Paracontrolled distributions with applications to singular SPDEs

Massimiliano Gubinelli

CEREMADE Université Paris Dauphine

Stochastic Analysis workshop, Tohoku University – October 15th, 2014

Some problems in singular SPDEs /I

Define and solve (locally) the following SPDEs:

► Stochastic differential equations (1+0): $u \in [0, T] \rightarrow \mathbb{R}^n$

$$
\partial_t u(t) = \sum_i f_i(u(t)) \xi^i(t)
$$

with $\xi : \mathbb{R} \to \mathbb{R}^m$ *m*-dimensional white noise in time.

► Burgers equations (1+1): $u \in [0, T] \times T \rightarrow \mathbb{R}^n$

$$
\partial_t u(t,x) = \Delta u(t,x) + f(u(t,x))Du(t,x) + \xi(t,x)
$$

with $\xi : \mathbb{R} \times \mathbb{T} \to \mathbb{R}^n$ space-time white noise.

Recall that

$$
\xi \in \mathscr{C}^{-d/2-}
$$

Some problems in singular SPDEs /II

Generalized Parabolic Anderson model $(1+2)$: $u \in [0, T] \times \mathbb{T}^2 \to \mathbb{R}$

$$
\partial_t u(t,x) = \Delta u(t,x) + f(u(t,x))\xi(x)
$$

with $\xi : \mathbb{T}^2 \to \mathbb{R}$ space white noise.

 \triangleright Kardar-Parisi-Zhang equation (1+1)

$$
\partial_t h(t,x) = \Delta h(t,x) + \sqrt{\Delta h(t,x)^2 - \infty} + \xi(t,x)
$$

with $\xi : \mathbb{R} \times \mathbb{T} \to \mathbb{R}$ space-time white noise.

Some problems in singular SPDEs /III

Define and solve (locally) the following SPDEs:

 \triangleright Stochastic quantization equation (1+3)

 $\partial_t u(t, x) = \Delta u(t, x) + u(t, x)^{3} + \xi(t, x)$

with $\xi : \mathbb{R} \times \mathbb{T}^3 \to \mathbb{R}$ space-time white noise.

 \triangleright But (currently) not: Multiplicative SPDEs (1+1)

$$
\partial_t u(t,x) = \Delta u(t,x) + f(u(t,x))\xi(t,x)
$$

with $\xi : \mathbb{R} \times \mathbb{T} \to \mathbb{R}$ space-time white noise.

Joint work with P. Imkeller and N. Perkowski. (Also K. Chouk and R. Catellier for $(\Phi)_{3}^{4}$).

Rough differential equation

Consider the simple controlled PDE (η smooth, fixed initial condition)

 $\partial_t u(t, x) = \nabla u(t, x) + F(u(t, x)) \eta(x)$

 $u : \mathbb{R}_+ \times \mathbb{T}^d \to \mathbb{R}$, $\eta : \mathbb{T}^d \to \mathbb{R}$ and smooth function $F : \mathbb{R} \to \mathbb{R}$.

Problem

The solution map

$$
\eta \stackrel{\Psi}{\longrightarrow} u
$$

is generally **not** continuous for $\eta \in \mathscr{C}^{\gamma-2}$ with $\gamma < 1$.

Reason: $u \in \mathcal{C}^{\gamma}$ and $\eta \in \mathcal{C}^{\gamma-2}$ cannot be multiplied when $2\gamma - 2 \leq 0$. The r.h.s. of the equation is not well defined.

Here $\mathscr{C}^{\alpha} = C([0, T], B^{\alpha}_{\infty, \infty}(\mathbb{T}^d))$ is the Holder–Besov space (or a local version).

What can go wrong?

Consider the sequence of functions $x^n : \mathbb{R} \to \mathbb{R}^2$

$$
x(t) = \frac{1}{n}(\cos(2\pi n^2 t), \sin(2\pi n^2 t))
$$

then $x^n(\cdot) \to 0$ in $\mathscr{C}^\gamma([0,T];\mathbb{R}^2)$ for any $\gamma < 1/2$. But

$$
I(x^{n,1}, x^{n,2})(t) = \int_0^t x^{n,1}(s) \partial_t x^{n,2}(s) ds \to \frac{t}{2} \neq I(0,0)(t) = 0
$$

The definite integral $I(\cdot, \cdot)(t)$ is **not** a continuous map $\mathscr{C}^{\gamma} \times \mathscr{C}^{\gamma} \to \mathbb{R}$ for $\gamma < 1/2$.

*|*x*n s,t[|]* ! *^C*0*C*2!x!α((*^t* [−] *^T*2−*n*−¹) ^α ⁺ (*T*2−*n*−¹ [−] *^s*) α) (Cyclic microscopic processes can produce macroscopic results. Resonances.)

A possible concept of solution

Goal: Show that $\Psi : \eta \mapsto u$ factorizes as

$$
\eta \xrightarrow{J} J(\eta) \xrightarrow{\Phi} u
$$

 \triangleright *Analytic step:* show that when $\gamma > 1/3$:

 $\Phi: \mathfrak{X} \to \mathscr{C}^\gamma$

is continuous. $\mathfrak{X} = \overline{\text{Im} J} \subseteq \mathscr{C}^{\gamma-1} \times \mathscr{C}^{2\gamma-1}$ is the space of *enhanced signals* (or rough paths, or models).

But in general *J* is not a continuous map $\mathscr{C}^{\gamma-1} \to \mathscr{C}^{\gamma-1} \times \mathscr{C}^{2\gamma-1}$.

. *Probabilistic step:* prove that there exists a "reasonable definition" of *J*(ξ) when ξ is a white noise. *J*(ξ) is an explicit polinomial in ξ so direct computations are possible.

Littlewood-Paley blocks and Hölder-Besov spaces

We will measure regularity in Hölder-Besov spaces $\mathscr{C}^{\gamma} = B^{\gamma}_{\infty,\infty}$.

 $f \in \mathscr{C}^{\gamma}, \gamma \in \mathbb{R}$ iff

$$
\|\Delta_i f\|_{L^\infty} \leqslant \|f\|_{\gamma} 2^{-i\gamma}, \qquad i \geqslant -1.
$$

$$
\mathcal{F}(\Delta_i f)(\xi)=\rho_i(\xi)\hat{f}(\xi)
$$

where $\rho_i : \mathbb{R}^d \to \mathbb{R}_+$ are smooth functions with support $\simeq 2^i \mathcal{A}$ when *i* ≥ 0 and form a partition of unity $\sum_{i\geq -1}$ $ρ_i(ξ) = 1$ for all ξ ≠ 0 so that

$$
f=\sum_{i\geqslant -1}\Delta_{i}f
$$

in S' .

Paraproducts

Deconstruction of a product: $f \in \mathscr{C}^{\rho}, g \in \mathscr{C}^{\gamma}$

$$
fg = \sum_{i,j \ge -1} \Delta_i f \Delta_j g = f \prec g + f \circ g + f \succ g
$$

$$
f \prec g = g \succ f = \sum_{i < j-1} \Delta_i f \Delta_j g \qquad f \circ g = \sum_{|i-j| \le 1} \Delta_i f \Delta_j g
$$

Paraproduct (Bony, Meyer et al.)

$$
f \prec g \in \mathscr{C}^{\min(\gamma + \rho, \gamma)}
$$

$$
f \circ g \in \mathscr{C}^{\gamma + \rho} \qquad \text{only if } \gamma + \rho > 0
$$

Proof. Recall $f \in \mathscr{C}^{\rho}, g \in \mathscr{C}^{\gamma}$.

$$
i \ll j \Rightarrow \text{supp}\mathscr{F}(\Delta_i f \Delta_j g) \subseteq 2^j \mathscr{A} \qquad i \sim j \Rightarrow \text{supp}\mathscr{F}(\Delta_i f \Delta_j g) \subseteq 2^j \mathscr{B}
$$

So if $\rho > 0$

$$
\Delta_q(f \prec g) = \sum_{j:j \prec q} \sum_{i:i < j-1} \underbrace{\Delta_q(\Delta_i f \Delta_j g)}_{O(2^{-i\rho} - j\gamma)} = O(2^{-q\gamma}) \Rightarrow f \prec g \in \mathscr{C}^\gamma,
$$

while if $\rho < 0$

$$
\Delta_q(f \prec g) = \sum_{j:j \prec q} \sum_{i:i < j-1} \underbrace{\Delta_q(\Delta_i f \Delta_j g)}_{O(2^{-i\rho} - j\gamma)} = O(2^{-q(\gamma + \rho)}) \Rightarrow f \prec g \in \mathscr{C}^{\gamma + \rho}.
$$

Finally for the resonant term we have

$$
\Delta_q(f \circ g) = \sum_{i \sim j \ge q} \Delta_q(\Delta_i f \Delta_j g) = \sum_{i \ge q} O(2^{-j(\rho + \gamma)}) \Rightarrow f \circ g \in \mathscr{C}^{\gamma + \rho}
$$

but *only if* the sum converges.

Small detour : Young integral Take $f \in \mathscr{C}^{\rho}$, $g \in \mathscr{C}^{\gamma}$ with $\gamma, \rho \in (0, 1)$

$$
fDg = f \lt Dg + f \circ Dg + f \gt Dg
$$

$$
g \circ f \circ Dg + f \gt Dg
$$

$$
g \circ f \circ Dg + f \gt Dg
$$

then

$$
\int fDg = \underbrace{\int f \prec Dg}_{\mathscr{C}^{\gamma}} + \underbrace{\int (f \circ Dg + f \succ Dg)}_{\mathscr{C}^{\gamma+\rho}} = f \prec g + \mathscr{C}^{\gamma+\rho}.
$$

Compare with standard estimate for the Young integral in Hölder spaces (valid when $\gamma + \rho > 1$):

$$
\int_s^t f_u dg_u = f_s(g_t - g_s) + O(|t - s|^{\gamma + \rho}).
$$

Expansion in smalleness of increments vs. Expansion in regularity

Paraproduct as frequency modulation

The main commutator estimate

All the difficulty is concentrated in the resonating term

$$
f\circ g=\sum_{|i-j|\leqslant 1}\Delta_if\Delta_jg
$$

which however "is" smoother than $f \prec g$ if f or g has positive regularity.

Paraproducts decouple the problem from the source of the problem.

Commutator lemma

The trilinear operator $C(f, g, h) = (f \prec g) \circ h - f(g \circ h)$ satisfies

 $\|C(f, g, h)\|_{\mathcal{B}+\gamma} \leq \|f\|_{\alpha} \|g\|_{\beta} \|h\|_{\gamma}$

when $\beta + \gamma < 0$ and $\alpha + \beta + \gamma > 0$, $\alpha < 1$.

The Good, the Ugly and the Bad

Concrete example. Let *B* be a *d*-dimensional Brownian motion (or a regularisation B^{ε}) and φ a smooth function. Then $B \in \mathscr{C}^{\gamma}$ for $\gamma < 1/2$.

and recall the paralinearization

$$
\varphi(B) = \varphi'(B) \prec B + \mathscr{C}^{2\gamma}
$$

Then

$$
\varphi(B) \circ DB = (\varphi'(B) \prec B) \circ DB + \underbrace{\mathscr{C}^{2\gamma} \circ DB}_{\text{OK}}
$$

$$
= \varphi'(B)(B \circ DB) + \mathscr{C}^{3\gamma - 1}
$$

Finally

$$
\varphi(B)DB = \varphi(B) \prec DB + \varphi'(B) \underbrace{(B \circ DB)}_{\text{"Besov area}^*} + \varphi(B) \succ DB + \mathscr{C}^{3\gamma - 1}
$$

The Besov area

If $d = 1$ (or by symmetrization) we can perform an integration by parts to get

$$
B \circ DB = \frac{1}{2}((B \circ DB) + (DB \circ B)) = \frac{1}{2}D(B \circ B)
$$

which is well defined and belongs indeed to $\mathscr{C}^{2\gamma-1}.$

In general the Besov area *B* ◦ *DB* can be defined and studied efficiently using Gaussian arguments:

 $B^{\varepsilon} \circ DB^{\varepsilon} \to B \circ DB$

almost surely in $\mathscr{C}_{\text{loc}}^{2\gamma-1}$ as $\varepsilon \to 0$.

Tools: Besov embeddings $L^p(\Omega; \mathcal{C}^\theta) \to L^p(\Omega; B^{ \theta'}_{p,p}) \simeq B^{ \theta'}_{p,p}(L^p(\Omega))$, Gaussian hypercontractivity $L^p(\Omega) \to L^2(\Omega)$, explicit L^2 computations.

Paracontrolled distributions

Use the paraproduct to *define* a controlled structure. We say $y \in \mathcal{D}_x^{\rho}$ if $x \in \mathscr{C}^\gamma$

$$
y=y^x\prec x+y^{\sharp}
$$

with $y^x \in C^{\rho - \gamma}$ and $y^{\sharp} \in C^{\rho}$.

 \triangleright **Paralinearization.** Let $\varphi : \mathbb{R} \to \mathbb{R}$ be a sufficiently smooth function and $x \in \mathscr{C}^{\gamma}$, $\gamma > 0$. Then

$$
\varphi(x) = \varphi'(x) \prec x + \mathscr{C}^{2\gamma}
$$

 \triangleright Another commutator: $f, g \in \mathscr{C}^{\rho-\gamma}, x \in \mathscr{C}^{\gamma}$

$$
f \prec (g \prec h) = (fg) \prec h + \mathscr{C}^\rho
$$

 \rhd **Stability.** ($\rho \leq 2\gamma$)

$$
\varphi(y) = (\varphi'(y)y^x) \prec x + \mathscr{C}^\rho
$$

so we can take $\varphi(y)^x = \varphi'(y)y^x$.

Homogeneisation of a random potential

 \triangleright Consider the linear heat equation with a small random time-independent (Gaussian) potential *V*

$$
\partial_t U(t,x) = \Delta U(t,x) + \varepsilon^{2-\alpha} V(x) U(t,x)
$$

on $(T/\varepsilon)^d$ and where ε is a small parameter and $\alpha < 2$.

 \triangleright Introduce macroscopic variables $u_{\varepsilon}(t,x) = U(t/\varepsilon^2, x/\varepsilon)$ with parabolic rescaling, then

$$
\partial_t u_{\varepsilon}(t,x) = \Delta u_{\varepsilon}(t,x) + V_{\varepsilon}(x)u_{\varepsilon}(t,x)
$$

on T and where $V_{\varepsilon}(x) = \varepsilon^{-\alpha} V(x/\varepsilon)$.

Homogeneisation of a random potential (II)

The covariance of the macroscopic noise is

$$
\mathbb{E}[V_{\varepsilon}(x)V_{\varepsilon}(y)] = \varepsilon^{-2\alpha} C((x-y)/\varepsilon)
$$

Theorem

If d > 2α *then* $V_{\varepsilon} \to 0$ *in* $\mathscr{C}^{-\alpha-}$. While if $d = 2\alpha$ then V_{ε} converges to the *space white noise on* T*.*

So we are let to the study of the stability properites of the equation

$$
\mathcal{L}u=\eta u
$$

with $\eta \in \mathscr{C}^{-\alpha}$. This stability is easy to estabilish when $2 - 2\alpha > 0$ by standard estimates in Besov spaces. We are concerned then with the case $\alpha = 1$.

Transformation of PAM

 \triangleright In order to understand the difficulties, let us perfom a change of **variable by letting** $u = e^X v$ **with** $\mathcal{L}X = \eta$ **. We get**

$$
\mathcal{L}u = v\mathcal{L}e^{X} + e^{X}\mathcal{L}v - \partial_{x}e^{X}\partial_{x}v
$$

$$
= v e^X \mathcal{L} X - v e^X (\partial_x X)^2 + e^X \mathcal{L} v - e^X \partial_x X \partial_x v
$$

so *v* solves

$$
\mathcal{L}v=(\partial_xX)^2v+\partial_xX\partial_xv.
$$

Let $\gamma = 2 - \alpha$ the regularity of *X*.

 \triangleright If we *assume* that $(\partial_x X)^2 \in \mathscr{C}^{2\gamma-2}$ then we see that this equation can be solved for $v \in \mathscr{C}^{2\gamma}$ since in this case $\partial_x X \partial_x v \in \mathscr{C}^{\gamma-1}$ and we have a continous map

$$
(X,(\partial_x X)^2) \in \mathscr{C}^\gamma \times \mathscr{C}^{2\gamma-2} \mapsto v \in \mathscr{C}^\gamma
$$

Homogeneisation

When $\eta = V_{\epsilon}$:

Theorem

Assume d > 2 *and* α = 1 *and let* $\mathcal{L}X_{\epsilon} = V_{\epsilon}$ (+ *technical conditions on the covariance* C), then $(\partial_x X_\varepsilon)^2 \to \sigma^2$ in \mathscr{C}^{0-} .

 \triangleright If $d>$ 2 writing $u_\varepsilon = e^{X_\varepsilon} v_\varepsilon$ we obtain that v_ε converges to the solution of the PDE

$$
\mathcal{L}v=\sigma^2v
$$

and so does *u* since $X \to 0$ in \mathcal{C}^{γ} .

 \triangleright Now

$$
\mathcal{L}u_{\varepsilon}=V_{\varepsilon}u_{\varepsilon}\nrightarrow\mathcal{L}u=0*u
$$

but $\mathcal{L}u = \sigma^2 u$ with $\sigma^2 \neq 0$. Lack of continuity of the problem wrt the data V_{ε} in the $\mathscr{C}^{\gamma-2}$ topology if $\gamma-2<-1$.

Renormalization

When $d = 2$, $\alpha = 1$:

Theorem

Let $\gamma = 1$ —*,* then $V_{\varepsilon} \to \xi$ (white noise on \mathbb{T}^2) in $\mathscr{C}^{\gamma-2}$ and $\mathscr{L}X_{\varepsilon} = V_{\varepsilon}$ (+ *technical conditions on the covariance C), then there exists a sequence* $c_{\varepsilon} \to +\infty$ *such that* $(\partial_x X_{\varepsilon})^2 - c_{\varepsilon} \to (\partial_x X)^{\circ 2}$ *in* $\mathscr{C}^{2\gamma - 2}$ *.*

Here, formally, $\sigma^2 = +\infty$, so there is not a well defined limit for u_{ε} . Consider $\tilde{u}_{\varepsilon}(t,x) = e^{-c_{\varepsilon}t}u(t,x)$ which solves

$$
\mathcal{L}\tilde{u}_{\varepsilon} = V_{\varepsilon}u_{\varepsilon} - c_{\varepsilon}u_{\varepsilon}
$$

then for $\tilde{v}_{\varepsilon} = e^{-X_{\varepsilon}} \tilde{u}_{\varepsilon}$ we have the equation

$$
\mathcal{L}\tilde{v}_{\varepsilon} = [(\partial_x X_{\varepsilon})^2 - c_{\varepsilon}]\tilde{v}_{\varepsilon} + \partial_x X_{\varepsilon} \partial_x \tilde{v}_{\varepsilon}
$$

which behaves well in the limit $\varepsilon \to 0$.

Paracontrolled ansatz

 \triangleright **Question:** What is the equation satisfied by $\tilde{u} = \lim_{\varepsilon \to 0} \tilde{u}_{\varepsilon}$? It should be someting like $\mathcal{L}\tilde{u} = " \tilde{u}\xi - \infty \tilde{u} = \tilde{u} \diamond \xi$ (in which sense?) \triangleright Note that (by paralinearization)

$$
u = e^{X}v = e^{X} \prec v + e^{X} \succeq v = (e^{X} \prec X) \prec v + \mathscr{C}^{2\gamma} = u \prec X + \mathscr{C}^{2\gamma}
$$

so *u* is controlled by *X*: $u \in \mathscr{D}_{X}^{2\gamma}$. Similarly $\tilde{u}_{\varepsilon} \in \mathscr{D}_{X_{\varepsilon}}^{2\gamma}$ *X*^ε . Then

$$
\tilde{u}_{\varepsilon} V_{\varepsilon} - c_{\varepsilon} \tilde{u}_{\varepsilon} = \tilde{u}_{\varepsilon} \prec V_{\varepsilon} + \tilde{u}_{\varepsilon} \circ V_{\varepsilon} + \tilde{u}_{\varepsilon} \succ V_{\varepsilon} - c_{\varepsilon} \tilde{u}_{\varepsilon}
$$
\n
$$
= \tilde{u}_{\varepsilon} \prec V_{\varepsilon} + (\tilde{u}_{\varepsilon} \prec X_{\varepsilon}) \circ V_{\varepsilon} + \tilde{u}_{\varepsilon}^{\sharp} \circ V_{\varepsilon} + \tilde{u}_{\varepsilon} \succ V_{\varepsilon} - c_{\varepsilon} \tilde{u}_{\varepsilon}
$$
\n
$$
= \tilde{u}_{\varepsilon} \prec V_{\varepsilon} + \tilde{u}_{\varepsilon} (X_{\varepsilon} \circ V_{\varepsilon} - c_{\varepsilon}) + C(\tilde{u}_{\varepsilon}, X_{\varepsilon}, V_{\varepsilon}) + \tilde{u}_{\varepsilon}^{\sharp} \circ V_{\varepsilon} + \tilde{u}_{\varepsilon} \succ V_{\varepsilon}
$$

Paracontrolled ansatz (II)

 \triangleright So in the limit $\varepsilon \to 0$ we have

$$
\tilde{u}_{\varepsilon} V_{\varepsilon} - c_{\varepsilon} \tilde{u}_{\varepsilon} = \tilde{u}_{\varepsilon} \prec V_{\varepsilon} + \tilde{u}_{\varepsilon} (X_{\varepsilon} \circ V_{\varepsilon} - c_{\varepsilon}) + C(\tilde{u}_{\varepsilon}, X_{\varepsilon}, V_{\varepsilon}) + \tilde{u}_{\varepsilon}^{\sharp} \circ V_{\varepsilon} + \tilde{u}_{\varepsilon} \succ V_{\varepsilon}
$$
\n
$$
\to \tilde{u} \prec \xi + \tilde{u} (X \diamond \xi) + C(\tilde{u}, X, \xi) + \tilde{u}^{\sharp} \circ \xi + \tilde{u} \succ \xi
$$
\n
$$
=: \tilde{u} \diamond \xi = \Phi(\tilde{u}, \tilde{u}^{\sharp}, X, X \diamond \xi)
$$

where $X \diamond \xi := \lim_{\epsilon \to 0} (X_{\epsilon} \circ V_{\epsilon} - c_{\epsilon}).$

 \triangleright **Question:** What is the equation satisfied by $\tilde{u} = \lim_{\varepsilon \to 0} \tilde{u}_{\varepsilon}$? Indeed

$$
\mathcal{L}\tilde{u} = " \tilde{u}\xi - \infty \tilde{u}" = \tilde{u} \diamond \xi = \Phi(\tilde{u}, \tilde{u}^{\sharp}, X, X \diamond \xi).
$$

Where the r.h.s. is well defined since \tilde{u} is paracontrolled.

 $gPAM - I$ - the r.h.s.

 $u: \mathbb{R}_+ \hat{\mathbf{E}} \times \mathbb{T}^2 \to \mathbb{R}$, ξ ∈ $\mathscr{C}^{\gamma-2}$, γ = 1−. We want to solve (have uniform bounds for)

$$
\mathcal{L}u = F(u)\xi = F(u) \prec \xi + F(u) \circ \xi + F(u) \succ \xi.
$$

 \triangleright Paracontrolled ansatz. Take $\mathcal{L}X = \xi$, $X \in \mathscr{C}^\gamma$ and assume that $u \in \mathscr{D}_{X}^{2\gamma}$:

$$
u = u^X \prec X + u^\sharp
$$

with $u^{\sharp} \in \mathscr{C}^{2\gamma}$ and $u^X \in \mathscr{C}^{\gamma}$.

. Paralinearization:

$$
F(u) = F'(u) \prec u + \mathcal{C}^{2\gamma} = (F'(u)u^X) \prec X + \mathcal{C}^{2\gamma}
$$

. Commutator lemma:

$$
F(u) \circ \xi = ((F'(u)u^X) \prec X) \circ \xi + \mathscr{C}^{2\gamma} \circ \xi
$$

=
$$
\underbrace{(F'(u)u^X)(X \circ \xi)}_{\in \mathscr{C}^{2\gamma - 2}} + \underbrace{C(F'(u)u^X,X,\xi) + \mathscr{C}^{2\gamma} \circ \xi}_{\in \mathscr{C}^{3\gamma - 2}}
$$

if we *assume* that $(X \circ \xi) \in \mathscr{C}^{2\gamma - 2}$.

gPAM - II - the l.h.s.

So if *u* is paracontrolled by *X*:

$$
u = u^X \prec X + u^\sharp
$$

and if $X \circ \xi \in \mathscr{C}^{2\gamma-2}$ we have a control on the r.h.s. of the equation:

$$
F(u)\xi = \underline{F(u)} \prec \xi + F'(u)u^X(X \circ \xi) + \mathscr{C}^{3\gamma - 2}
$$

What about the l.h.s.?

$$
\mathcal{L}u = \mathcal{L}u^X \prec X + \underline{u^X \prec \xi} + \mathcal{L}u^{\sharp} - \partial_x u^X \prec \partial_x X
$$

so letting $u^X = F(u)$ we have

$$
\mathcal{L}u^{\sharp} = -\mathcal{L}F(u) \prec X + F'(u)F(u)(X \circ \xi) + \mathbb{C}^{2\gamma - 2}
$$

gPAM - III - the paracontrolled fixed point.

The PDE

$$
\mathcal{L}u = F(u)\xi
$$

is equivalent to the system

$$
\partial_t X = \xi
$$

\n
$$
\partial_t u^{\sharp} = (F'(u)F(u))(X \circ \xi) - \underbrace{\mathcal{L}f(u) \prec X}_{\tau \in \mathcal{C}^{2\gamma - 2}} + \underbrace{R(f, u, X, \xi)}_{\in \mathcal{C}^{3\gamma - 2}} \circ \xi
$$

\n
$$
u = F(u) \prec X + u^{\sharp}
$$

 \triangleright The system can be solved by fixed point (for small time) in the space $\mathscr{D}_{X}^{2\gamma}$ if we assume that

$$
X \in \mathscr{C}^{\gamma}, \qquad (X \circ \xi) \in \mathscr{C}^{2\gamma - 2}.
$$

Paracontrolled solutions to gPAM

Theorem

Let d = 2, α = 1, γ = 1– *and small T* > 0*. There exist constants c_ε such that letting u*^ε *the solution to*

$$
\mathcal{L}u_{\varepsilon}=V_{\varepsilon}F(u_{\varepsilon})-c_{\varepsilon}F'(u_{\varepsilon})
$$

then $u_{\varepsilon} \to u$ *in* \mathbb{C}^{γ} *as* $\varepsilon \to 0$ *and* $u \in \mathscr{D}_{X}^{2\gamma}$ *is the unique weak solution in* $\mathscr{D}_{X}^{2\gamma}$ to the equation

$$
\mathcal{L}u = \xi \diamond F(u) = F(u) \prec \xi + F'(u)(X \diamond \xi) + G(u^X, u^{\sharp}, X)
$$

where

$$
\xi = \lim_{\varepsilon \to 0} V_{\varepsilon}, \qquad X \diamond \xi = \lim_{\varepsilon \to 0} X_{\varepsilon} \circ V_{\varepsilon} - c_{\varepsilon}
$$

in $\mathbb{C}^{\gamma-2}$ and $\mathbb{C}^{2\gamma-2}$ resp. and ξ has the law of the white noise on \mathbb{T}^2 .

Structure of the solution

 \triangleright When ξ smooth, the solution to

$$
\partial_t u = F(u)\xi, \qquad u(0) = u_0
$$

is given by $u = \Phi(u_0, \xi, X \circ \xi)$ where

$$
\Phi : \mathbb{R}^d \times \mathcal{C}^{\gamma - 2} \times \mathcal{C}^{2\gamma - 2} \to \mathcal{C}^{\gamma}
$$

is continuous for any $\gamma > 2/3$ and $z = \Phi(u_0, \xi, \varphi)$ is given by

$$
\begin{cases}\nz = F(z) \prec X + z^{\sharp} \\
\partial_t z^{\sharp} = (F'(z)F(z))\varphi - \underbrace{\mathcal{L}F(z) \prec X}_{\neg \in \mathscr{C}^{2\gamma - 2}} + \underbrace{R(F, z, X, \xi) \circ \xi}_{\in \mathscr{C}^{3\gamma - 2}}\n\end{cases}
$$

 \rhd If $(\xi^n, X^n \circ \xi^n) \to (\xi, \eta)$ in $\mathscr{C}^{\gamma-2} \times \mathscr{C}^{2\gamma-2}$ and

$$
\partial_t u^n = f(u^n)\xi^n, \qquad u(0) = u_0
$$

then $u^n \to u = \Phi(u_0, \xi, \eta)$.

Relaxed form of the RDE

 \triangleright Note that in general we can have $\xi^{1,n} \to \xi$, $\xi^{2,n} \to \xi$ and

 $\lim_{n} X^{1,n} \circ \xi^{1,n} \neq \lim_{n} X^{2,n} \circ \xi^{2,n}$

. Take ξ *n* , ξ smooth but ξ *ⁿ* [→] ^ξ in ^C γ−2 . It can happen that

$$
\lim_n X^n \circ \xi^n = X \circ \xi + \varphi \in \mathscr{C}^{2\gamma - 1}
$$

In this case $u^n \to u$ and $u = \Phi(\xi, X \circ \xi + \varphi)$ solves the equation

$$
\mathcal{L}u = F(u)\xi + F'(u)F(u)\varphi.
$$

The limit procedure generates correction terms to the equation.

The original equation **relaxes** to another form in which additional terms are generated.

"Itô" form of the RDE

In the smooth setting $u = \Phi(\xi, X \circ \xi + \varphi)$ solves

$$
\mathcal{L}u = F(u)\xi + F'(u)F(u)\varphi.
$$

If we choose $φ = -X ∘ ξ$ then

$$
v = \Phi(\xi, X \circ \xi + \varphi) = \Phi(\xi, 0)
$$

solves

$$
\mathcal{L}v = F(v)\xi - F'(v)F(v)X \circ \xi
$$

and has the particular property of being a continuous map of $\xi \in \mathscr{C}^{\gamma-2}$ alone.

The renormalization problem

If ξ is the space white noise we have

$$
\xi \in \mathscr{C}^{-1-}, \qquad X \in C([0,T];\mathscr{C}^{1-})
$$

and

$$
X \circ \xi = X \circ \mathcal{L}X = \frac{1}{2}\mathcal{L}(X \circ X) + \frac{1}{2}(DX \circ DX)
$$

$$
= \frac{1}{2}\mathcal{L}(X \circ X) - (DX \prec DX) + \frac{1}{2}(DX)^2
$$

But now

$$
\frac{1}{2}(DX)^2 = c + C\mathscr{C}^{0-}
$$

with $c = +\infty!$.

No obvious definition of *X* ∘ ξ can be given. But there exists c_{ε} such that

$$
X_{\varepsilon} \circ \xi_{\varepsilon} - c_{\varepsilon} \to "X \diamond \xi" \qquad \text{in } C\mathscr{C}^{0-}.
$$

The renormalized gPAM

To cure the problem we add a suitable counterterm to the equation

$$
\mathcal{L}u = f(u) \diamond \xi = f(u)\xi - c(f'(u)f(u))
$$

this defines a new product, denoted by \diamond . Now

 $f(u)\circ \xi-c(f'(u)f(u)) = (f'(u)f(u))(X\circ \xi-c)+C(f'(u)f(u),X,\xi)+R(f,u,X)\circ \xi$

 \triangleright The renormalized gPAM is equivalent to the equation

$$
\mathcal{L}u^{\sharp} = -\mathcal{L}f(u) \prec X + Df(u) \prec DX + (f'(u)f(u))(X \circ \xi - c)
$$

$$
+ C(f'(u)f(u), X, \xi) + R(f, u, X) \circ \xi
$$

together with $u = f(u) \prec X + u^{\sharp}$ and where

$$
X \in \mathscr{C}^{1-}, \qquad X \diamond \xi = (X \circ \xi - c) \in \mathscr{C}^{0-}, \quad u^{\sharp} \in \mathscr{C}^{2-}.
$$

KPZ and its siblings:

Besides the generalized PAM, the following equations have been solved using the paracontrolled approach (joint work with N. Perkowski)

- $\mathcal{L} = \partial_t \Delta$ heat operator on T, ζ space-time white noise;
	- \triangleright KPZ equation: $h: \mathbb{R}_+ \times \mathbb{T} \to \mathbb{R}$,

$$
\mathcal{L}h(t,x)=(\partial_xh(t,x))^2+\xi(t,x);
$$

► Burgers equation: $u = \partial_{x}h$;

$$
\mathcal{L}u(t,x)=\partial_x(u(t,x)^2)+\partial_x\xi(t,x);
$$

 \triangleright Stochastic Heat equation: $h = \log w$

$$
\mathcal{L}w(t,x)=w(t,x)\xi(t,x).
$$

Other applications

 \triangleright Gubinelli, Imkeller, P. (2012): Multidimensional extension of Hairer's (2011) generalized Burgers equation (σ − *d*/2 > 1/3):

 $\partial_t u(t, x) = -(-\Delta)^\sigma u(t, x) + G(u(t, x))D_x u(t, x) + \xi(t, x);$

Catellier, Chouk (2013): Stochastic quantization equation ϕ_3^4 $(d = 3)$:

$$
\mathcal{L}u(t,x)=-u(t,x)^{\diamond 3}+\xi(t,x);
$$

Furlan (2014): Stochastic Navier Stokes equation $(d = 3)$:

$$
\mathcal{L}u(t,x) = -P((u(t,x)\cdot \nabla)u(t,x)) + \xi(t,x).
$$

Thanks

Fluctuations of a growing interface

A model for random interface growth (think e.g. expansion of colony of bacteria): $h: \mathbb{R}_+ \times \mathbb{R} \to \mathbb{R}$,

$$
\partial_t h(t, x) = \underbrace{\kappa \Delta h(t, x)}_{\text{relaxation}} + \underbrace{F(\partial_x h(t, x))}_{\text{slope-dependent growth}} + \underbrace{\eta(t, x)}_{\text{noise with microscopic correlations}}
$$

Fluctuations of a growing interface

The Kardar–Parisi–Zhang equation

 \triangleright Kardar–Parisi–Zhang '84: slope-dependent growth given by *F*(∂^{*x*}*h*), in a certain scaling regime of small gradients:

$$
F(\partial_x h) = F(0) + F'(0)\partial_x h + F''(0)(\partial_x h)^2 + \dots
$$

 \triangleright KPZ equation is the universal model for random interface growth

$$
\partial_t h(t, x) = \underbrace{\kappa \Delta h(t, x)}_{\text{relaxation}} + \underbrace{\lambda [(\partial_x h(t, x))^2 - \infty]}_{\text{renormalized growth}} + \underbrace{\xi(t, x)}_{\text{space-time white noise}}
$$

- **►** This derivation is highly problematic since $\partial_x h$ is a distribution. But: Hairer, Quastel (2014, unpublished) justify it rigorously via scaling of smooth models and small gradients.
- \triangleright KPZ equation is suspected to be universal scaling limit for random interface growth models, random polymers, and many particle systems;
- \triangleright contrary to Brownian setting: KPZ has fluctuations of order $t^{1/3}$; large time limit distribution of $t^{-1/3}h(t,t^{2/3}x)$ is expected to be universal in a sense comparable only to the Gaussian distribution.

KPZ and its siblings:

 \triangleright KPZ equation:

$$
\mathcal{L}h(t,x)=(\partial_xh(t,x))^2+\xi(t,x);
$$

h: $\mathbb{R}_+ \times \mathbb{R} \to \mathbb{R}$, $\mathcal{L} = \partial_t - \Delta$ heat operator, ξ space-time white noise;

 \triangleright Burgers equation:

$$
\mathcal{L}u(t,x)=\partial_x(u(t,x)^2)+\partial_x\xi(t,x);
$$

solution is (formally) given by derivative of the KPZ equation: $u = \partial_x h$

 \triangleright solution to KPZ (formally) given by Cole-Hopf transform of the stochastic heat equation: $h = \log w$, where *w* solves

$$
\mathcal{L}w(t,x)=w(t,x)\xi(t,x).
$$

 \blacktriangleright All three are universal objects, that are expected to be scaling limits of a wide range of particle systems.

Stochastic Burgers equation Take $u = Dh$

$$
\mathcal{L}u = D\xi + Du^2
$$

to obtain the stochastic Burgers equation (SBE) with additive noise.

 \triangleright **Invariant measure:** Formally the SBE leaves invariant the space white noise: if u_0 has a Gaussian distribution with covariance $\mathbb{E}[u_0(x)u_0(y)] = \delta(x-y)$ then for all $t \ge 0$ the random function $u(t, \cdot)$ has a Gaussian law with the same covariance.

 \triangleright **First order approximation:** Let *X*(*t*, *x*) be the solution of the linear equation

$$
\partial_t X(t,x) = \partial_x^2 X(t,x) + \partial_x \xi(t,x), \qquad x \in \mathbb{T}, t \geq 0
$$

X is a stationary Gaussian process with covariance

$$
\mathbb{E}[X(t,x)X(s,y)]=p_{|t-s|}(x-y).
$$

Almost surely $X(t, \cdot) \in \mathscr{C}^\gamma$ for any $\gamma < -1/2$ and any $t \in \mathbb{R}$. For any $t \in \mathbb{R}$ *X*(t , ·) has the law of the white noise over \mathbb{T} .

Expansion /I \triangleright Let $u = X + u_1$ then

$$
\mathcal{L}u_1 = \partial_x (u_1 + X)^2 = \underbrace{\partial_x X^2}_{-2-} + 2\partial_x (u_1 X) + \partial_x u_1^2
$$

 \triangleright Let X^V be the solution to

$$
\mathcal{L}X^{\mathbf{V}} = \partial_x X^2 \qquad \Rightarrow \qquad X^{\mathbf{V}} \in \mathscr{C}^{0-}
$$

and decompose further $u_1 = X^V + u_2$. Then

$$
\mathcal{L}u_2 = \underbrace{2\partial_x(X^{\mathbf{V}}X)}_{-3/2-} + 2\partial_x(u_2X) + \underbrace{\partial_x(X^{\mathbf{V}}X^{\mathbf{V}})}_{-1-} + 2\partial_x(u_2X^{\mathbf{V}}) + \partial_x(u_2)^2
$$

 \triangleright Define $\mathcal{L}X^{\mathbf{V}} = 2\partial_x(X^{\mathbf{V}}X)$ and $u_2 = X^{\mathbf{V}} + u_3$ then $X^{\mathbf{V}} \in \mathcal{C}^{1/2-1}$

$$
\mathcal{L}u_3 = \underbrace{2\partial_x(u_3X)}_{-3/2-} + \underbrace{2\partial_x(X^{\mathbf{V}}X)}_{-3/2-} + \underbrace{\partial_x(X^{\mathbf{V}}X^{\mathbf{V}})}_{-1-} + 2\partial_x(u_2X^{\mathbf{V}}) + \partial_x(u_2)^2
$$

Expansion /II

 \triangleright Recall our partial expansion for the solution

$$
u = X + X^V + 2X^V + U
$$

 $\mathcal{L}U = 2\partial_x (UX) + 2\partial_x (X^{\mathbf{V}}X) + \partial_x (X^{\mathbf{V}}X^{\mathbf{V}}) + 2\partial_x ((2X^{\mathbf{V}} + U)X^{\mathbf{V}}) + \partial_x (2X^{\mathbf{V}} + U)^2$ $= 2\partial_x(UX) + \mathcal{L}(2X^V + X^V) + 2\partial_x((2X^V + U)X^V) + \partial_x(2X^V + U)^2$

and the regularities for the driving terms

We can assume $U \in \mathscr{C}^{1/2-}$ so that the terms

$$
2\partial_x((2X^{\mathbf{V}}+U)X^{\mathbf{V}})+\partial_x(2X^{\mathbf{V}}+U)^2
$$

are well defined.

The remaining problem is to deal with 2∂*x*(*UX*).

Paracontrolled ansatz for SBE

 \triangleright Make the following ansatz $U = U' \prec Q + U^{\sharp}$. Then

$$
\mathcal{L}U = \mathcal{L}U' \prec Q + U' \prec \mathcal{L}Q - \partial_x U' \prec \partial_x Q + LU^{\sharp}
$$

while

$$
\mathcal{L}U = 2\partial_x(UX) + \underbrace{\mathcal{L}(2X^{\mathbf{V}} + X^{\mathbf{V}}) + 2\partial_x((2X^{\mathbf{V}} + U)X^{\mathbf{V}}) + \partial_x(2X^{\mathbf{V}} + U)^2}_{R(U)}
$$

 $= 2\partial_x (U \prec X) + 2\partial_x (U \circ X) + 2\partial_x (U \succ X) + R(U)$

 $= 2(U \prec \partial_x X) + 2(\partial_x U \prec X) + 2\partial_x (U \circ X) + 2\partial_x (U \succ X) + R(U)$

so we can set $U' = 2U$ and $\mathcal{L}Q = \partial_{x}X$ and get the equation

 $\mathcal{L}U^{\sharp} = -\mathcal{L}U' \prec O + \partial_{x}U' \prec \partial_{x}O + 2(\partial_{x}U \prec$ X) + 2∂^{*x*}($U \circ X$) + 2∂^{*x*}($U \succ X$) + $R(U)$

 \triangleright Observe that *Q*, *U*, *U'* ∈ $\mathscr{C}^{1/2-}$ and we can assume that *U*^{\sharp} ∈ \mathscr{C}^{1-} .

Commutator

- ^B The difficulty is now concentrated in the resonant term *^U ^X* which is not well defined.
- \triangleright The paracontrolled ansatz and the commutation lemma give

$$
U \circ X = (2U \prec Q) \circ X + U^{\sharp} \circ X = 2U(Q \circ X) + \underbrace{C(2U, Q, X)}_{1/2-} + \underbrace{U^{\sharp} \circ X}_{1/2-}
$$

 \triangleright A stochastic estimate shows that $Q \circ X \in \mathscr{C}^{0-}$

Paracontrolled solution to SBE

 \triangleright The final system reads

$$
u = X + X^{V} + 2X^{V} + U
$$

\n
$$
U = U' \prec Q + U^{\sharp}, \qquad U' = 2X^{V} + 2U
$$

\n
$$
\mathcal{L}U^{\sharp} = 4\partial_{x}(U(Q \circ X)) + 4\partial_{x}C(U,Q,X) + 2\partial_{x}(U^{\sharp} \circ X) - 2\mathcal{L}U \prec Q
$$

\n
$$
+2\partial_{x}U \prec \partial_{x}Q + 2(\partial_{x}U \prec X) + 2\partial_{x}(U \succ X) + R(U)
$$

 \triangleright This equation has a (local in time) solution $U = \Phi(J(\xi))$ which is a continuous function of the data $J(\xi)$ given by a collection of multilinear functions of ξ:

$$
J(\xi) = (X, X^{\mathbf{V}}, X^{\mathbf{V}}, X^{\mathbf{V}}, X^{\mathbf{V}}, X \circ Q)
$$

Burgers equation and paracontrolled distributions

$$
\mathcal{L}u(t,x)=\partial_{x}u^{2}(t,x)+\partial_{x}\xi(t,x), \qquad u(0)=u_{0}.
$$

Paracontrolled Ansatz

 $u \in \mathscr{P}_{\text{rbe}}$ if $u = X + X^{\vee} + 2X^{\vee} + u^{\mathbb{Q}}$ with

 $u^{Q} = \pi_{<}(u', Q) + u^{\sharp}.$

- **Paracontrolled structure:** Can define u^2 continuously as long as $(Q \circ X)$ ∈ *C*($[0, T]$, \mathcal{C}^{0-}) is given (together with tree data *X*, *X* , *X* , *X* , *X*).
- \triangleright Obtain local existence and uniqueness of paracontrolled solutions. Solution depends pathwise continuously on extended data $J(\xi) = (\xi, X, X^{\mathbf{V}}, X^{\mathbf{V}}, X^{\mathbf{V}}, X^{\mathbf{V}})$. $Q \circ X$).

KPZ equation

KPZ equation:

$$
\mathcal{L}h(t,x)=(\partial_xh(t,x))^2+\xi(t,x), \qquad h(0)=h_0.
$$

Expect $h(t) \in \mathscr{C}^{1/2-}$, so $\partial_x h(t) \in \mathscr{C}^{-1/2-}$ and $(\partial_x h(t))^2$ not defined. But: expand

$$
u = Y + Y^{\mathbf{V}} + 2Y^{\mathbf{V}} + h^P,
$$

where $\mathcal{L}Y = \xi$, $\mathcal{L}Y^{\mathbf{V}} = \partial_x Y \partial_x Y$, . . . In general: $\partial_x Y^{\tau} = X^{\tau}$. Make paracontrolled ansatz for *h P* :

$$
h^P = \pi_{<} (h', P) + h^\sharp
$$

 \forall with $h' \in C([0, T], \mathscr{C}^{1/2-}), h^{\sharp} \in C([0, T], \mathscr{C}^{2-}), \mathscr{L}P = X$. Write $h \in \mathscr{P}_{\text{kpp}}$. Can define $(\partial_x h(t))^2$ for $h \in \mathscr{P}_{\text{kpz}}$ and obtain local existence and uniqueness of solutions.

KPZ and Burgers equation

 $h \in \mathscr{P}_{\text{kpz}}$ if $h = Y + Y^{\mathbf{V}} + 2Y^{\mathbf{V}} + h^{P}$, $h^{P} = h' \prec P + h^{\sharp}$. $u \in \mathscr{P}_{\text{rbo}}$ if

$$
u = X + X^{\mathbf{V}} + 2X^{\mathbf{V}} + u^{\mathbf{Q}}, \qquad u^{\mathbf{Q}} = u' \prec \mathbf{Q} + u^{\sharp}.
$$

• If
$$
h \in \mathcal{P}_{kpz}
$$
, then $\partial_x h \in \mathcal{P}_{rbe}$.

- If *h* solves KPZ equation, then $u = \partial_x h$ solves Burgers equation with initial condition $u(0) = \partial_x h_0$.
- ► If *u* ∈ \mathscr{P}_{rbe} , then any solution *h* of $\mathscr{L}h = u^2 + \xi$ is in \mathscr{P}_{kpz} .
- ► If *u* solves Burgers equation with initial condition $u(0) = \partial_x h_0$, and *h* solves $\mathcal{L}h = u^2 + \xi$ with initial condition $h(0) = h_0$, then *h* solves KPZ equation.

KPZ and heat equation

Heat equation:

 $\mathcal{L}w(t,x) = w(t,x) \diamond \xi(t,x) = w(t,x) \xi(t,x) - w(t,x) \cdot \infty, \quad w(0) = w_0.$

Paracontrolled ansatz: $w \in \mathscr{P}_{\text{rhe}}$ if

$$
w = e^{Y + Y^{\mathsf{V}} + 2Y^{\mathsf{V}}} w^P, \qquad w^P = \pi_{<}(w', P) + w^{\sharp}
$$

(comes from Cole-Hopf transform).

If Slightly cheat to make sense of product $w \diamond \xi$ for $w \in \mathcal{P}_{\text{rhe}}$:

$$
w \diamond \xi = \mathcal{L}w - e^{Y + Y^{\mathbf{V}} + 2Y^{\mathbf{V}}}\left[\mathcal{L}w^{P} - [\mathcal{L}(Y^{\mathbf{V}} + Y^{\mathbf{V}}) + (\partial_{x}(Y + Y^{\mathbf{V}} + 2Y^{\mathbf{V}}))^{2}]w^{P}\right] + 2e^{Y + Y^{\mathbf{V}} + 2Y^{\mathbf{V}}}\partial_{x}(Y + Y^{\mathbf{V}} + 2Y^{\mathbf{V}})\partial_{x}w^{P};
$$

(agrees with renormalized pointwise product $w \diamond \xi$ in smooth case and with Itô integral in white noise case, continuous in extended data).

- \triangleright Obtain global existence and uniqueness of solutions.
- \triangleright One-to-one correspondence between \mathcal{P}_{kpz} and strictly positive elements of \mathscr{P}_{the} .
- Any solution of KPZ gives solution of heat equation. Any strictly positive solution of heat equation gives solution of KPZ equation.

Para-modelled distributions

Let $\gamma > 0$ and (T, Π, Γ) regularity structure. Say f is para-modelled, $f \in \mathscr{P}^{\gamma}$, if there exists $f^{\pi} \in \mathscr{D}^{\gamma}$, with

 $f - \pi < (f^{\pi}, \Pi) \in C^{\gamma}$.

Example: $\mathscr{R}f^{\pi} \in \mathscr{P}^{\gamma}$. Consider rough path model, say $T = \text{span}(\Xi, \mathscr{I}(\Xi)\Xi, \mathscr{I}(\mathscr{I}(\Xi)\Xi)\Xi, \mathbf{1}, \mathscr{I}(\Xi), \mathscr{I}(\mathscr{I}(\Xi)\Xi)).$ Try to solve $∂_t u = F(u)$ ξ. (Simplified) para-modelled ansatz: $u = \Re u^\pi = \pi_<(u^\pi,\Pi) + u^\sharp$ with $u^{\pi} \in \mathscr{D}^{\mathsf{3}\alpha}$. Equation for u^{\sharp} :

 $\partial_t u^{\sharp} = -\partial_t \pi_<(u^{\pi}, \Pi) + F(u)\xi = \pi_<(u^{\pi}, \text{D}\Pi) - \pi_<(F(u^{\pi}) \star \xi^{\pi}, \Pi) + \text{smooth}.$

To have $u^{\sharp} \in C^{3\alpha}$: choose expansion u^{π} so that all coefficients for terms of homogeneity $<$ 3 α – 1 cancel. Obtain a priori bounds on $\|u^{\sharp}\|_{3\alpha}$ and then on $\|u^{\pi}\|_{\mathscr{D}^{3\alpha}}$. Thus at least local existence of solutions.

Stochastic Quantization

Stochastic quantization of $(\Phi^4)_3$: $\xi \in C^{-5/2-}$, $u \in C^{-1/2-}$, $u = u_1 + u_2 + u_{\geqslant 3}$.

$$
\mathcal{L}u = \xi + \lambda (u^3 - 3c_1u - c_2u)
$$

\n
$$
\mathcal{L}u_1 + \mathcal{L}u_{\geq 2} = \xi + \lambda (u_1^3 - 3c_1u_1) + 3\lambda (u_{\geq 2}(u_1^2 - c_1)) + 3\lambda (u_{\geq 2}^2u_1) + \lambda u_{\geq 2}^3 - \lambda c_2u
$$

\n
$$
\triangleright \mathcal{L}u_1 = \xi \Rightarrow u_1 \in C^{-1/2-}, \mathcal{L}u_2 = \lambda (u_1^3 - 3c_1u_1) \Rightarrow u_2 \in C^{1/2-}
$$

\n
$$
\mathcal{L}u_{\geq 3} = 3\lambda (u_{\geq 2}(u_1^2 - c_1)) + 3\lambda (u_2^2u_1) + 6\lambda (u_{\geq 3}u_2u_1) + 3\lambda (u_{\geq 3}^2u_1) + \lambda u_{\geq 2}^3 - \lambda c_2u
$$

\n
$$
\triangleright
$$
 Ansatz: $u_{\geq 3} = 3\lambda u_{\geq 2} \prec X + u^{\sharp},$ with $\mathcal{L}X = (u_1^2 - c_1)$
\n
$$
\mathcal{L}u^{\sharp} = -3\lambda \mathcal{L}u_{\geq 2} \prec X + 3\lambda Du_{\geq 2} \prec DX + 3\lambda (u_{\geq 2} \circ (u_1^2 - c_1) - c_2u) + 3\lambda (u_{\geq 2} \succ (u_1^2 - c_1) + 3\lambda (u_2^2u_1) + 6\lambda (u_{\geq 3}(u_2u_1)) + 3\lambda (u_{\geq 3}^2u_1) + \lambda u_{\geq 2}^3
$$

\n
$$
u_{\geq 2} \circ (u_1^2 - c_1) - c_2u = (u_2 \circ (u_1^2 - c_1) - c_2u_1) + (u_{\geq 3} \circ (u_1^2 - c_1) - c_2u_{\geq 2})
$$

\n
$$
(u_{\geq 3} \circ (u_1^2 - c_1) - c_2
$$

$$
(u_1^2 - c_1), (u_1^3 - 3c_1u_1), (3\lambda(X \circ (u_1^2 - c_1)) - c_2), (u_2u_1), (u_2^2u_1)
$$

(51 / 57)