechanism to generate
and analyse random fields

� they emerge from simple and natural assumptions and covers in principle much more than
those theories that can be reached perturbatively from a Gaussian functional integral, e.g.
from the path-integral picture

� they can be used for gauge theories and fields on manifolds and for Grassmann fields
� they allow for rigorous non-perturbative results in the whole space
� (hopefully) they provide a new framework for the stochastic analysis of Euclidean fields
� numerical simulations?
� still lot to understand: FBSDEs are non-trivial to analyse but PDE methods seems applic-

able similarly to Parisi–Wu style stochastic quantisation.



thanks


