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Some problems in singular SPDEs /I

Define and solve (locally) the following SPDEs:

I Stochastic differential equations (1+0): u ∈ [0, T]→ Rn

∂tu(t) =
∑

i

fi(u(t))ξi(t)

with ξ : R→ Rm m-dimensional white noise in time.
I Burgers equations (1+1): u ∈ [0, T]× T→ Rn

∂tu(t, x) = ∆u(t, x) + f (u(t, x))Du(t, x) + ξ(t, x)

with ξ : R× T→ Rn space-time white noise.

Recall that
ξ ∈ C−d/2−
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Some problems in singular SPDEs /II

I Generalized Parabolic Anderson model (1+2):
u ∈ [0, T]× T2 → R

∂tu(t, x) = ∆u(t, x) + f (u(t, x))ξ(x)

with ξ : T2 → R space white noise.
I Kardar-Parisi-Zhang equation (1+1)

∂th(t, x) = ∆h(t, x) + "(Dh(t, x))2 −∞" + ξ(t, x)

with ξ : R× T→ R space-time white noise.
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Some problems in singular SPDEs /III

Define and solve (locally) the following SPDEs:

I Stochastic quantization equation (1+3)

∂tu(t, x) = ∆u(t, x) + "u(t, x)3" + ξ(t, x)

with ξ : R× T3 → R space-time white noise.
I But (currently) not: Multiplicative SPDEs (1+1)

∂tu(t, x) = ∆u(t, x) + f (u(t, x))ξ(t, x)

with ξ : R× T→ R space-time white noise.

Joint work with P. Imkeller and N. Perkowski.
(Also K. Chouk and R. Catellier for (Φ)4

3).
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Rough differential equation

Consider the simple controlled PDE (η smooth, fixed initial condition)

∂tu(t, x) = ∇u(t, x) + F(u(t, x))η(x)

u : R+ × Td → R, η : Td → R and smooth function F : R→ R.

Problem
The solution map

η
Ψ−→ u

is generally not continuous for η ∈ C γ−2 with γ < 1.

Reason: u ∈ C γ and η ∈ C γ−2 cannot be multiplied when 2γ− 2 6 0.
The r.h.s. of the equation is not well defined.

Here Cα = C([0, T], Bα∞,∞(Td)) is the Holder–Besov space (or a local
version).
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What can go wrong?
Consider the sequence of functions xn : R→ R2

x(t) =
1
n
(cos(2πn2t), sin(2πn2t))

then xn(·)→ 0 in C γ([0, T];R2) for any γ < 1/2. But

I(xn,1, xn,2)(t) =
∫ t

0
xn,1(s)∂txn,2(s)ds→ t

2
, I(0, 0)(t) = 0

YET ANOTHER INTRODUCTION TO ROUGH PATHS 31

· · ·

Figure 10. Moving freely in the third direction.

where C2 depends only on C1 and T .
Now, if tnk ! s ! tnk + T2−n−1 ! t ! tnk+1, we get by combining the

previous estimates that

|xn
s,t| ! C0C2‖x‖α((t− T2−n−1)α + (T2−n−1 − s)α)

! 2α−1C0C2‖x‖α(t− s)α.

We have then proved (21) with a constant which is in addition propor-
tional to ‖x‖α. "

Let us come back to the Remark 6 following Lemma 8. For α ∈
(1/3, 1/2], let us consider xt = (0, 0,ϕt) where ϕ ∈ C2α([0, T ]; R), then
one can find xn ∈ C1

p([0, T ]; R) such that xn converges uniformly to 0,
xn = (xn, A(xn; 0, ·)) is uniformly bounded in Cα([0, T ]; A(R2)) and
converges in Cβ([0, T ]; A(R2)) to x for any β < α. For this, one may
simply consider (see Figure 10)

zn
t =

1

n
√

π
(cos(2πtn2)− 1, sin(2πtn2)),

and then set xn
t = zn

ϕt
.

Thus, moving freely in the “third direction” is equivalent to accu-
mulate the areas of small loops. Using the language of differential
geometry, which we develop below, this new degree of freedom comes
from the lack of commutativity of (A(R2), #): a small loop of radius√

ε around the origin in the plane R2 is equivalent to a small displace-
ment of length ε in the third direction. To rephrase Remark 6, even if
ϕ ∈ C1([0, T ]; R), then one has to see x as a path in C1/2([0, T ]; A(R2))
that may be approximated by paths in C1

p([0, T ]; A(R2)) which converge
to x only in ‖ · ‖β for any β < 1/2. Hence, we recover the problem
underlined in Section 3.2.

5.7. Construction of the integral. Let f be a differential form in
Lip(γ; R2 → R) with γ > 1/α− 1.

If x ∈ Cα([0, T ]; A(R2)) with α > 1/2, then from Lemma 8, x =

(x,x3
0 + A(x)) with x = (x1,x2). Hence we set I(x)

def
= I(x) =

∫
x|[0,·]

f

which is well defined as a Young integral.
The next proposition will be refined later.

The definite integral I(·, ·)(t) is not a continuous map C γ × C γ → R
for γ < 1/2.

(Cyclic microscopic processes can produce macroscopic results. Resonances.)
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A possible concept of solution

Goal: Show that Ψ : η 7→ u factorizes as

η
J−→ J(η) Φ−→ u

. Analytic step: show that when γ > 1/3:

Φ : X→ C γ

is continuous. X = ImJ ⊆ C γ−1 × C 2γ−1 is the space of enhanced
signals (or rough paths, or models).

But in general J is not a continuous map C γ−1 → C γ−1 × C 2γ−1.

. Probabilistic step: prove that there exists a "reasonable definition" of
J(ξ) when ξ is a white noise. J(ξ) is an explicit polinomial in ξ so
direct computations are possible.
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Littlewood-Paley blocks and Hölder-Besov spaces

We will measure regularity in Hölder-Besov spaces C γ = Bγ∞,∞.

f ∈ C γ, γ ∈ R iff

‖∆if‖L∞ 6 ‖f‖γ2−iγ, i > −1.

F(∆if )(ξ) = ρi(ξ)f̂ (ξ)

where ρi : R
d → R+ are smooth functions with support ' 2iA when

i > 0 and form a partition of unity
∑

i>−1 ρi(ξ) = 1 for all ξ , 0 so that

f =
∑
i>−1

∆if

in S ′.
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Paraproducts

Deconstruction of a product: f ∈ C ρ, g ∈ C γ

fg =
∑

i,j>−1

∆if∆jg = f ≺ g + f ◦ g + f � g

f ≺ g = g � f =
∑

i<j−1

∆if∆jg f ◦ g =
∑

|i−j|61

∆if∆jg

Paraproduct (Bony, Meyer et al.)

f ≺ g ∈ C min(γ+ρ,γ)

f ◦ g ∈ C γ+ρ only if γ+ ρ > 0
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Proof. Recall f ∈ C ρ, g ∈ C γ.

i� j⇒ suppF (∆if∆jg) ⊆ 2jA i ∼ j⇒ suppF (∆if∆jg) ⊆ 2jB

So if ρ > 0

∆q(f ≺ g) =
∑
j:j∼q

∑
i:i<j−1

∆q(∆if∆jg)︸          ︷︷          ︸
O(2−iρ−jγ)

= O(2−qγ)⇒ f ≺ g ∈ C γ,

while if ρ < 0

∆q(f ≺ g) =
∑
j:j∼q

∑
i:i<j−1

∆q(∆if∆jg)︸          ︷︷          ︸
O(2−iρ−jγ)

= O(2−q(γ+ρ))⇒ f ≺ g ∈ C γ+ρ.

Finally for the resonant term we have

∆q(f ◦ g) =
∑
i∼j&q

∆q(∆if∆jg) =
∑
i&q

O(2−j(ρ+γ))⇒ f ◦ g ∈ C γ+ρ

but only if the sum converges.
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Small detour : Young integral
Take f ∈ C ρ, g ∈ C γ with γ, ρ ∈ (0, 1)

fDg = f ≺ Dg︸    ︷︷    ︸
Cγ−1

+ f ◦Dg + f � Dg︸                ︷︷                ︸
Cγ+ρ−1

then ∫
fDg =

∫
f ≺ Dg︸      ︷︷      ︸

Cγ

+

∫
(f ◦Dg + f � Dg)︸                     ︷︷                     ︸

Cγ+ρ

= f ≺ g + C γ+ρ.

Compare with standard estimate for the Young integral in Hölder
spaces (valid when γ+ ρ > 1):∫ t

s
fudgu = fs(gt − gs) + O(|t − s|γ+ρ).

Expansion in smalleness of increments vs. Expansion in regularity
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Paraproduct as frequency modulation

f

g

f ≺ g
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The main commutator estimate

All the difficulty is concentrated in the resonating term

f ◦ g =
∑

|i−j|61

∆if∆jg

which however "is" smoother than f ≺ g if f or g has positive
regularity.

Paraproducts decouple the problem from the source of the problem.

Commutator lemma
The trilinear operator C(f , g, h) = (f ≺ g) ◦ h − f (g ◦ h) satisfies

‖C(f , g, h)‖β+γ . ‖f‖α‖g‖β‖h‖γ

when β+ γ < 0 and α+ β+ γ > 0, α < 1.
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The Good, the Ugly and the Bad
Concrete example. Let B be a d-dimensional Brownian motion (or a
regularisation Bε) and ϕ a smooth function. Then B ∈ C γ for γ < 1/2.

ϕ(B)DB = ϕ(B) ≺ DB︸          ︷︷          ︸
the Bad

+ϕ(B) ◦DB︸         ︷︷         ︸
the Ugly

+ϕ(B) � DB︸          ︷︷          ︸
the Good, C 2γ−1

and recall the paralinearization

ϕ(B) = ϕ ′(B) ≺ B + C 2γ

Then
ϕ(B) ◦DB = (ϕ ′(B) ≺ B) ◦DB + C 2γ ◦DB︸        ︷︷        ︸

OK

= ϕ ′(B)(B ◦DB) + C 3γ−1

Finally

ϕ(B)DB = ϕ(B) ≺ DB +ϕ ′(B) (B ◦DB)︸      ︷︷      ︸
"Besov area"

+ϕ(B) � DB + C 3γ−1
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The Besov area

If d = 1 (or by symmetrization) we can perform an integration by
parts to get

B ◦DB =
1
2
((B ◦DB) + (DB ◦ B)) =

1
2

D(B ◦ B)

which is well defined and belongs indeed to C 2γ−1.

In general the Besov area B ◦DB can be defined and studied
efficiently using Gaussian arguments:

Bε ◦DBε → B ◦DB

almost surely in C 2γ−1
loc as ε→ 0.

Tools: Besov embeddings Lp(Ω; Cθ)→ Lp(Ω; Bθ′
p,p) ' Bθ′

p,p(Lp(Ω)), Gaussian
hypercontractivity Lp(Ω)→ L2(Ω), explicit L2 computations.
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Paracontrolled distributions

Use the paraproduct to define a controlled structure. We say y ∈ Dρx if
x ∈ C γ

y = yx ≺ x + y]

with yx ∈ Cρ−γ and y] ∈ Cρ.

. Paralinearization. Let ϕ : R→ R be a sufficiently smooth function
and x ∈ C γ, γ > 0. Then

ϕ(x) = ϕ ′(x) ≺ x + C 2γ

. Another commutator: f , g ∈ C ρ−γ, x ∈ C γ

f ≺ (g ≺ h) = (fg) ≺ h + C ρ

. Stability. (ρ 6 2γ)

ϕ(y) = (ϕ ′(y)yx) ≺ x + C ρ

so we can take ϕ(y)x = ϕ ′(y)yx.
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Homogeneisation of a random potential

. Consider the linear heat equation with a small random
time-independent (Gaussian) potential V

∂tU(t, x) = ∆U(t, x) + ε2−αV(x)U(t, x)

on (T/ε)d and where ε is a small parameter and α < 2.

. Introduce macroscopic variables uε(t, x) = U(t/ε2, x/ε) with
parabolic rescaling, then

∂tuε(t, x) = ∆uε(t, x) + Vε(x)uε(t, x)

on T and where Vε(x) = ε−αV(x/ε).
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Homogeneisation of a random potential (II)

The covariance of the macroscopic noise is

E[Vε(x)Vε(y)] = ε−2αC((x − y)/ε)

Theorem
If d > 2α then Vε → 0 in C−α−. While if d = 2α then Vε converges to the
space white noise on T.

So we are let to the study of the stability properites of the equation

Lu = ηu

with η ∈ C−α. This stability is easy to estabilish when 2 − 2α > 0 by
standard estimates in Besov spaces. We are concerned then with the
case α = 1.
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Transformation of PAM

. In order to understand the difficulties, let us perfom a change of
variable by letting u = eXv with LX = η. We get

Lu = vLeX + eXLv − ∂xeX∂xv

= veXLX − veX(∂xX)2 + eXLv − eX∂xX∂xv

so v solves
Lv = (∂xX)2v + ∂xX∂xv.

Let γ = 2 − α− the regularity of X.

. If we assume that (∂xX)2 ∈ C 2γ−2 then we see that this equation can
be solved for v ∈ C 2γ since in this case ∂xX∂xv ∈ C γ−1 and we have a
continous map

(X, (∂xX)2) ∈ C γ × C 2γ−2 7→ v ∈ C γ
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Homogeneisation

When η = Vε :

Theorem
Assume d > 2 and α = 1 and let LXε = Vε (+ technical conditions on the
covariance C), then (∂xXε)2 → σ2 in C 0−.

. If d > 2 writing uε = eXεvε we obtain that vε converges to the
solution of the PDE

Lv = σ2v

and so does u since X→ 0 in C γ.

. Now
Luε = Vεuε 6→ Lu = 0 ∗ u

but Lu = σ2u with σ2 , 0. Lack of continuity of the problem wrt the
data Vε in the C γ−2 topology if γ− 2 < −1.
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Renormalization

When d = 2, α = 1 :

Theorem
Let γ = 1−, then Vε → ξ (white noise on T2) in C γ−2 and LXε = Vε (+
technical conditions on the covariance C), then there exists a sequence
cε → +∞ such that (∂xXε)2 − cε → (∂xX)�2 in C 2γ−2.

Here, formally, σ2 = +∞, so there is not a well defined limit for uε.

Consider ũε(t, x) = e−cεtu(t, x) which solves

Lũε = Vεuε − cεuε

then for ṽε = e−Xε ũε we have the equation

Lṽε = [(∂xXε)2 − cε]ṽε + ∂xXε∂xṽε

which behaves well in the limit ε→ 0.
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Paracontrolled ansatz

. Question: What is the equation satisfied by ũ = limε→0 ũε?

It should be someting like Lũ = "ũξ−∞ũ" = ũ � ξ (in which sense?)

. Note that (by paralinearization)

u = eXv = eX ≺ v + eX � v = (eX ≺ X) ≺ v + C 2γ = u ≺ X + C 2γ

so u is controlled by X: u ∈ D2γ
X . Similarly ũε ∈ D2γ

Xε . Then

ũεVε − cεũε = ũε ≺ Vε + ũε ◦ Vε + ũε � Vε − cεũε

= ũε ≺ Vε + (ũε ≺ Xε) ◦ Vε + ũ]
ε ◦ Vε + ũε � Vε − cεũε

= ũε ≺ Vε + ũε(Xε ◦ Vε − cε) + C(ũε, Xε, Vε) + ũ]
ε ◦ Vε + ũε � Vε
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Paracontrolled ansatz (II)

. So in the limit ε→ 0 we have

ũεVε−cεũε = ũε ≺ Vε+ũε(Xε◦Vε−cε)+C(ũε, Xε, Vε)+ũ]
ε◦Vε+ũε � Vε

→ ũ ≺ ξ+ ũ(X � ξ) + C(ũ, X, ξ) + ũ] ◦ ξ+ ũ � ξ
=: ũ � ξ = Φ(ũ, ũ], X, X � ξ)

where X � ξ := limε→0(Xε ◦ Vε − cε).

. Question: What is the equation satisfied by ũ = limε→0 ũε?

Indeed
Lũ = "ũξ−∞ũ" = ũ � ξ = Φ(ũ, ũ], X, X � ξ).

Where the r.h.s. is well defined since ũ is paracontrolled.
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gPAM - I - the r.h.s.
u : R+Ê× T2 → R, ξ ∈ C γ−2, γ = 1−. We want to solve (have
uniform bounds for)

Lu = F(u)ξ = F(u) ≺ ξ+ F(u) ◦ ξ+ F(u) � ξ.

. Paracontrolled ansatz. Take LX = ξ, X ∈ C γ and assume that
u ∈ D2γ

X :
u = uX ≺ X + u]

with u] ∈ C 2γ and uX ∈ C γ.

. Paralinearization:

F(u) = F ′(u) ≺ u + C 2γ = (F ′(u)uX) ≺ X + C 2γ

. Commutator lemma:

F(u) ◦ ξ = ((F ′(u)uX) ≺ X) ◦ ξ+ C 2γ ◦ ξ
= (F ′(u)uX)(X ◦ ξ)︸                 ︷︷                 ︸

∈C 2γ−2

+C(F ′(u)uX, X, ξ) + C 2γ ◦ ξ︸                               ︷︷                               ︸
∈C 3γ−2

if we assume that (X ◦ ξ) ∈ C 2γ−2.
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gPAM - II - the l.h.s.

So if u is paracontrolled by X:

u = uX ≺ X + u]

and if X ◦ ξ ∈ C 2γ−2 we have a control on the r.h.s. of the equation:

F(u)ξ = F(u) ≺ ξ+ F ′(u)uX(X ◦ ξ) + C 3γ−2

What about the l.h.s.?

Lu = LuX ≺ X + uX ≺ ξ+ Lu] − ∂xuX ≺ ∂xX

so letting uX = F(u) we have

Lu] = −LF(u) ≺ X + F ′(u)F(u)(X ◦ ξ) + C2γ−2
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gPAM - III - the paracontrolled fixed point.

The PDE
Lu = F(u)ξ

is equivalent to the system

∂tX =ξ

∂tu] =(F ′(u)F(u))(X ◦ ξ) − Lf (u) ≺ X︸         ︷︷         ︸
"∈"C 2γ−2

+R(f , u, X, ξ)︸          ︷︷          ︸
∈C 3γ−2

◦ξ

u =F(u) ≺ X + u]

. The system can be solved by fixed point (for small time) in the space
D2γ

X if we assume that

X ∈ C γ, (X ◦ ξ) ∈ C 2γ−2.

( 26 / 57 )



Paracontrolled solutions to gPAM

Theorem
Let d = 2, α = 1, γ = 1− and small T > 0. There exist constants cε such
that letting uε the solution to

Luε = VεF(uε) − cεF ′(uε)

then uε → u in Cγ as ε→ 0 and u ∈ D2γ
X is the unique weak solution in

D2γ
X to the equation

Lu = ξ � F(u) = F(u) ≺ ξ+ F ′(u)(X � ξ) + G(uX, u], X)

where
ξ = lim

ε→0
Vε, X � ξ = lim

ε→0
Xε ◦ Vε − cε

in Cγ−2 and C2γ−2 resp. and ξ has the law of the white noise on T2.
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Structure of the solution
. When ξ smooth, the solution to

∂tu = F(u)ξ, u(0) = u0

is given by u = Φ(u0, ξ, X ◦ ξ) where

Φ : Rd × C γ−2 × C 2γ−2 → C γ

is continuous for any γ > 2/3 and z = Φ(u0, ξ,ϕ) is given by
z =F(z) ≺ X + z]

∂tz] =(F ′(z)F(z))ϕ− LF(z) ≺ X︸         ︷︷         ︸
"∈"C 2γ−2

+R(F, z, X, ξ) ◦ ξ︸               ︷︷               ︸
∈C 3γ−2

. If (ξn, Xn ◦ ξn)→ (ξ,η) in C γ−2 × C 2γ−2 and

∂tun = f (un)ξn, u(0) = u0

then un → u = Φ(u0, ξ,η).
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Relaxed form of the RDE

. Note that in general we can have ξ1,n → ξ, ξ2,n → ξ and

lim
n

X1,n ◦ ξ1,n , lim
n

X2,n ◦ ξ2,n

. Take ξn, ξ smooth but ξn → ξ in C γ−2. It can happen that

lim
n

Xn ◦ ξn = X ◦ ξ+ϕ ∈ C 2γ−1

In this case un → u and u = Φ(ξ, X ◦ ξ+ϕ) solves the equation

Lu = F(u)ξ+ F ′(u)F(u)ϕ.

The limit procedure generates correction terms to the equation.

The original equation relaxes to another form in which additional
terms are generated.
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"Itô" form of the RDE

In the smooth setting u = Φ(ξ, X ◦ ξ+ϕ) solves

Lu = F(u)ξ+ F ′(u)F(u)ϕ.

If we choose ϕ = −X ◦ ξ then

v = Φ(ξ, X ◦ ξ+ϕ) = Φ(ξ, 0)

solves
Lv = F(v)ξ− F ′(v)F(v)X ◦ ξ

and has the particular property of being a continuous map of
ξ ∈ C γ−2 alone.
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The renormalization problem

If ξ is the space white noise we have

ξ ∈ C−1−, X ∈ C([0, T]; C 1−)

and
X ◦ ξ = X ◦ LX =

1
2
L(X ◦ X) +

1
2
(DX ◦DX)

=
1
2
L(X ◦ X) − (DX ≺ DX) +

1
2
(DX)2

But now
1
2
(DX)2 = c + CC 0−

with c = +∞!.

No obvious definition of X ◦ ξ can be given. But there exists cε such
that

Xε ◦ ξε − cε → "X � ξ" in CC 0−.
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The renormalized gPAM

To cure the problem we add a suitable counterterm to the equation

Lu = f (u) � ξ = f (u)ξ− c(f ′(u)f (u))

this defines a new product, denoted by �. Now

f (u)◦ξ−c(f ′(u)f (u)) = (f ′(u)f (u))(X◦ξ−c)+C(f ′(u)f (u), X, ξ)+R(f , u, X)◦ξ

. The renormalized gPAM is equivalent to the equation

Lu] = −Lf (u) ≺ X + Df (u) ≺ DX + (f ′(u)f (u))(X ◦ ξ− c)

+C(f ′(u)f (u), X, ξ) + R(f , u, X) ◦ ξ
together with u = f (u) ≺ X + u] and where

X ∈ C 1−, X � ξ = (X ◦ ξ− c) ∈ C 0−, u] ∈ C 2−.
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KPZ and its siblings:

Besides the generalized PAM, the following equations have been
solved using the paracontrolled approach (joint work with N.
Perkowski)

L = ∂t − ∆ heat operator on T, ξ space-time white noise;

I KPZ equation: h : R+ × T→ R,

Lh(t, x) = (∂xh(t, x))2 + ξ(t, x);

I Burgers equation: u = ∂xh;

Lu(t, x) = ∂x(u(t, x)2) + ∂xξ(t, x);

I Stochastic Heat equation: h = log w

Lw(t, x) = w(t, x)ξ(t, x).
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Other applications

I Gubinelli, Imkeller, P. (2012): Multidimensional extension of
Hairer’s (2011) generalized Burgers equation (σ− d/2 > 1/3):

∂tu(t, x) = −(−∆)σu(t, x) + G(u(t, x))Dxu(t, x) + ξ(t, x);

I Catellier, Chouk (2013): Stochastic quantization equation φ4
3

(d = 3):
Lu(t, x) = −u(t, x)�3 + ξ(t, x);

I Furlan (2014): Stochastic Navier Stokes equation (d = 3):

Lu(t, x) = −P((u(t, x) · ∇)u(t, x)) + ξ(t, x).
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Thanks
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Fluctuations of a growing interface

∆h(t, x)

h(t, x)

ξ(t, x)
diffusion

drift F (∇h(t, x))

noise

A model for random interface growth (think e.g. expansion of colony
of bacteria): h : R+ ×R→ R,

∂th(t, x) = κ∆h(t, x)︸       ︷︷       ︸
relaxation

+ F(∂xh(t, x))︸          ︷︷          ︸
slope-dependent growth

+ η(t, x)︸   ︷︷   ︸
noise with microscopic correlations
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Fluctuations of a growing interface
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The Kardar–Parisi–Zhang equation
I Kardar–Parisi–Zhang ’84: slope-dependent growth given by

F(∂xh), in a certain scaling regime of small gradients:

F(∂xh) = F(0) + F ′(0)∂xh + F ′′(0)(∂xh)2 + . . .

I KPZ equation is the universal model for random interface growth

∂th(t, x) = κ∆h(t, x)︸       ︷︷       ︸
relaxation

+ λ[(∂xh(t, x))2 −∞]︸                    ︷︷                    ︸
renormalized growth

+ ξ(t, x)︸   ︷︷   ︸
space-time white noise

I This derivation is highly problematic since ∂xh is a distribution.
But: Hairer, Quastel (2014, unpublished) justify it rigorously via
scaling of smooth models and small gradients.

I KPZ equation is suspected to be universal scaling limit for
random interface growth models, random polymers, and many
particle systems;

I contrary to Brownian setting: KPZ has fluctuations of order t1/3;
large time limit distribution of t−1/3h(t, t2/3x) is expected to be
universal in a sense comparable only to the Gaussian
distribution.
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KPZ and its siblings:
I KPZ equation:

Lh(t, x) = (∂xh(t, x))2 + ξ(t, x);

h : R+ ×R→ R, L = ∂t − ∆ heat operator, ξ space-time white
noise;

I Burgers equation:

Lu(t, x) = ∂x(u(t, x)2) + ∂xξ(t, x);

solution is (formally) given by derivative of the KPZ equation:
u = ∂xh;

I solution to KPZ (formally) given by Cole-Hopf transform of the
stochastic heat equation: h = log w, where w solves

Lw(t, x) = w(t, x)ξ(t, x).

I All three are universal objects, that are expected to be scaling
limits of a wide range of particle systems.
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Stochastic Burgers equation
Take u = Dh

Lu = Dξ+ Du2

to obtain the stochastic Burgers equation (SBE) with additive noise.

B Invariant measure: Formally the SBE leaves invariant the space
white noise: if u0 has a Gaussian distribution with covariance
E[u0(x)u0(y)] = δ(x − y) then for all t > 0 the random function u(t, ·)
has a Gaussian law with the same covariance.

B First order approximation: Let X(t, x) be the solution of the linear
equation

∂tX(t, x) = ∂2
xX(t, x) + ∂xξ(t, x), x ∈ T, t > 0

X is a stationary Gaussian process with covariance

E[X(t, x)X(s, y)] = p|t−s|(x − y).

Almost surely X(t, ·) ∈ C γ for any γ < −1/2 and any t ∈ R. For any
t ∈ R X(t, ·) has the law of the white noise over T.
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Expansion /I
B Let u = X + u1 then

Lu1 = ∂x(u1 + X)2 = ∂xX2︸ ︷︷ ︸
−2−

+2∂x(u1X) + ∂xu2
1

B Let X be the solution to

LX = ∂xX2 ⇒ X ∈ C 0−

and decompose further u1 = X + u2. Then

Lu2 = 2∂x(X X)︸        ︷︷        ︸
−3/2−

+2∂x(u2X) + ∂x(X X )︸        ︷︷        ︸
−1−

+2∂x(u2X ) + ∂x(u2)
2

B Define LX = 2∂x(X X) and u2 = X + u3 then X ∈ C 1/2−

Lu3 = 2∂x(u3X)︸       ︷︷       ︸
−3/2−

+ 2∂x(X X)︸        ︷︷        ︸
−3/2−

+∂x(X X )︸        ︷︷        ︸
−1−

+2∂x(u2X ) + ∂x(u2)
2
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Expansion /II
B Recall our partial expansion for the solution

u = X + X + 2X + U

LU = 2∂x(UX)+2∂x(X X)+∂x(X X )+2∂x((2X +U)X )+∂x(2X +U)2

= 2∂x(UX) + L(2X + X ) + 2∂x((2X + U)X ) + ∂x(2X + U)2

and the regularities for the driving terms

X X X X X
−1/2− 0− 1/2− 1/2− 1−

We can assume U ∈ C 1/2− so that the terms

2∂x((2X + U)X ) + ∂x(2X + U)2

are well defined.

The remaining problem is to deal with 2∂x(UX).
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Paracontrolled ansatz for SBE

BMake the following ansatz U = U ′ ≺ Q + U]. Then

LU = LU ′ ≺ Q + U ′ ≺ LQ − ∂xU ′ ≺ ∂xQ + LU]

while

LU = 2∂x(UX) + L(2X + X ) + 2∂x((2X + U)X ) + ∂x(2X + U)2︸                                                                  ︷︷                                                                  ︸
R(U)

= 2∂x(U ≺ X) + 2∂x(U ◦ X) + 2∂x(U � X) + R(U)

= 2(U ≺ ∂xX) + 2(∂xU ≺ X) + 2∂x(U ◦ X) + 2∂x(U � X) + R(U)

so we can set U ′ = 2U and LQ = ∂xX and get the equation

LU] = −LU ′ ≺ Q + ∂xU ′ ≺ ∂xQ + 2(∂xU ≺
X) + 2∂x(U ◦ X) + 2∂x(U � X) + R(U)

B Observe that Q, U, U ′ ∈ C 1/2− and we can assume that U] ∈ C 1−.
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Commutator

B The difficulty is now concentrated in the resonant term U ◦X which
is not well defined.

B The paracontrolled ansatz and the commutation lemma give

U ◦ X = (2U ≺ Q) ◦ X + U] ◦ X = 2U(Q ◦ X) + C(2U, Q, X)︸           ︷︷           ︸
1/2−

+U] ◦ X︸    ︷︷    ︸
1/2−

B A stochastic estimate shows that Q ◦ X ∈ C 0−
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Paracontrolled solution to SBE

B The final system reads

u = X + X + 2X + U

U = U ′ ≺ Q + U], U ′ = 2X + 2U

LU] = 4∂x(U(Q ◦ X)) + 4∂xC(U, Q, X) + 2∂x(U] ◦ X) − 2LU ≺ Q

+2∂xU ≺ ∂xQ + 2(∂xU ≺ X) + 2∂x(U � X) + R(U)

B This equation has a (local in time) solution U = Φ(J(ξ)) which is a
continuous function of the data J(ξ) given by a collection of
multilinear functions of ξ:

J(ξ) = (X, X , X , X , X , X ◦Q)
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Burgers equation and paracontrolled distributions

Lu(t, x) = ∂xu2(t, x) + ∂xξ(t, x), u(0) = u0.

Paracontrolled Ansatz
u ∈Prbe if u = X + X + 2X + uQ with

uQ = π<(u ′, Q) + u].

I Paracontrolled structure: Can define u2 continuously as long as
(Q ◦ X) ∈ C([0, T], C 0−) is given (together with tree data
X, X , X , X , X ).

I Obtain local existence and uniqueness of paracontrolled
solutions. Solution depends pathwise continuously on extended
data J(ξ) = (ξ, X, X , X , X , X , Q ◦ X).
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KPZ equation

KPZ equation:

Lh(t, x) = (∂xh(t, x))2 + ξ(t, x), h(0) = h0.

Expect h(t) ∈ C 1/2−, so ∂xh(t) ∈ C−1/2− and (∂xh(t))2 not defined.
But: expand

u = Y + Y + 2Y + hP,

where LY = ξ, LY = ∂xY∂xY, . . . In general: ∂xYτ = Xτ. Make
paracontrolled ansatz for hP:

hP = π<(h ′, P) + h]

with h ′ ∈ C([0, T], C 1/2−), h] ∈ C([0, T], C 2−), LP = X. Write h ∈Pkpz.

Can define (∂xh(t))2 for h ∈Pkpz and obtain local existence and
uniqueness of solutions.
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KPZ and Burgers equation

h ∈Pkpz if

h = Y + Y + 2Y + hP, hP = h ′ ≺ P + h].

u ∈Prbe if

u = X + X + 2X + uQ, uQ = u ′ ≺ Q + u].

I If h ∈Pkpz, then ∂xh ∈Prbe.
I If h solves KPZ equation, then u = ∂xh solves Burgers equation

with initial condition u(0) = ∂xh0.
I If u ∈Prbe, then any solution h of Lh = u2 + ξ is in Pkpz.
I If u solves Burgers equation with initial condition u(0) = ∂xh0,

and h solves Lh = u2 + ξwith initial condition h(0) = h0, then h
solves KPZ equation.
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KPZ and heat equation
Heat equation:

Lw(t, x) = w(t, x) � ξ(t, x) = w(t, x)ξ(t, x) − w(t, x) ·∞, w(0) = w0.

Paracontrolled ansatz: w ∈Prhe if

w = eY+Y +2Y wP, wP = π<(w ′, P) + w]

(comes from Cole-Hopf transform).
I Slightly cheat to make sense of product w � ξ for w ∈Prhe:

w � ξ = Lw − eY+Y +2Y
[
LwP − [L(Y + Y ) + (∂x(Y + Y + 2Y ))2]wP

]
+ 2eY+Y +2Y ∂x(Y + Y + 2Y )∂xwP;

(agrees with renormalized pointwise product w � ξ in smooth
case and with Itô integral in white noise case, continuous in
extended data).

I Obtain global existence and uniqueness of solutions.
I One-to-one correspondence between Pkpz and strictly positive

elements of Prhe.
I Any solution of KPZ gives solution of heat equation. Any strictly

positive solution of heat equation gives solution of KPZ equation.
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Para-modelled distributions

Let γ > 0 and (T,Π, Γ) regularity structure. Say f is para-modelled,
f ∈Pγ, if there exists fπ ∈ Dγ, with

f − π<(fπ,Π) ∈ Cγ.

Example: Rfπ ∈Pγ.
Consider rough path model, say
T = span(Ξ, I (Ξ)Ξ, I (I (Ξ)Ξ)Ξ, 1, I (Ξ), I (I (Ξ)Ξ)). Try to solve
∂tu = F(u)ξ.
(Simplified) para-modelled ansatz: u = Ruπ = π<(uπ,Π) + u] with
uπ ∈ D3α. Equation for u]:

∂tu] = −∂tπ<(uπ,Π)+F(u)ξ = π<(uπ, DΠ)−π<(F(uπ) ? ξπ,Π)+smooth.

To have u] ∈ C3α : choose expansion uπ so that all coefficients for
terms of homogeneity < 3α− 1 cancel. Obtain a priori bounds on
‖u]‖3α and then on ‖uπ‖D3α . Thus at least local existence of solutions.
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Stochastic Quantization
Stochastic quantization of (Φ4)3 : ξ ∈ C−5/2−, u ∈ C−1/2−,
u = u1 + u2 + u>3.

Lu = ξ+ λ(u3 − 3c1u − c2u)

Lu1+Lu>2 = ξ+λ(u3
1−3c1u1)+3λ(u>2(u2

1−c1))+3λ(u2
>2u1)+λu3

>2−λc2u

. Lu1 = ξ⇒ u1 ∈ C−1/2−, Lu2 = λ(u3
1 − 3c1u1)⇒ u2 ∈ C1/2−

Lu>3 = 3λ(u>2(u2
1−c1))+3λ(u2

2u1)+6λ(u>3u2u1)+3λ(u2
>3u1)+λu3

>2−λc2u

. Ansatz: u>3 = 3λu>2 ≺ X + u], with LX = (u2
1 − c1)

Lu] = −3λLu>2 ≺ X+3λDu>2 ≺ DX+3λ(u>2◦(u2
1−c1)−c2u)+3λ(u>2 � (u2

1−c1))

+ 3λ(u2
2u1) + 6λ(u>3(u2u1)) + 3λ(u2

>3u1) + λu3
>2

u>2 ◦ (u2
1 − c1) − c2u = (u2 ◦ (u2

1 − c1) − c2u1) + (u>3 ◦ (u2
1 − c1) − c2u>2)

(u>3 ◦(u2
1−c1)−c2u>2) = (3λ(u>2 ≺ X)◦(u2

1−c1)−c2u>2)+u] ◦(u2
1−c1)

= u>2(3λ(X ◦ (u2
1 − c1)) − c2) + 3λC(u>2, X, (u2

1 − c1)) + u] ◦ (u2
1 − c1)

. Basic objects:
(u2

1 − c1), (u3
1 − 3c1u1), (3λ(X ◦ (u2

1 − c1)) − c2), (u2u1), (u2
2u1)
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